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INVOLUTIONS ON BANACH SPACES 
AND REFLEXIVITY 

S. J. DILWORTH 

1. Notation and results. Let E and F be (real or complex) Banach 
spaces. E is said to be finitely representable in F if, given e > 0 and a finite 
dimensional subspace E0 of E, there exists a subspace F0 of F such that 
d(E0, F0) _< 1 + e, where 

d(E0, F0) = inf{ T T -1 ß T is an isomorphism from E0 onto F0} 

denotes the Banach-Mazur distance coefficient. E is said to be super- 
reflexive if every Banach space which is finitely representable in E is re- 
flexive. Super-reflexivity has been characterized in terms of the notion of 
J-convexity: suppose that n >_ 1 and that e > 0; E is said to be J(n, e)- 
convex if, for all Xl,..., x,• in the unit ball of E, we have 

inf Xl q-''' q- Xk -- Xk+l ..... Xn I --• 7/ -- e. 
l<k<n--1 

The "if" part of the following theorem was proved in [12] and [5], and the 
"only if" part was proved in [10]. 

TnEOaEM A. E is super-ret•exive //'and only iœE is J(n, e)-convex for some 
n> 1 ande> 0. 

-- 

The main purpose of this article is to extend Theorem A to a certain 
class of operators. To this end we introduce some new definitions: an 
operator T on E will be said to be J(r•, e)-convexifying (r• _> 1 and e > 0) 
if, for all x•,..., x,• in the unit ball of E, we have 

inf x• + . . . + xk + T(xk+• + ... + x•) <_ n - e. 
0<k<n 

When no importance is placed on e or n we shall say that T is J(n)- 
convexifying or simply J-convexifying. T will be said to be an involution 
(of order n _> 1) if T '• = I, where I denotes the identity operator on E. 
The following main result is proved in Section 4 below. 
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THEOREM 1.1. Suppose that E admits a J-convexiœying involution. Then 
either co is finitely representable in E or E is super-reflexive. 

Combining Theorem 1.1 with the "only if" part of Theorem A gives 
rise to the following characterization of super-reflexive Banach spaces. 

THEOREM 1.2. E is super-reflexive if and only if co is not finitely repre- 
sentable in E and E admits a J-convexiœying involution. 

Theorem 1.1 gives the following geometrical characterization of super- 
reflexive complex Banach spaces. 

THEOREM 1.3. Suppose that E is a complex Banach space, that •[ -- 1 
and that • 7k 1. Then E is super-reflexive if and only if there exist n _> 2 
and e > 0 such that for all x•,..., xn in the unit ball of E, we have 

inf x• •- ..' •- X k •- •Xk+ 1 •- •X n _• n - e. 
l•k•n 

PROOF: Necessity is proved in Corollary 2.3 below. Sufficiency follows from 
Theorem 1.1 when • is a root of unity (and so multiplication by h is an 
involution) by observing that co(C) does not satisfy the hypothesis. The 
case for general h •= 1 is simply a consequence of the density of the roots of 
unity in the unit circle. 

It is not known to me whether the possibility of co being finitely 
representable in E in the conclusion of Theorem 1.1 may be eliminated, 
but when E is a complex Banach space this can be done. 

THEOREM 1.4. Suppose that E is a complex Banach space. Then E is 
super-reflexive if and only if E admits a J-convexifying involution. 

PROOF: We need only prove sufficiency. It follows from the theory of alge- 
braic operators (e.g., [11]) that if T is an involution on E, then E may 
be written as a direct sum of closed subspaces Ei on which T acts as 
multiplication by a root of unity. If co(C) is finitely representable in E, 
then co(C) is finitely representable in some El, but this means that T is 
not J-convexifying. 

We conclude by stating a special case of Theorem 1.3 which may be 
regarded as a complex version of a theorem of R. C. James on uniformly 
non-square Banach spaces ([8]). 
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THEOREM 1.5. Suppose that E is a complex Banach space, that ½ > O, 
and that for all x, y in the unit ball of E, we have 

miR{ x+y ,]x+iy }_<2-e. 

