
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Faculty Publications Computer Science and Engineering, Department
of

12-2008

A Special-Purpose Architecture for Solving the Breakpoint Median A Special-Purpose Architecture for Solving the Breakpoint Median

Problem Problem

Jason D. Bakos
University of South Carolina - Columbia, jbakos@cse.sc.edu

Panormitis E. Elenis

Follow this and additional works at: https://scholarcommons.sc.edu/csce_facpub

 Part of the Computer Engineering Commons

Publication Info Publication Info
Published in IEEE Transactions on Very Large Scale Integration, Volume 16, Issue 12, 2008, pages
1666-1676.

This Article is brought to you by the Computer Science and Engineering, Department of at Scholar Commons. It has
been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more
information, please contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/csce_facpub
https://scholarcommons.sc.edu/csce
https://scholarcommons.sc.edu/csce
https://scholarcommons.sc.edu/csce_facpub?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

1666 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 12, DECEMBER 2008

A Special-Purpose Architecture for Solving the
Breakpoint Median Problem

Jason D. Bakos, Member, IEEE, and Panormitis E. Elenis, Student Member, IEEE

Abstract—In this paper, we describe the design for a co-pro-
cessor for whole-genome phylogenetic reconstruction. Our current
design performs a parallelized breakpoint median computation,
which is an expensive component of the overall application. When
implemented on a field-programmable gate array (FPGA), our
hardware breakpoint median achieves a maximum speedup of
1005 over software. When the coprocessor is used to accelerate
the entire reconstruction procedure, we achieve a maximum ap-
plication speedup of 417 . The results in this paper suggest that
FPGA-based acceleration is a promising approach for computa-
tionally expensive phylogenetic problems, in spite of the fact that
the involved algorithms are based on complex, control-dependent
combinatorial optimization.

Index Terms—Bioinformatics, computational biology, field-pro-
grammable gate array (FPGA), phylogenetic reconstruction, re-
configurable computing.

I. INTRODUCTION

T HE USE OF coprocessors has become an increasingly
popular technique for accelerating computationally

expensive applications. Possibly the best-known use of copro-
cessors are graphics processor units (GPUs), which accelerate
3-D rendering [1] and high-definition video playback [2]. While
GPUs now form a substantial market in consumer computing,
we believe that coprocessor acceleration also has the potential
to achieve a significant impact for scientific computing.

In high-performance reconfigurable computing (HPRC),
field-programmable gate arrays (FPGAs) act as coprocessor(s).
In this technique, a special-purpose hardware version of the
application’s bottleneck computation (sometimes referred to as
a “kernel computation”) is implemented in FPGA logic. The
performance improvement from this approach can be signif-
icant. For example, assume an application requires one week
of CPU time. Also, assume there is a bottleneck computation
that consumes 99% of the application’s total execution time.
Finally, assume a hardware implementation of the bottleneck
computation achieves an average speedup of 200 over software
(including the CPU-FPGA communication overhead). Ac-
cording to Amdahl’s Law, using the hardware implementation
as an accelerator yields an end-to-end application speedup of
67, and the accelerated application now requires only 2.5 h of
execution time.

Manuscript received July 23, 2007; revised September 24, 2007. Current ver-
sion published November 19, 2008.

The authors are with the Department. of Computer Science and Engineering,
University of South Carolina, Columbia, SC 29208 USA (e-mail: jbakos@
cse.sc.edu; elenis@cse.sc.edu).

Digital Object Identifier 10.1109/TVLSI.2008.2001298

Applications that are best-suited to coprocessor acceleration
are those that are dominated by a particular bottleneck computa-
tion that is amenable to significant speedup by hardware imple-
mentation. For this, it must contain more inherent parallelism
than can be exploited by a general-purpose microprocessor and
have relatively low input/output (I/O) and storage requirements.

For many applications, an end-to-end application speedup
of 67 would be a reasonable expectation for a 128-processor
cluster. A 128-processor cluster requires 10 times the initial
capital investment of an FPGA coprocessor card, in addition to
recurring costs for maintenance, cooling, electricity, and recy-
cling. Many researchers have expressed the opinion that future
HPC systems will actually require HPRC techniques to push
high-performance computing into the peta-scale performance
range while having feasible implementation and power costs
[3]–[5]. In fact, Cray’s current flagship line of supercomputers,
the XT5 and XT5h families, include FPGA coprocessors inte-
grated directly into each processing module [6].

While HPRC has been viewed as an efficient technique for
scientific high-performance computing, to date there has been
surprisingly little attention given to applying this technique
to applications in computational biology. One reason for this
is that there are currently only a small handful of universally
accepted “textbook” algorithms in computational biology to
target for acceleration. This is in stark contrast to fields such as
signal processing where there is a well-established standard set
of computational methods (i.e., filtering, DFT). However, a few
computational biology tools, such as sequence alignment (i.e.,
BLAST, Smith–Waterman, ClustalW) and distance-based phy-
logeny reconstruction (i.e., UPGMA, neighbor-joining), have
been successfully accelerated [7]–[10]. These computations are
control-independent (their execution behavior is independent
of the input data) and can generally can be implemented with a
simple systolic array.

Our goal is to achieve acceleration of additional applica-
tions of in computational biology, particularly those that are
extremely computationally expensive, require complex algo-
rithms, and have complex execution behavior. In this paper,
we focus on maximum parsimony phylogeny reconstruction
for gene rearrangement data. This application consists of two
primary components. The first is referred to as tree generation,
which explores the space of phylogenetic trees for an optimal
tree topology. The second component is tree scoring, which is
used to determine the fitness of a particular tree. Tree scoring
is an iterative refinement algorithm that repeatedly performs
expensive median computations over the internal vertices of
a given tree. Not every tree must be scored, but the scoring
rate increases with the evolutionary rate of the input data set.

1063-8210/$25.00 © 2008 IEEE

BAKOS AND ELENIS: A SPECIAL-PURPOSE ARCHITECTURE FOR SOLVING THE BREAKPOINT MEDIAN PROBLEM 1667

In other words, more difficult data sets are more complex to
compute.

