
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Faculty Publications Computer Science and Engineering, Department
of

2010

High-Performance Heterogeneous Computing with the Convey High-Performance Heterogeneous Computing with the Convey

HC-1 HC-1

Jason D. Bakos
University of South Carolina - Columbia, jbakos@cse.sc.edu

Follow this and additional works at: https://scholarcommons.sc.edu/csce_facpub

 Part of the Computer Engineering Commons

Publication Info Publication Info
Published in Computing in Science and Engineering, ed. Volodymyr Kindratenko and Pedro Trancoso,
Volume 12, Issue 6, 2010, pages 80-87.

This Article is brought to you by the Computer Science and Engineering, Department of at Scholar Commons. It has
been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more
information, please contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/csce_facpub
https://scholarcommons.sc.edu/csce
https://scholarcommons.sc.edu/csce
https://scholarcommons.sc.edu/csce_facpub?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

80	 Copublished by the IEEE CS and the AIP 1521-9615/10/$26.00 © 2010 IEEE	 Computing in SCienCe & engineering

N o v E l A r C h I t E C t u r E S

Editors: Volodymyr Kindratenko, kindr@ncsa.uiuc.edu

Pedro Trancoso, pedro@cs.ucy.ac.cy

HigH-Performance Heterogeneous
comPuting witH tHe convey Hc-1
By Jason D. Bakos

A t Supercomputing 2009, Con-
vey Computer unveiled the
HC-1, an all-in-one compute

server containing a socket-based re-
configurable coprocessor board. The
HC-1 is unique in several ways. Unlike
in-socket coprocessors from Nallatech
(www.nallatech.com/Intel-Xeon-
FSB-Socket-Fillers/fsb-development-
systems.html), DRC (www.drccomputer.
com/drc/modules.html), and Xtreme-
Data (www.xtremedata.com/products/
accelerators/in-socket-accelerator/
xd2000i)—all of which are confined
to a socket-sized footprint—Convey
uses a mezzanine connector to bring
the front side bus (FSB) interface to a
large coprocessor board roughly the
size of an ATX motherboard. This co-
processor board is housed in a one-unit
(1U) chassis that’s fused to the top of
another 1U chassis containing the host
motherboard.

In addition to the machine, Con-
vey designed a selection of accelera-
tor designs to use with it. Some of
these implement soft-core floating
point vector processors for which
Convey has also developed a C and
FORTRAN compiler. Others, such
as their Smith-Waterman sequence
alignment accelerator design, include
an easy-to-use interface library. This
makes the HC-1’s FPGAs acces-
sible to programmers who lack the
expertise or patience to design their
own FPGA-based coprocessors in

hardware description language. How-
ever, realizing that the HC-1 appeals
to customers who would like to do
this, Convey offers support and tools
accordingly.

Here, I examine the HC-1, empha-
sizing its system architecture, per-
formance, ease of programming, and
flexibility.

System Overview
The HC-1’s host consists of a dual-
socket Intel server motherboard, an
Intel 5400 memory-controller hub
chipset, 24 Gbytes of RAM, 1,066
MHz FSB, and a 2.13 GHz Intel Xeon
5138—a dual-core, low-voltage pro-
cessor (the 65-nanometer Intel Core
architecture released in 2006). Newer
Intel Xeons based on the Nehalem or
later architectures can’t be used in an
HC-1-like system until Convey com-
pletes the Quick Path Interconnect
interface for their coprocessor board.
The HC-1 host runs a 64-bit 2.6.18
Linux kernel with a modified vir-
tual memory system to accommodate
memory coherency for the coproces-
sor board.

Top-Level Design
Figure 1 shows the coprocessor
board’s design. There are four user-
programmable Virtex-5 LX 330s,
which Convey calls the application
engines (AEs). Convey refers to a
particular configuration of these

field-programmable gate arrays
(FPGAs) as a “personality.” The four
AEs each connect to eight memory
controllers through a full crossbar.
Each memory controller is imple-
mented on its own FPGA and is
connected to two Convey-designed
scatter-gather dual inline memory
modules (SG-DIMMs) contain-
ing 64 banks each and an integrated
Stratix-2 FPGA. The AEs themselves
are interconnected in a ring configu-
ration with 668 Mbytes/s, full duplex
links for AE-to-AE communication.
These links can be useful for multi-
FPGA applications.

Memory Interleave Modes
Each AE has a 2.5 Gbyte/s link to
each memory controller, and each
SG-DIMM has a 5 Gbyte/s link to
its corresponding memory control-
ler. As such, the effective memory
bandwidth of the AEs is dependent
on their memory access pattern to
the eight memory controllers and
their two SG-DIMMs. Each AE can
achieve a theoretical peak bandwidth
of 20 Gbyte/s when striding across
eight different memory controllers,
but this bandwidth would drop if two
other AEs attempt to read from the
same set of SG-DIMMs because this
would saturate the 5 Gbytes/s DIMM
memory controller links.

Because each memory address
maps only to one SG-DIMM (and

Unlike other socket-based reconfigurable coprocessors, the Convey HC-1 contains nearly 40 field-programmable
gate arrays, scatter-gather memory modules, a high-capacity crossbar switch, and a fully coherent memory system.