Then E is reflexive. 

2. J-convexifying operators. In this section we shall make use of the 
notion of the numerical range of an operator, which we now define. Suppose 
that E is a Banach space (either real or complex); the collection II is defined 
by 

n-- {(x,f): IIfll- Ilxll- fCx)- 1} c E x E*. 

The numerical range of an operator T on E, denoted W(T), is defined by 

w(T) = {f(Tx) . (x, f) ß n}. 

PROPOSITION 2.1. Suppose that T is a J-convexifying operator on E. 

(a) W(T) C {z 'Re(z) < 1}. 
(b) Iœ T =1 then I + T <2. 

PROOF: (a) Lete>0andn_> lbegiven. IfW(T) • {z'Re(z) < 1}then 
there exists (x, f) ß II such that Re(f(Tx)) _> • - •/2•. It fonows that for 
each 0 < k _< n, we have 

I kx q- (• - k)Tx k If(•cx q- (• - k)Tx)l k • - 7' 
Hence T is not J-convexifying, and the result follows. 

(b) By a theorem of Lumer (e.g., [2, page 82]), we have 

sup{Re(z) ß z ß W(T)} = lim 1_( I + c•T - 1); 

but by (a) there exists t < I such that sup{Re(z): z ß W(T)} < t, and 
so there exists 0 < c• < 1 such that IIZ + •TI[ < • + •t. Sin• IITII = • it 
follows that [II + TII < 2. 

The next result concerns J-convexifying operators on super-reflexive 
spaces. It generalizes one of the implications in Theorem A and serves as a 
partial converse to Proposition 2.1(b). 
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PROPOSITION 2.2. Suppose that E is super-reflexive and that T is a norm 
one operator on E with I + T < 2. Then T is J-convexiœying. 

PROOF' Select e > 0 and 6 > 0 such that [ I + T [ + e + 6 < 2. If T is not 
J-convexifying, then for each n >_ I there exist Xl,..., x• in the unit ball 
of E such that 

inf x• + .. . + xu + T(x•+• + .. . + x•) > n - e. 
O<k<n 

Now suppose that 1 • k • n, that •i • 0 and that 1•i = •i=•+• •i = 
1. Then 

k n 

i=1 i=k%l 

• 2•. 

Using the fact that I + T + e + 6 < 2, we obtain 

CqXl+-..+c•x•-(c•+lX•+l+...+c•x•) >2-e- I+T >6. 

So for each 1 <_ k _< n, we have 

d(conv(xl,...,xk),conv(xk+l,...,xn) ) >_ 6. 

It follows from a characterization of super-reflexivity in [9] that E is not 
super-reflexive. This contradiction proves that T is J-convexifying. 

The following immediate consequence of Proposition 2.2 completes the 
proof of Theorem 1.3. 

COROLLARY 2.3. Suppose that E is a super-reflexive complex Banach 
space, that % =1, and that % • 1. Then there exist n >_ 2 and e > O such 
that for all Xl,..., xn in the unit ball of E, we have 

inf Xl+...+x•+2X•+l+'"+2x• _<n-e. 
l<k<n 

When E is uniformly convex the converse of Proposition 2.1 (a) is also 
true. 



INVOLUTIONS ON BANACH SPACES AND REFLEXIVITY 183 

THEOREM 2.4. Suppose that T is an operator on a uniformly convex space 
E. Then T is J-convexifying if and only ifW(T) C (z 'Re(z) < 1). 