In this paper, we present our breakpoint median architecture.
Our performance results demonstrate a 1005 speedup over
software for the computation alone, and a 417 speedup
when the architecture is used to accelerate the entire re-
construction procedure. Section II provides details of the
application. Section III provides details of the breakpoint
median computation. Section IV describes the breakpoint
median hardware design. Section V describes how we finely
parallelized the breakpoint median algorithm across FPGA re-
sources, Section VI discusses the design’s performance results
and limitations, Section VII describes how we integrated the
core into the overall application and Section VIII concludes
this paper.

II. GENE REARRANGEMENT ANALYSIS

Recent advances in high-speed DNA sequencing have
resulted in an explosion in genomic data. In addition, chromo-
somal and whole genome data are now represented as gene
sequences instead of nucleotide sequences. A gene constitutes
a basic unit of inheritance and represents a nucleotide sequence
responsible for transcription of a specific protein. Genes are
assigned a unique integer and can be positive or negative, de-
pending on the gene’s orientation (i.e., forward or backward).
Rearrangement of gene sequences, such as inversions, trans-
positions, and other operations such as duplications, deletions,
and insertions are known to be an important evolutionary mech-
anism [11]. Understanding these rearrangements is important
in comparative genomics, systematic biology, gene prediction,
and other analyses.

Pevzner provided the first method for computing the shortest
sequence of rearrangements that would transform one gene
ordering into another [12]. Moret’s group later provided:
1) a linear-time algorithm to compute these distances [13];
2) techniques to tackle the breakpoint median and inversion me-
dian problems [14]; 3) faster and better-scaling approaches to
phylogenetic reconstruction [15]; and 4) the software package
GRAPPA which has become one of the most accurate methods
for reconstructing evolutionary histories [16]. The extension of
genome rearrangements analysis under parsimony and other
phylogenetic algorithms (GRAPPA) that uses the heuristic
technique of disk-covering [17] (DCM-GRAPPA [18]) runs
quickly on large datasets with more than 1000 genomes. As
such, the size of the dataset is no longer the main issue. Rather
it is the evolution rate of the input data that determines the
computational complexity of gene order analysis.

A. Gene Rearrangement Data

We assume a reference set of genes . Thus,
a genome can be represented by an ordering of these genes and
each gene is given with an orientation that is either positive,
written , or negative, written . A genome can be linear
or circular and can undergo various rearrangement events such
as inversion, transposition, deletion, duplication, etc.

Let be the genome with signed ordering . An
inversion (also called a reversal) between indices and
produces the genome with linear ordering

A transposition acts on three indices , , and , with
and , picking up the interval and

inserting it immediately after . Thus, genome is replaced
by (assume)

An inverted transposition is a transposition followed by an
inversion of the transposed subsequence (it is sometimes called
a transversion).

B. Phylogenetic Reconstruction

Phylogenetic analysis is the study of evolutionary relation-
ships amongst a set of species. A phylogeny (or phylogenetic
tree) is an unrooted binary tree where each vertex represents in-
formation associated with a species and each edge represents a
series of evolutionary events that transformed one species into
another. Analyzing phylogenies is a fundamental tool that biolo-
gists use to infer common characteristics across different species
based on their evolutionary relatedness. Analysis of phylogenies
is a vital component of research in such areas as drug and vac-
cine development and bio-pathway discovery.

As shown in Fig. 1, a phylogeny is an unrooted binary tree.
Each of the leaves has degree 1 and represents a species
(taxon) that currently exists, while each of the internal
vertices has degree 3 and represents an extinct species that is a
common ancestor. Each edge is associated with an evolutionary
distance, representing the number of evolutionary events that
separate the two corresponding species. Both the topology
and the edge distances are important characteristics of the
phylogeny.

In general, the problem of phylogenetic reconstruction can
be summarized as such: given input species, compute a phy-
logeny that most closely resembles the species’ actual relative
evolutionary history. Methods for reconstructing phylogenies
include distance-based methods such as neighbor-joining [19]
and direct optimization methods. The latter, pioneered by
Sankoff and Blanchette in their package BPAnalysis [20] and
improved by GRAPPA [16] and MGR [21], are among the most
accurate methods. Direct optimization methods rely on finding
median genomes. As shown in Fig. 2, the median problem on
genomes is to find a single genome that minimizes the median
score (sum of the pairwise distances) between itself and each
of the given genomes.

GRAPPA [16] is an exhaustive search method, which moves
systematically through the space of all

possible trees on genomes. For each tree, the pro-
gram tests a lower bound to determine whether the tree is worth
scoring. For every tree that is scored, the program will iteratively
solve the median problems at internal nodes until convergence,
as outlined in Fig. 3. Labeling an internal vertex requires com-
puting a median of three gene orders.

1668 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 12, DECEMBER 2008

Fig. 1. Three of the 105 possible phylogenies for 6 input genomes. Input species ���� ��� � � � � ��� are shown in black while ancestral species are shown in
white.

Fig. 2. Given genomes �, �, and � , the median problem is to find genome
� that minimizes the median score, where the median score � ������ �
������ � ������, where ��� is an edit distance (i.e., breakpoint distance).

Fig. 3. Tree scoring algorithm.

Computing an optimal median is NP-hard relative to sum of
the edge lengths involved (i.e., the diameter of the inputs) [14],
[22]. As a consequence, the portion of GRAPPA’s total execu-
tion time that is spent labeling internal vertices of candidate
trees sharply increases with the evolutionary rate of the input
set.

III. BREAKPOINT MEDIAN

A. Breakpoint Distance

The breakpoint distance between signed genomes and
is defined as the number of adjacent gene-pairs that ap-
pear in when neither nor appear in . In other
words, it is simply the number of adjacencies in one genome
that is not in the other, irrespective of the relative orientation
of the two genomes. For example, (circular) genomes

and have a break-
point distance of 2, because gene pairs and
appear in but neither [or] nor [or

] appear in .

B. Breakpoint Median

Computing a breakpoint median for three genomes re-
quires solving a traveling salesman problem (TSP) formulated
in the following way [20]. Given genomes , , and ,

each consisting of an ordering of signed genes, con-
struct a fully-connected undirected graph having vertices

and define to be the
weight between vertices and .

For each gene , define . This is done to
guarantee that each gene will appear alongside its reverse po-
larity counterpart in the TSP solution. Define to be the
number of times vertices and are adjacent in the three
genomes, and define .