PROOF: Necessity is proved in Proposition 2.1 To prove the converse we 
shall suppose that W(T) C {z' Re(z) < k}, where k < 1. Select •/ > 0 
so that k+ 2•/ T = m < 1 and let e = •/2/8. Since E is uniformly 
convex there exists 5 C (0,«(I-m)) such that if x • 1• 1•[ • 1 and 
[x+• • 2-8• then x-• • e. Now select n • 1 such that ( T + 
8- 1)/(n- 1) • e. Suppose that x•,...•x• lie in the unit ball of E and 
that X 1 +--' + X n • n- 5. Then xi + Xj • 2- 5 (1 • i < j • n), 
and so xi - xj • e. To obtain a contradiction we shall suppose that 
Xl+...+X•-l+T(x•) • n-5. Select f G E* such that f = land 

f(x• +... + x•_• + T(x•))= X 1 +---+ Xn_ 1 + T(x•) I' It follows that 

max Re(f(xj)) _• n - 5 - T > l-e, 
•_<j_<n n- 1 - 

and so Re(f(xn)) > 1 - 2e _> 1 - r/2/4. By the Bishop-Phelps-Bollobas 
Theorem (e.g., [2]) there exists (x,g) C II such that x- xn < r/ and 
g-f <r/. So 

Rc(f(Tx•)) _• Rc(g(Tx•)) + • T 

<_ k +2r/ T 
< 1-25. 

Hence x 1 •-. ß .-•-Xn_ 1 -•-Txn) ---- f(xl •-'''•-Xn--1 •-Txn) _• •/-25, which 
is the desired contradiction. It folloxvs that T is J(n, 5)-convexifying. 

COROLLARY 2.5. The following are equivalent: 

(i) E is super-reflexive; 
(ii) if T is an operator on E such that W(T) C {z: Re(z) < 

1} then E can be tenormeal so that T is a J-convexifying 
operator with respect to the new norm. 

PROOF' (ii) implies (i) follows at once from Theorem A by considering 
T = -I. To prove that (i) implies (ii) we recall that a super-reflexive 
nach space admits an equivalent uniformly convex norm ([7]). Moreover, 
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it is well known (see e.g., [1, page 211]) that if (E, I1' II) adnts an equiv- 
alent uniformly convex norm then, given e > 0, there exists a uniformly 
convex norm III. III such that (1 -•)11•11 _< Ill-Ill <_ (m q-)1111 for all 
x E E. A straightforward perturbation argument involving the Bishop- 
Phelps-Bollobas theorem proves that provided e is sufficiently small the nu- 
merical range of T with respect to Ill III still satisfies W(T) C {z: Re(z) < 
1}. It now follows from Theorem 2.4 that T is J-convexifying with respect 
to Ill' Ill. 

We conclude this section by recalling the notion of an ultrapower of a 
Banach space, which will be needed in Section 4. Let F denote the collec- 
tion of all bounded sequences z = (z,,),,ø•=• in E, and let b/be a non-trivial 
ultrafilter on N. A semi-norm on F is defined by IIll- limu II•lI. Quoti- 
enting F by the kernel of this semi-norm and taking the completion gives 
rise to the ultrapower EN/IX. An operator T on E induces an operator f 
on EN/IX in the obvious way. The following proposition, whose straightfor- 
ward proof is omitted, will be needed in Section 4. 

LEMMA. lie T is a J-convexiieying operator on E, then 7P is J-convexiieying 
on E N/IX. 

We shall also need to use the fact that E is super-reflexive if and only 
if every ultrapower EN/IX is reflexive. 

3. Generalization of the Brunel-Sucheston technique. To prove 
Theorem 1.1 we need to develop the machinery of the Brunel-Sucheston 
procedure ([4], [5]) in the more general setting of an algebra of operators 
acting on a normed space. Once the definitions have been decided upon 
much of the theory carries across from [4], [5] with only minor modifications; 
when this is so we shall merely state the corresponding result without proof. 

Suppose that A is a real or complex algebra with identity and that E is 
a normed space. We shall say that E is an A-module if A acts as an algebra 
of bounded operators on E. Let N = {c• E A : c•z = 0forallzEE}; 
then A/N may and shall be regarded as a subalgebra of the algebra of all 
operators on E. Let S denote the space of all sequences a = (cti)•= 1 of 
elements of A with only finitely many non-zero terms. 