If is the solution of the TSP,
then the resultant breakpoint median is .
This solution guarantees that
is optimally minimal, where is the breakpoint distance.

C. TSP Example

Fig. 4 shows an example of breakpoint median problem. The
three input genomes are shown on the upper-left of the figure. A
graph is constructed consisting of cities that represent the posi-
tive and negative version of each gene. Since this is a TSP graph,
the graph is fully connected. We initialize the edges between
each gene and its negative counterpart to be weight . We
begin with the assumption that each of the four gene adjacen-
cies in each of the three genomes is unique, so we initialize all
other edges to weight 2. Since gene adjacency and appear
in two of the genomes, the edge between and becomes
1. Since gene adjacency and appear together in the first
genome and gene adjacency appears in the second and
third genome, the edge weight between genes and 4 becomes
0 (and correspond to the same edge). When the
TSP is solved, the median genome corresponds to every other
city in the tour (even indices or odd indices).

D. Breakpoint Median Algorithm

In GRAPPA, the breakpoint median algorithm is performed
using a depth-first branch-and-bound search. Its goal is to find
a combination of edges that forms an optimal TSP tour.

1) Sorted Edge List: The search algorithm begins by reading
the input genomes and constructing the resultant TSP graph. By
definition, each edge in the graph has weight , 0, 1, 2, or 3.
Once this is complete, it organizes the weight 0, 1, and 2 edges
into a list sorted by edge weights. We refer to this as the sorted
edge list.

BAKOS AND ELENIS: A SPECIAL-PURPOSE ARCHITECTURE FOR SOLVING THE BREAKPOINT MEDIAN PROBLEM 1669

Fig. 4. Breakpoint median TSP formulation.

2) Partial Solution: The algorithm creates an empty edge set
to serve as the current search state. We refer to as the partial
solution. By definition, all weight edges are guaranteed to
be in the final solution, so the algorithm assumes that these edges
are always part of the partial solution without explicitly adding
them. As a result of this assumption, each vertex is implied to
be already connected to another vertex before the search begins,
so each vertex is effectively initialized with a degree of one,
relative to the TSP tour.

3) Used Table: The search proceeds by inspecting each edge
in the sorted edge list in order, and adds any edge to the partial
solution that obeys two conditions. The first condition is that no
edge may be added to the partial solution that causes any of the
vertices in the partial tour (implied by the current partial solu-
tion) to have a degree of greater than two, since the salesman
tour must not contain branches (i.e., the salesman cannot tra-
verse a fork in the tour). In order to enforce this rule, a table
is maintained that records whether the degree of each vertex is
currently 1 or 2 with respect to the current partial solution. We
call this the used table.

4) OtherEnd Table: The second condition is that no edge
may be added to the partial solution that creates a cycle in the
TSP tour, unless the addition of that edge results in a full tour
and, therefore, includes all vertices (i.e., the salesman visits all
cities). In order to enforce this rule without having to repeatedly
traverse the tour implied by the partial solution, another table
is maintained that keeps track of the end-points for partial tour
fragments. For example, if edge (2, 3) is added, followed by
edge (2,5), this would result in the following implied partial
tour: 5, 5, 2, 2, 3, 3. The table records which vertex is at
the opposite end of each partial tour fragment. We refer to this

as the otherEnd table. It is initialized with .
Each time an edge is added, the table is updated as such

5) Upper Bound: If no edges remain that satisfy these condi-
tions, from the current point forward in the sorted edge list, the
algorithm will record the tour implied by the partial solution as
a best-found-so-far solution if its score (including any implicit
weight-3 edges that must be included to complete the tour) is
less then the current upper bound. The upper bound is the tour
cost of the currently best found tour. Note that the tour cost also
corresponds to the breakpoint median score, disregarding the

edges.
6) Lower Bound: Any time the partial solution is modified

(by adding or pruning an edge) the algorithm computes a lower
bound for the partial solution. If the lower bound exceeds the
score of the upper bound, the last added edge is pruned.

The search computes the lower bound using the following
technique [23]. First, initialize the lower bound to zero. Then,
for each vertex that currently has a degree of one in the current
partial solution, add the weight of the lowest-weighted available
edge that leads to another vertex of degree one (note that this
value may be 3).

The lower bound computation disregards any edges that:
1) were previously pruned at or above the current level in the
search tree or 2) would result in a tour cycle if the edge were
added to the partial solution (unless the cycle includes all
vertices).

The lower bound computation must therefore reference the
used table, otherEnd table, and another table called excluded
edges which we describe in the following.

Once the lower bound accumulation is complete, the value is
divided by two to account for the bidirectionality of the edges.
This value represents a greedy approach to find the lower bound
for the cost of completing the current partial tour. This value is
added to the current cost of the partial tour and compared to the
cost of the lowest cost tour that was previously found (this value
is initialized with the lowest median score among the three input
genomes).

7) Excluded Edges: In order to keep track of which edges
have been previously pruned under the current search state, an-
other table is maintained that we refer to as the excluded edges
table. Each time an edge is pruned it is marked as excluded.

If edge A is pruned, and edge A was added to the partial solu-
tion before edge B was pruned, then edge B must be unexcluded,
since edge B was pruned based on the state of the partial solu-
tion which included edge A. Since edge A is no longer in the
partial solution, edge B may be re-added to the partial solution
in subsequent lower bound computations.

Each time an edge is pruned, the search state, which now
includes the partial solution, the used array, the otherEnd table,
and the excluded table, must be restored to the state before the
pruned edge was originally added, except for the edge’s new
status as being excluded. A stack is used to keep track of this
information.

1670 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 12, DECEMBER 2008

Fig. 5. Graphical representation of a breakpoint median TSP depth-first search tree and associated data structures. Pruned edges are excluded from the lower
bound computation from the level they are pruned to the bottom of the tree, the “otherEnd” array stores TSP path end-points to prevent cycles that do not include
all vertices, and the “used” array keeps track of which vertices in the current solution state have degree 2.

E. Example Search

Fig. 5 shows a four-gene example of the optimal TSP
search. Note that the figure is intended to resemble a
depth-first search tree, but due to the limited space the
tree is trivially small (and we were are unable to also show
the contents of the stack).

The sorted edge list for the TSP graph is shown on the right.
The root of the search tree is the partial solution containing no
edges except the implicit edges between each gene and its neg-
ative counterpart.

The search begins by adding the first and second edges in the
sorted edge list. Assume for this example that the lower bound
computation causes edge (2,3) to be pruned and thus added to
the excluded edge table. Using the stack, the search backs up to
the point before edge (2,3) was added and continues by adding
the next edge (1,2). The following edge cannot be
added because it would create a cycle. Edge (1, 2) cannot be
added because vertex 1 is “used”. However, the search is able to
add the next two edges and (1, 3). At this point, all
vertices are used, and the search reaches the end of the sorted
edge list.

Assume that the cost of this state is less then the current
upper bound, and therefore the current solution is recorded as
the “best-so-far” and its cost is recorded as the new upper bound.

F. Use of an Optimal TSP Solver

This algorithm computes an optimal TSP solution. High ac-
curacy is the primary selling point of the “direct optimization”
approach to reconstructing parsimony phylogenies. As such, the
use of an optimal median solver is crucial, and heuristic solvers
are generally avoided in this technique.

Essentially, the breakpoint median algorithm exhaustively
tests every valid combination of edges from the edge list but
includes a tightened lower bound to minimize the volume of
explored search space (through the use of the excluded edge and
otherEnd tables). Despite these optimizations, this algorithm is
of course still NP-hard in the total number of edges in the TSP
graph (i.e., length of the sorted edge list), which ultimately is a
function of the sum of breakpoints among the three input gene
orders . Even so, the optimal
breakpoint median has been shown to be tractable for problem
sizes that are of practical interest to biologists [15].

IV. BREAKPOINT MEDIAN CORE

We designed our breakpoint median “core” using approxi-
mately 10,000 lines of custom-written VHDL. In this context,
a core is discrete digital circuit and is analogous to a general-
purpose CPU executing an equivalent computation as software
code. Traditional terms for what we describe include processing
element (PE) and intellectual property (IP) block, although in

BAKOS AND ELENIS: A SPECIAL-PURPOSE ARCHITECTURE FOR SOLVING THE BREAKPOINT MEDIAN PROBLEM 1671

this context we believe core is the most accurate. Our use of the
term “core” is a reference to a processor core of a multi-core
CPU (chip multi-processor).

Note that the breakpoint median algorithm was carefully
designed to utilize the small number of choices for the pair-
wise costs, thus, further significant speedup on the software
implementation is very difficult if not impossible. Also note
that although there has been previous work in designing FPGA
architectures for the TSP problem, to our knowledge all of this
work involved approximate solvers using genetic algorithms
[24]–[26]. Since our goal is to find exact solutions of the
breakpoint, this previous work is not directly applicable to this
application.

A. Tasks Performed in Software

Before the median core begins operation, the host system, in
software, performs several initialization tasks. First, it computes
an initial upper bound using the three input genomes. Recall
that the tour costs used in the TSP are equivalent to the break-
point score. Therefore, the initial upper bound is determined by
finding which of the three input genomes has a minimum break-
point score itself, which is calculated as the sum of breakpoint
distances to the other two inputs. This value is used as the ini-
tial upper bound, i.e.,

.
In our current-generation core design, the host (in software)

also constructs the TSP graph from the input genomes and
organizes the weight-0, weight-1, and weight-2 edges in the
sorted edge list. This sorted edge list, instead of the actual
input genomes, is used as the input for the median core on
the FPGA. This is in contracts to our original core design,
where the host transmitted the actual input genomes to the
core and the core constructed the graph and sorted edge list
entirely in hardware. This reduced communication overhead,
but it required a considerable amount of hardware overhead. It
also made it impossible for the host to force each core to use
unique orderings for the sorted edge list, which is an important
component of our current architecture.

The last task for the host is to perform a programmed I/O
write operation to transmit the initial upper bound and sorted
edge list into specific on-chip memory addresses corresponding
to a specific median core on the FPGA. Using a programmed I/O
read operation, the host can poll any core on the FPGA to de-
termine its execution state, allowing the host to determine when
any particular core has completed execution. When this occurs,
the host performs another programmed I/O read operation to
read the result genome from that core (the core converts the op-
timal TSP tour to a genome).

B. Top-Level Core Design

As shown in Fig. 6, the median core design consists of a block
of control logic that is interconnected to a set of on-chip block
RAMs (BRAMs) that are used to store the search state and stack.
The controller is designed as a finite state machine with inte-
grated multiplexers that establish datapaths among the set of
BRAMs and registers. As such, the operation of the controller is
inherently sequential, unlike traditional special-purpose archi-
tectures that are based on pipelines or systolic arrays. Instead,

Fig. 6. Simplified block diagram for the breakpoint median core. The core de-
sign is a large sequential logic circuit that establishes datapaths among several
memory elements in each clock cycle. Static interconnects between memory el-
ements are shown, while multiplexed interconnects among memory elements
are established through the control unit (integrated within its output logic).

our breakpoint median architecture achieves parallelization by
performing many parallel memory accesses in each clock cycle,
since the breakpoint median algorithm is bound by memory ac-
cess as opposed to traditional special-purpose architectures that
rely on parallel arithmetic.

For example, before adding an edge to the partial solution,
the breakpoint median algorithm accesses several memories that
hold information about the search state and graph (i.e., otherEnd
array, excluded edges, used array, sorted edge list, etc.). In soft-
ware, the parallelism of these memory accesses is limited by the
number of read ports to the CPU’s cache (or available number of
load/store units). In our architecture, we exploit this parallelism
to its maximal degree by accessing all required memories in par-
allel within a single clock cycle.

Fig. 7 shows a simple representation of the finite state ma-
chine controller. During operation, the controller alternates be-
tween adding an edge, computing the lower bound, and some-
times pruning. Note that the lower bound “loop” is implemented
with counters. The “build graph” state is where the controller
uses the sorted edge list to construct an alternative (but equiva-
lent) TSP graph representation for use in the lower bound com-
putation, as described in Section V.

The median core is capable of computing breakpoint medians
of any reasonable size using only on-chip BRAM memory.