TItEOREM 3.1. Let (!In)nøø=1 be a bounded sequence in E and suppose that 
A/N is separable in the operator norm topology. There exists a semi-norm 

ß on S and a subsequence (x,,),,•__l such that, for all a • S and e > 0, 
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there exists a positive integer v such that 

for all integers v _< n• < n2 • "' ß 

We shall assume throughout the remainder of this section that (Xn)• ̧, 
(yn)• ¸ and the seminorm ß are fixed. If/• is the kernel of this semi-norm 
then $/1•' is itself a normed A-module •vith the action defined coordinate- 
wise. 

PROPOSITION 3.2. S/t•' is finitely representable in E. 

We now introduce a type of finite representability which appropriately 
reflects the A-module structure. Suppose that E and F are normed A- 
modules. Then E will be said to be A-finitely representable in F if, for 
all positive integers n and N, for all z•,..., Zn in E, and for all n-tuples 

• N) of elements of A, there exist Wl,.. W n in F such (O•f,...,O•n) (1 _< k _< ., 
that 

i=•10• • Z i -- • O• • W i (e (1 _<k_< N). i=1 

A standard compactness argument shows that the above definition coincides 
with the usual notion of finite representability when E and F are just 
normed spaces. 

PROPOSITION 3.3. S/1•' is A-finitely representable in E. 

PROOF' Suppose that i•,...,2n are any vectors in S/1•' and that 
(o•,...,o•) (1 _< k <_ N) are n-tuples of elements of A. Let z•,...,zn 
be representatives from S of i•,...,•n. For m >_ 1, let R,• ß S -• E be 
the A-module homomorphism uniquely defined by R,•(ek) = z,•+k (here 
(ek)•=• is the canonical basis of S as a free A-module). Given • > 0, there 
exists m > 1 such that 

-- 

• o•ikzi 
i=1 ]•m(• O•ikZi) i--1 
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for each 1 _< k <_ N. Setting wi = R.•(zi) and using the fact that R.• is an 
A-module homomorphism, we obtain 

i:1 i:1 

for each 1 <_ k _< N. This completes the proof. 

(S, I' ) has the property that, for all k >_ 1, for all natural numbers 
n• < n2 <.--< n•, and for all a = X/•=• aiei in S, we have X/•=• aiei ]= 

• . In accordance with [4] such a semi-norm on S will be called Y•-i=i 
"invariant under spreading" (or I.S.). We turn now to define an analogue 
of the "equal signs additive" norm of [5], [6]. For each n _> 1, the averaging 
operator A,, ß $ $ is defined by A•(e•) = • • w(e• + e•+• +... + e•+•_•) 
with extension to S by A-linearity. Given a = a•e• +... + arer in S, 
we consider the vector a•A•,(e•l) + ... + a•A•(e•), where s• > 0, s2 ) 
Sl + n•,... ,s• ) s•_• + n•-l. The I.S. property of [[. II guarantees th•t 
the semi-norm of this vector does not depend on the choice of s•,..., s•; it 
shall be denoted by F(a; n•,..., n•). 

PROPOSITION 3.4. For each a = a•e• + ... + arer in S, the limit o[ 
F(a;n•,...,n•) as inf{n•' I • i • r} • • exists. This li•t, denoted 

If K denotes the kernel of ß [11, then •/• is ormed A-module; 
exactly as in Proposition 3.2 we have the following. 

PROPOSiTiON 3.5. (S/K, I 'l l) is both 5nitely representable and A-Snitely 
representable in E. 

Let [. [be a semi-norm on S. Then [-[will be said to be "equal terms 
additive" (E.T.A.) if, for each a = a•e• +... + a•e• in S with ai = ai+l for 
some l•i•r-l, wehave 

a I = a•e• +... + ai_•ei-• + (ai + ai+•)ei + ai+2ei+2 +... + arefl. 