V. EXTRACTING PARALLELISM

In general, when parallelizing an application (either for
cluster/message-passing or SMP/shared-memory), the pro-
grammer must manually identify and extract parallelism to
divide work among several processors. This type of manual
parallelization must also be performed on an FPGA, although it
includes the added complication of hardware design. In contrast
to traditional techniques for parallelizing code, FPGAs allow
fine-grain parallelism such as the ability to perform independent

1672 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 12, DECEMBER 2008

Fig. 7. Finite-state machine representation of median core controller.

arithmetic operations in parallel. For the breakpoint median we
exploit both fine- and coarse-grain parallelism.

A. First-Generation Architecture

At this point, we have designed and characterized two dif-
ferent versions of our breakpoint median architecture, where
each exploits parallelism using two different strategies.

In our original architecture [27], [28], we used a coarse-grain
approach to parallelize the breakpoint median computation. In
this approach, we used multiple cores in parallel to perform a
single median computation. In this strategy, if the initial upper
bound inferred from the input genomes is , initialize median
cores with initial upper bounds .
If the optimal median has score and , the core with
initial upper bound will converge
on the optimal solution fastest. In other words, the core having
the lowest initial upper bound that is greater than the optimal
median score will always finish first (communication overhead
required to initialize multiple cores notwithstanding). After the
first core completes its search having found a solution, the host
will terminate the search on the other cores.

This strategy yielded a maximum average speedup of 26 for
the breakpoint median alone and 24 for the entire phylogeny
reconstruction procedure after replacing the software version of
the breakpoint median with the hardware version. This strategy
had a point of diminishing returns at 12 cores, which is approx-
imately 50% of the available FPGA resources (for our Virtex-2
Pro 100 FPGA).

B. Second-Generation Architecture

Our current architecture takes a significantly different ap-
proach for extracting parallelism from the breakpoint median
algorithm. We made three changes to the hardware design.

First, we redesigned the core into a much lighter-weight ver-
sion, where TSP graph construction was moved from hardware
into software. This version of the core design only implements
the combinatorial search portion of the median algorithm. This
allowed multiple cores to be initialized such that the sorted edge
list (representing the graph implied by the inputs) is constructed
uniquely for each core. This forced each core to explore its
search space using a unique order of depth-first search paths,
ultimately allowing one core to find the solution faster than the
others.

Second, a broadcast communication mechanism was added
that allows the cores to communicate for the purpose of main-
taining a globally shared upper bound (best score found-so-far)
value.

Third, the lower bound computation was parallelized, where
the lower bound “loop” was effectively unrolled and scanned by
multiple “lower bound units” in parallel.

C. Extracting Fine-Grain Parallelism

Adding or pruning an edge for the current partial solution is
an inexpensive operation, requiring 2–8 clock cycles. On the
other hand, computing the lower bound requires a traversal of
the entire TSP graph. As such, the median core spends nearly
all of its execution time performing lower bound computations.
Fortunately, the lower bound computation consists of a bounded
loop and each loop iteration is data-independent. As a result,
the lower bound contains fine-grain parallelism, and we exploit
this parallelism in the median core design. The lower bound
computation is parallelized by replicating both the TSP graph
and search state into multiple memories that can be read in par-
allel by “lower bound units”. In other words, we parallelized the
lower bound computation by “unrolling” the lower bound loop
and inspecting multiple graph vertices in parallel (and, thus, per-
forming multiple iterations of the loop in parallel).

For the lower bound, the TSP graph is represented as an array
where each entry in the array represents a vertex (city) and stores
one to three possible edges that connect that vertex. Note that
this data structure and the sorted edge list both represent the
same TSP graph. The median core reconstructs this representa-
tion from the sorted edge list provided by the host (our previous
core design constructed this representation and then constructed
the sorted edge list from it).

The operation of lower bound unit is illustrated in Fig. 8. In
this example, a lower bound unit inspects vertex 2 and its three
edges (2,11), (2, 19), and (2, 49).

If the degree of vertex 2 is one in the partial solution (i.e.,
not used), the lower bound unit must choose the lowest weight
of these edges with the requirement that the edge it chooses
must: 1) connect to another unused vertex (requires a copy of
the used table); 2) must not be excluded (requires a copy of
the excluded edge table); and 3) must not create a cycle unless
the cycle includes all vertices (requires a copy of the otherEnd
array). If no edges fulfill these criteria, the lower bound value is
incremented by an implicit weight 3 (the TSP is fully connected,

BAKOS AND ELENIS: A SPECIAL-PURPOSE ARCHITECTURE FOR SOLVING THE BREAKPOINT MEDIAN PROBLEM 1673

Fig. 8. Illustration of the operation of a lower bound unit and a portion of the TSP group focusing on vertex 2. During the lower bound computation, the TSP
graph (contructed from the sorted edge list) is scanned in parallel by mutliple lower bound units. In this example, a lower bound unit is inspecting vertex 2, which
has three weight-2 edges to vertices 11, �19, and �49. Since vertex 2 is unused in the current solution state, the lower bound unit must add to the lower bound
value the minimum edge weight of the edges that: 1) lead to another vertex that is not used and 2) do not form a tour cycle (unless the cycle includes all vertices),
and has not been excluded (pruned at or above the current level in the search tree).

but only edges with weights 0, 1, and 2 are included in the graph
representation). Otherwise, the chosen edge’s weight is added to
the lower bound value.

If the degree of vertex 2 is two in the partial solution (i.e.,
already used), the lower bound unit would not increment the
lower bound.

Note that a copy of the edge_count table is also needed,
which stores the number of edges for each vertex. This table
is part of the TSP graph representation.

Since each of the FPGA’s on-chip memories has two ports,
we need to replicate copies of the necessary memories times
(each memory maintained as exact copies), allowing the design
to perform reads per clock cycle. We refer this as a core having

“lower bound units”.
This approach requires a significant number of BRAMs,

which limits the number of lower bound units per core. This ap-
proach also requires a significant amount of routing complexity
for synthesis, which effectively increases the minimum clock
period after logic synthesis and place-and-route. We decided to
stop adding additional lower bound units after a 15% reduction
in clock speed (relative to having one lower bound unit). This
occurred after we had reached 20 lower bound units.

D. Extracting Coarse-Grain Parallelism

The median computation also has potential for coarse-grain
parallelism, such as the ability to use multiple parallel median
cores to perform a single median computation. Note that this
was the only approach we used in our original median architec-
ture. Our improved architecture uses a different technique.

The ideal technique for extracting coarse-grain parallelism
in a multiple core arrangement is to dynamically partition the
search tree, have each core search disjoint sub-trees, and have
all cores share a global upper bound value. There are several
reasons why it is not practical to use this technique for parallel
median cores.

First, the breakpoint median algorithm has unpredictable
pruning behavior. If multiple cores were used to search disjoint
regions of the search tree, they would need to be load balanced.
In other words, even it were possible to initially assign each
core an equal-sized region of the search tree, core may be
able to quickly prune its entire assigned sub-tree while core
would be forced to do an exhaustive exploration of its assigned
sub-tree. Core would need to realize that core is currently
idle, re-partition its assigned sub-tree, and transmit a new
search state and boundary conditions to core in order for it
to begin a search its newly assigned sub-tree. This behavior
would be: 1) very complex to implement in custom hardware;
2) extremely difficult to fully verify; 3) require substantial hard-
ware and routing overhead; and 4) require high communication
overhead. In order to demonstrate point #4, assume that core

’s newly assigned sub-tree is also pruned immediately. The
re-partitioning (load balancing) process would need to be re-
peated and would lead to core spending a significant amount
of time re-partitioning rather than searching. Depending on the
search behavior, it’s evident that the performance improvement
may be negated by the overheads.

Second, recall that the full search state includes the following
memories: partial solution (edge set), used array, otherEnd

1674 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 12, DECEMBER 2008

TABLE I
PERFORMANCE RESULTS FOR THE MEDIAN ARCHITECTURE FOR 1000 MEDIAN EXECUTIONS.

ARITHMETIC AND GEOMETRIC MEANS ARE PROVIDED FOR EACH SET OF TESTS

array, excluded array, and stack. In order to instruct a core
to begin searching at a specified point in the search tree, the
contents of all of these memories would need to be transmitted
between cores. Aside from requiring a large switching network,
this would increase the fan-in and fan-out at each of the core
BRAMs and further increase place and route complexity.

For these reasons, we have adopted a simple technique for
partitioning the search tree. In our technique, each core is ini-
tialized to search the entire search tree, but each explores the
tree in a different order. Because each parallel core explores
the tree along a unique search path, each core’s upper bound
will be decremented at a different rate. Since the upper bound is
globally shared among all cores, each core will therefore prune
different regions of the search tree and the tree therefore will
be dynamically partitioned among the cores. We refer to this as
“virtual search space partitioning”. In other words, our current
technique for exploiting coarse-grain parallelism relies on two
concepts. The first concept is to force each core to explore an
identical TSP search space using a unique search order. To do
this, we initialize each core with the same sorted edge list but
equal-weighted edges are ordered differently.

The second concept is to allow the cores to communicate
with each other in order to maintain a global minimum upper
bound value. Before each core computes its lower bound, it
compares its current local upper bound with the lowest upper
bound among all parallel cores. If this global upper bound is
less than the core’s local upper bound, the core adjusts its local
upper bound to become the global upper bound plus one. Adding
one to the local copy of the global minimum prevents any core
from pruning the optimal solution, guaranteeing that all cores
are capable of finding the optimal solution. Since each of the
cores will eventually find the optimal solution, the median com-
putation is considered complete when the first core completes
its search.

VI. MEDIAN CORE PERFORMANCE RESULTS AND LIMITATIONS

A. Test HPRC System

Our test system consists of a Dell Precision 650 server con-
taining a 3.06-GHz Intel Pentium Xeon processor. The FPGA
accelerator card is an Annapolis Microsystems Wild-Star II Pro
card with a single Xilinx Virtex-2 Pro 100 FPGA. It is connected
to the host though a PCI-X interconnect.

B. Test Methodology

In order to determine the hardware speedup, we generated
1000 random three-leaf phylogenies and extracted the leaves to
use as the median inputs. The number of rearrangement events
along each edge for each phylogeny is chosen from a uniform
random distribution with range distance , where distance is
a parameter for the experiment.

For each set of genomes, we invoke the breakpoint median
routine bbtsp (the software implementation of the breakpoint
median that is integrated within GRAPPA) and record its exe-
cution time. We then dispatch the same three genomes to the
FPGA’s breakpoint median architecture and record its execu-
tion time. Note the FPGA execution time includes the CPU-to-
FPGA communication time and the time required for the host
to construct the TSP graph, construct the corresponding sorted
edge list(s), and compute the initial best score (these initializa-
tion tasks occur in software, even for the FPGA-based median
computation).

For each three-genome input, we measure speedup in the
traditional way, i.e., . A speedup of 1 would
indicate equivalent performance between the software median
computation and hardware median computation. Because the
median’s execution time is dependent on the inputs, and since
the inputs are random, our results list both the arithmetic mean
and the geometric mean over the set of 1000 individual median
computations.

C. Performance Results and Discussion

Table I lists performance results of the median architecture
against software. We tested the following eight configurations of
the median architecture: one, two, three, and four median cores
having 10 lower bound units and 20 lower bounds units. These
results include software initialization time and host-FPGA com-
munication time.

The first column, labelled “Average Events per Edge” is the
distance parameter for the random input generation. This repre-
sents the diameter, or relatedness, of the inputs. For each con-
figuration and each input diameter, the column labeled “ ”
lists the arithmetic mean and the column labeled “ ” lists
the geometric mean for the speedups across the 1000 random
three-genome inputs.

BAKOS AND ELENIS: A SPECIAL-PURPOSE ARCHITECTURE FOR SOLVING THE BREAKPOINT MEDIAN PROBLEM 1675

The results show a trend where the average speedup increases
non-linearly with the diameter of the inputs. To explain this,
recall that the size of the search tree scales exponentially with
the size of the sorted edge list, which itself scales linearly
with the sum of breakpoints between the three input genomes

. As a result, the time spent
searching increases with the evolutionary diameter of the
inputs. The ratio between the time spent searching and the
time spent in startup costs also increases with the evolutionary
diameter. Since the startup costs are fixed for any input, me-
dian computations that require longer searches spend a larger
relative amount of time searching and thus result in a higher
speedup. The speedup trend shown in the results indicate
that the median architecture has a faster search rate than the
software implementation.