It is easily seen that an E.T.A. se•-norm is automatically I.S. 
PROPOSITION 3.6' ß is an E.T.A. semi-norm on S. 

PROOF' Suppose that a = a•e• +. ß ß + a•er with ai = ai+•. Let b = a•e• + 
ß " + ai-lei-1 + (ai + ai+l)ei + ai+2ei+2 +'" + arer. The I.S. property im- 
plies that F(a; nl,..., hi-iN, W, hi+2,..., nr) = F(b; n•,..., hi-l, 2N, n, 
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hi+2, .. ß, n•) for all nx, ..., ni_x, r•i+2, .... r• v. N and n. The result follows 
at once. 

4. J-convexifying involutions. This section is devoted to a proof of 
Theorem 1.1. We shall use the ideas of the previous section and follow 
the strategy of the proof of Theorem A given in [5]. Anything from [5] 
which transfers with only minor alteration will be stated without proof. 
Using the notation of the previous section we shall show that the sequence 
x o• contains a subsequence which is convergent in Cesaro mean when 

the hypotheses of Theorem 1.1 are met. This will show that E has the 
Banach-Saks property and, in particular, that E is reflexive. 

PROPOSITION 4.1 ([5])' If I e• -- e21 = 0 then (Xn)n•c=• contains a subse- 
quence which is convergent in Cesaro mean. 

LEMMA 4.2. Suppose that T is a J-convexifying involution on a Banach 
space E. Then there exists k >_ 1 such that I + T + T 2 + ... + T k = O. 

PrtooF: Suppose that T is an involution of order k + 1. Then T n •/• • 1 
as n -• oc, and so T- hi is invertible for all h > 1. It follows that either 
T- I is invertible or that T - I fails to be an isomorphism onto its range: 
in the complex case this is just the familiar fact that every point in the 
boundary of the spectrum of T is an approximate eigenvalue. If T- I is not 
an isomorphism onto its range then, given e > 0, there exists a unit vector 
x in E with Tx - x[I < e. It follows that, for each n >_ 1, we have 

inf kx+T((n-k)x) >_n-he. 
0<k<n 

Since e is arbitrary, this contradicts the fact that T is J-convexifying. So 
T- I is invertible and hence I + T + T 2 + ... + T k = O. 

Now suppose that the element • of A satisfies I + • + ß ß ß + •k-• = 0. 
We shall say that • is cyclic of order k. A sequence of vectors (fn)•__l in S 
is defined by 

f • = e(n-1)k+ l "Jr' c•e( n-1)k+ 2 "Jr' ''' "Jr' c?- l enk ; 

the real vector subspace spanned by (fn)no•=• will be denoted F. 
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PROPOSITION 4.3. If II • - • II • 0 the• (F, II I) i• • •ormed •p•ce. 

PROPOSITION 4.4. (f,•),•øø__ 1 is an orthogonal sequence in F. 

PROOF' We have to show that, for all m > 1, for all real •1,..., •,•, and 
for each 1 < r _< m, we have 

/•1fl -'{-'''--[- &•f,•lll • /•1fl --[-'''--[-/•r-lfr-1 
+ /•r+lfr+l +"' +/•mfm] ]. 