The performance results also show a drastic performance
improvement when the architecture is scaled from one to two
cores, but only minor improvements (or slowdowns for low
diameter input sets) from adding additional cores. We believe
this is caused by two factors.

The first factor is communication overhead. We minimize
communication overhead by forcing each core to begin execu-
tion immediately after it receives the sorted edge list and ini-
tial upper bound. In other words, the core begins execution as
core is receiving its inputs, effectively overlapping execu-
tion and host-FPGA communication. However, there are cases
where a core completes execution while the host is transmitting
input data to or polling another core, which results in reduced
performance.

The second factor is more difficult to characterize, but is ev-
idently caused by a point of diminishing returns in our virtual
search partitioning technique. The edge list sent to the first core
is sorted deterministically according to the ordering of the input
genomes. The edge list sent to the second core is sorted such that
equal-weight edges are reversed relative to the first core’s edge
list. This causes the first and second cores to follow significantly
different search orders and results in a large speedup. Beyond
two, additional cores are initialized by scrambling equal-weight
edges in the original sorted edge list. These additional edge lists
result in different search orders, but in most cases the search
order is not different enough to yield significant improvement.

VII. ACCELERATED-GRAPPA

We made modifications to the GRAPPA code to accelerate
the tree scoring procedure by forcing it to dispatch all its median
computations to the (4-core, 20 lower bound per core) median
architecture on the FPGA.

A. Performance Results

Table II shows our average speedups relative to the all-soft-
ware GRAPPA for end-to-end runs over 10 unique 8-leaf
synthetic datasets. As before, each set of input genomes were
produced by synthesizing phylogenies using a specified average
number of rearrangement events per edge and extracting the
leaves. In this case, however, the synthesized phylogenies have
eight leaves instead of three, as in the median performance
tests. The results shown are the average speedups, using both

TABLE II
PERFORMANCE RESULTS FOR ACCELERATED-GRAPPA

arithmetic and geometric mean, across ten runs for each input
diameter. For each dataset, we also list the arithmetic mean
of the individual software execution times when run without
acceleration.

As with the breakpoint median performance results, the re-
sults show a clear non-linear trend where the average speedup
increases with the evolution rate of the input set. There are two
reasons for this. First, higher evolutionary rate input sets force
GRAPPA to spend higher portions of its total execution time
computing medians. Thus, accelerating the median computation
has a higher impact on overall application speedup. Second, the
median computations themselves are more greatly accelerated
as the average diameter of the median inputs increase, which
increases with the evolutionary rate of the inputs. Note that ex-
ecution time increases with the evolution rate of the inputs, so
we achieve increasingly higher speedups for datasets that re-
quire increasingly more time to compute.

B. Discussion

In all of our tests, we used synthetic input data, as this gives us
tight control over its characteristics and allows us to relate these
characteristics with observed performance. The characteristics
of actual biological data greatly depend on the type of genomic
data (i.e., mitochondrial, nuclear, chloroplast, etc.), the type of
species being analyzed (i.e., prokaryote, eukaryote, etc.), and
the evolutionary relatedness of the species in the dataset. As a
result, it is impossible to directly relate our performance results
with biological examples. However, we know from the litera-
ture that the number of evolutionary events in our test inputs are
conservative compared to a biological case study for Drosophila
(fruit fly genus) [29]. In this study, a phylogenetic reconstruc-
tion (based on gene rearrangements) for set of eight fly species
across a common genus resulted in a phylogeny whose edge
lengths ranged from 15 to 565 breakpoints (an estimation of re-
arrangement events).

VIII. CONCLUSION AND FUTURE WORK

Our results indicate that our accelerated GRAPPA is capable
of achieving an order 100 speedup for input sets that have a
relatively high evolution rate.

We are currently developing a tree generation and bounding
core that performs parallelized tree space exploration. This will
allow us to combine tree generation and bounding cores with
median cores on a single FPGA, allowing candidate trees from
any of the tree generation and bounding cores to be scored with
median cores on the same FPGA. This will also allow commu-
nication between the tree generation cores and median cores to

1676 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 12, DECEMBER 2008

be performed entirely on-chip, reducing host-FPGA communi-
cation overhead.

Having the ability to accelerate both median computation
and tree generation will allow us to generate accelerator ar-
chitectures that are customized to the inputs. In other words,
since GRAPPA’s performance bottleneck is tree generation for
closely related data sets and median computation for distantly
related data sets, we will have the ability to tailor the accelerator
architecture to the characteristics of the data set.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments that allowed for significant improve-
ments to this paper.

REFERENCES

[1] M. P. de Moraes Zamith, E. W. G. Clua, A. Conci, A. Montenegro, P.
A. Pagliosa, and L. Valente, “Parallel processing between GPU and
CPU: Concepts in a game architecture,” in Proc. Comput. Graph.,
Imag. Visualization (CGIV), Aug. 2007, pp. 115–120.

[2] B. Pieters, D. Van Rijsselbergen, W. De Neve, and R. Van de Walle,
“Motion compensation and reconstruction of H.264/AVC video bit-
streams using the GPU,” in Proc. 8th Int. Workshop Image Analy. Mul-
timedia Interactive Services (WIAMIS), Jun. 2007, pp. 69–72.

[3] P. K. Agarwal and S. R. Alam, “Biomolecular simulations on petascale:
Promises and challenges,” in J. Phys.: Conf. Series, 9, 2006, vol. 46,
pp. 327–333.

[4] R. Sass, W. Kritikos, A. Schmidt, S. Beeravolu, P. Beeraka, K.
Datta, D. Andrews, R. Miller, and D. Stanzione, Jr, “Reconfigurable
computing cluster (RCC) project: Investigating the feasibility of
FPGA-based petascale computing,” in Proc. IEEE Symp. Field Pro-
gram. Custom Comput. Mach., Apr. 2007, pp. 127–138.

[5] T. El-Ghazawi, “Is high-performance, reconfigurable computing the
next supercomputing paradigm?,” presented at the ACM/IEEE Super-
comput. Conf. (SC), Tampa, FL, 2006.

[6] 2007 [Online]. Available: http://www.cray.com
[7] E. Sotiriades and A. Dollas, “A general reconfigurable architecture for

the BLAST algorithm,” J. VLSI Signal Process., vol. 48, no. 3, pp.
189–208, Sep. 2007.