The I.S. property is used to write the expression on the left hand side as 
each of the following n expressions: 

down to 

!1 -1- /•r(e(r-1)k+l q- Oze(r-1)k+2 -1-'''-1- Ozk-lerk ) -1- zl ; 

II v +/•r(e(r-1)k+2 n I- Oz½(r-1)k+3 n t- -1- •k-1 •) + zlll' ß . . erk + , 

[[ Y -1- ,•r(e(r_l)k+n n t- Oze(r_l)k+n+ 1 n t- nt- Oz k-1 --' 

where y = Y]i=• &ifi and z = n(Ei___r+l &ifi) (here U,• ß S -• S is the 
A-module homomorphism defined by Un(ek) = en+k for all k _> 1). Taking 
the average of these, and using the triangle inequality and the fact that 
I+ c•... + c• k-• = 0, we obtain 

where 

II &•fl +'" + •fmlll k II • + zlll- -•/llla + b , 

6[ = e(r_l)k+ 1 +(1 + oz)e(r_l)k+ 2 -1-----1-(1 +c• +... + ozk-2)½(r- 1)k + k- 1 

and 

b = ozk-lerk+n_ 1 -{- (OZ k-1 -lt-ozk-2)erk+n_2-1t-... -it- (Oz k-1 '4-'' '-lt-oz)erk+n-k+l ß 

Using the I.S. property and taking the limit as n tends to infinity gives the 
required result. 
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COROLLARY 4.5. (a) (f•)•__• is an unconditional basic sequence in F. 
(b) Either co is finitek representable in F or [ f• +... + f• 

increases to infinity with n. 

PROPOSITION 4.6. Suppose that E is a normed A-module and that a is a 
J-convexifying cyclic element of A. Then either co is finitely representable 
in E or E is reflexive. 

PROOF' If E is not reflexive then there exists a bounded sequence (y•)y%• 
in E which has no Cesaro mean convergent subsequence. It follows from 
Propositions 4.1 and 4.3 that the space F constructed above is a norreed 
space. If co is not finitely representable in E, then by Proposition 3.5 
co is not rinkely representable in S/It', of which F is a subspace; so by 
Corollary 4.5(b), [ f• +.-.+ f•11 increases to infinity with •. Now suppose 
that • is cyclic of order k and is J(r, e)-convexi•ving. For each 1 • j • r 
and • • 1, we define 

J =(ej+r +•ej+2 + +•k-lej+kr) V• • ' '' 

• ''. • (ej+(n-1)kr+r • '' ' • •k-lej+nkr). 
1 • •(v•+l Let d• = v• +-.. + v• + +... +v•) (0 • s • r); we xvrite 

d• • S1 + S2 + S3 by grouping the terms • follows: 

•1 = --e,+l ..... 

+ •2(e2r+s+l 
+'"+c3r+s) +'''+ak-l(es+(k-1)r+l+'''+es+kr)} 
+"-+ {(%+•+(•-•)•-, +"' + %+((•-1)•+1)•) 
+... + a•-•(e,+•+(,•_l)• +." + e•k•+,)}; 

S3 = e•k•+,+l + ..-+ e(•k+l)•. 
The I.S. property implies that 

I v•l = II fl +'--+ f• II (x • J • 
and so &ll/ v•[ll and S3 II/ v• II both tend to zero • n tends to 
infinity. Moreover, the E.T.A. property implies that II&l I = •11 v• I. C• 
z• = v•/ v• ,so •h• II 411 : x. Then 

i - •(z•+• inf II z• +...+ z& + +.,.+ z•> I• 
05j5• 
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where en -• 0 as n -• oc. Hence c• is not J(r)-convcxifying for (S/K, ]l] ]]]). 
But by Proposition 3.5 S/K is A-finitely representable in E, and so c• is 
not J(r)-convexifying for E. This contradiction completes the proof of the 
proposition. 

PROOF OF TtIEOREM 1.1: Let T be a J-convexifying involution on a 
Banach space E and suppose that co is not finitely representable in E. 
By Lemma 2.6 the induced operator • on the ultrapower EN/Lt is J- 
convexifying; moreover, • is clearly also an involution. Let A be the sub- 
algebra generated by • of the algebra of all bounded operators on E•v/Lt. 
Then E•v/Lt is a norreed A-module, and by Lemma 4.2 • is a J-convexifying 
cyclic element of A. It follows from Proposition 4.6 that E•v/Lt is reflexive, 
and so E is super-reflexive. 
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