[8] C. W. Yu, K. H. Kwong, K. H. Lee, and P. H. W. Leong, A Smith-
Waterman Systolic Cell. New York: Springer-Verlag, 2003, vol. 2778,
Lecture Notes in Computer Science, pp. 375–384.

[9] T. Oliver, B. Schmidt, D. Nathan, R. Clemens, and D. Maskell, “Using
reconfigurable hardware to accelerate multiple sequence alignment
with ClustalW,” Bioinformatics, vol. 21, no. 16, pp. 3431–3432, 2005.

[10] J. P. Davis, S. Akella, and P. H. Waddell, “Accelerating phylogenetics
computing on the desktop: Experiments with executing UPGMA in
programmable logic,” in Proc. 26th Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc. (IEMBS), 2004, pp. 2864–2868.

[11] M. Blanchette, T. Kunisawa, and D. Sankoff, “Parametric genome re-
arrangement,” Gene, vol. 172, pp. GC11–GC17, 1996.

[12] G. Bourque and P. Pevzner, “Genome-scale evolution: Reconstructing
gene orders in the ancestral species,” Genome Res., vol. 12, pp. 26–36,
2002.

[13] D. A. Bader, B. M. E. Moret, and M. Yan, “A fast linear-time algorithm
for inversion distance with an experimental comparison,” J. Comput.
Biol., vol. 85, pp. 483–491, 2001.

[14] A. Siepel and B. M. E. Moret, “Finding an optimal inversion median:
Experimental results,” in Proc. 1st Workshop Algs. Bioinformatics
(WABI), 2001, vol. 2149, pp. 189–203.

[15] B. M. E. Moret, J. Tang, L.-S. Wang, and T. Warnow, “Steps toward ac-
curate reconstructions of phylogenies from gene-order data,” Comput.
Syst. Sci., vol. 65, no. 3, pp. 508–525, 2002.

[16] B. M. E. Moret, J. Tang, and T. Warnow, “Reconstructing phylogenies
from gene-content and gene-order data,” in Mathematics of Evolution
and Phylogeny, O. Gascuel, Ed. Oxford, U.K.: Oxford Univ. Press,
2005, pp. 321–352.

[17] D. Huson, S. Nettles, and T. Warnow, “Disk-covering, a fast converging
method for phylogenetic tree reconstruction,” J. Comput. Biol., vol. 6,
no. 3, pp. 369–386, 1999.

[18] J. Tang and B. M. E. Moret, “Scaling up accurate phylogenetic recon-
struction from gene-order data,” in Proc. 11th Conf. Intell. Syst. Mol.
Biol. Bioinform. (ISMB), vol. 19, pp. i305–i312.

[19] N. Saitou and N. Nei, “The neighbor-joining method: A new method for
reconstrucing phylogenetic trees,” Mol. Biol. Evol., vol. 4, pp. 406–425,
1987.

[20] M. Blanchette, G. Bourque, and D. Sankoff, “Breakpoint phylogenies,”
in Genome Informatics 1997, S. Miyano, T. Takagi, and editors, Eds.
Tokyo: Univ. Academy Press, 1997, pp. 25–34.

[21] G. Bourque and P. Pevzner, “Genome-scale evolution: Reconstructing
gene orders in the ancestral species,” Genome Res., vol. 12, pp. 26–36,
2002.

[22] I. Pe’er and R. Shamir, “The median problems for breakpoints are
����-complete,” Elec. Colloq. Comput. Complexity, vol. 71, 1998.

[23] M. Blanchette, G. Bourque, and D. Sankoff, “Breakpoint phylogenies,”
Genome Inform., pp. 25–34, 1997.

[24] M. A. Vega-Rodriguez, R. Gutierrez-Gil, J. M. Avila-Roman, J.
M. Sanchez-Perez, and J. A. Gomez-Pulido, “Genetic algorithms
using parallelism and FPGAs: The TSP as case study,” in Proc. Int.
Conf. Workshops Parallel Process. Workshops (ICPP), Jun. 2005, pp.
573–579.

[25] P. Graham and B. Nelson, “A hardware genetic algorithm for the trav-
eling salesman problem on splash 2,” in Proc. 5th Int. Workshop Field
Program. Logic Appl., Oxford, U.K., Aug. 1995, pp. 352–361.

[26] I. Skliarova and A. B. Ferrari, “FPGA-Based implementation of ge-
netic algorithm for the traveling salesman problem and its industrial
application,” in Proc. Appl. Artif. Intell. Expert Syst. (IEA/AIE), Cairns,
Australia, Jun. 2002, pp. 19–34.

[27] J. D. Bakos, “FPGA acceleration of gene rearrangement analysis,” in
Proc. IEEE Symp. Field-Program. Custom Comput. Mach. (FCCM),
Apr. 2007, pp. 85–94.

[28] J. D. Bakos, P. E. Elenis, and J. Tang, “FPGA acceleration of phylogeny
reconstruction for whole genome data,” presented at the 7th IEEE Int.
Symp. Bioinform. Bioeng., Boston, MA, Oct. 2007.

[29] A. Bhutkar, W. M. Gelbart, and T. F. Smith, “Inferring genome-scale
rearrangement phylogeny and ancestral gene order: A Drosophila case
study,” Genome Biol., vol. 8, pp. R236–R236, 2007.

Jason D. Bakos (M’96) received the B.S. degree in
computer science from Youngstown State University,
Youngstown, OH, in 1999, and the Ph.D. degree in
computer science from the University of Pittsburgh,
Pittsburgh, PA, in 2005.

He worked as a Research and Teaching Assistant
with the University of Pittsburgh from 1999 to 2005.
He is currently an Assistant Professor with the De-
partment of Computer Science and Engineering, Uni-
versity of South Carolina, Columbia.

Dr. Bakos was a winner of design contests from
the Design Automation Conference in 2002 and 2004. He is a member of the
ACM and Computer Society.

Panormitis E. Elenis (S’06) received the B.E.
degree in electrical and computer engineering and
the B.S.A.S. degree in information technology from
Youngstown State University, Youngstown, OH,
in 2006. Currently, he is a graduate student with
the Department of Engineering and Computing,
University of South Carolina, Columbia.

	A Special-Purpose Architecture for Solving the Breakpoint Median Problem
	Publication Info

	untitled