CISE-12-6-Novel.indd 80 16/10/10 2:33 PM

november/DeCember 2010 81

its corresponding memory control-
ler), Convey’s goal when designing
its memory system was to maximize
the likelihood that an arbitrary set
of unique memory references would
be uniformly distributed across all 16
SG-DIMMs and eight memory con-
trollers. Convey provides two user-
selectable memory mapping modes to
partition the coprocessor’s virtual ad-
dress space among the SG-DIMMs:

• Binary interleave, which maps bit-
fields of the memory address to a
particular controller, DIMM, and
bank, and

• 31-31 interleave, a modulo 31 map-
ping optimized for constant memory
strides (strides lengths that are a
power-of-two are guaranteed to hit
all 16 SG-DIMMs for any sequence
of 16 consecutive references).

The memory banks are divided into
32 groups of 32 banks each. In 31-31
interleave, one group isn’t used, and
one bank within each of the remaining

groups isn’t used. Because the number
of groups and banks per group is a
prime number, this reduces the like-
lihood of strides aliasing to the same
SG-DIMM. Selecting the 31-31 inter-
leave comes at a cost of approximately
1 Gbyte of addressable memory space
(6 percent) and a 6 percent reduction
in peak memory bandwidth.

Coprocessor Memory Coherency
The coprocessor memory is cache co-
herent with the host memory and is
implemented using the snoopy coher-
ence mechanism built into the Intel
FSB protocol. This essentially creates
a common virtual address space that
both the host and coprocessor share.

In the coherence protocol, both
the host and the coprocessor possess
copies of the global memory space.
Each block of memory addresses in
both the host memory and coproces-
sor memory are marked as exclusive,
shared, or invalid. A write by the host
to an address block will change its sta-
tus to exclusive and invalidate the block

on the coprocessor (indicating that it’s
out-of-date). If one of the application
engines on the coprocessor reads from
this block, an updated copy of the
block’s memory contents is sent to the
coprocessor memory, and the memory
block changes to shared in both the
host and coprocessor memory. The
coherence mechanism is transparent
to the user and removes the need for
explicit direct memory access (DMA)
transactions, which coprocessors based
on peripheral component intercon-
nect (PCI) require.

Host Interface
The coprocessor board contains two
non-user programmable FPGAs that
together form the application engine
hub (AEH). One FPGA serves as the
physical interface between the copro-
cessor board and the FSB, and its logic
monitors the FSB to maintain the
snoopy memory coherence protocol
and manages the coprocessor memo-
ry’s page table. This FPGA is actually
mounted to the mezzanine connector.

Figure 1. the hC-1 coprocessor board. Four application engines connect to eight memory controllers through a full crossbar.
Each memory controller is implemented on its own field-programmable gate array.

1
G

B

1
G

B

1
G

B

1
G

B

1
G

B

1
G

B

1
G

B

1
G

B

1
G

B

1
G

B

1
G

B

1
G

B

1
G

B

1
G

B

1
G

B

1
G

B

MC0 MC1 MC2 MC3 MC4 MC5 MC6 MC7
5 GB/s 5 GB/s

2.5 GB/s

AE0
Virtex-
5 LX
330

AE1
Virtex-
5 LX
330

AE2
Virtex-
5 LX
330

AE3
Virtex-
5 LX
330

Application
engine

hub

24 GB
RAM

Intel 5400
Northbridge

Xeon 5138
dual-core
2.13 GHz
4 MB L2

1,066 MHz FSB

Host board

Coprocessor board

668 MB/s full
duplex

CISE-12-6-Novel.indd 81 16/10/10 2:33 PM

N o v E l A r C h I t E C t u r E S

82	 Computing in SCienCe & engineering

The second AEH FPGA contains
the scalar processor, a soft-core proces-
sor that implements the base Convey
instruction set. The scalar processor
is a substantial architecture, including
a cache and features such as multiple
issue out-of-order execution, branch
predication, register renaming, and
sliding register windows.

The scalar processor is the mecha-
nism by which the host invokes com-
putations on the AEs. In Convey’s
programming model, the AEs act as
coprocessors to the scalar processor,
while the scalar processor acts as a co-
processor for the host CPU. To facili-
tate this, the binary executable file on

the host (Intel processor) contains in-
tegrated scalar processor code (using
a “fat binary” linker format), which is
transferred to and executed on the sca-
lar processor when the host code calls
a scalar processor routine through
one of Convey’s runtime library calls
(a similar mechanism is employed on
Nvidia GPUs). The scalar processor
code can contain instructions that are
dispatched and executed (that is, off-
loaded) onto the AEs.

Code for the scalar processor can be
generated by one of Convey’s compil-
ers or handwritten in assembly lan-
guage. After compilation and assembly,
the scalar processor code is linked into
the executable in the ctext linker sec-
tion. Upon execution, the host code
can invoke scalar processor routines
using the synchronous and asynchro-
nous copcall API functions. The

host CPU can also use this mechanism
to send parameters to and receive sta-
tus information from the AEs.

The scalar processor is connected
to each AE via a point-to-point link,
and uses this link to dispatch instruc-
tions to the AEs that aren’t entirely
implemented on the scalar processor.
Instruction examples include

• move instructions for exchanging
data between the scalar processor
and AEs; and

• custom AE instructions, which
consist of 32 unimplemented in-
structions that can be used to in-
voke user-defined AE behaviors.

Through the AE’s dispatch interface,
AE logic can also trigger exceptions
and implement memory synchroniza-
tion behaviors.

Personalities
Convey develops and licenses its own
set of personalities but also allows
users to develop their own using the
personality development kit (PDK).
Convey has established a global
numeric identifier system for per-
sonalities and maintains a publicly ac-
cessible registration database for these
identifiers, evidentially in the hope of
fostering a marketplace for custom
personalities.

Convey’s “stock” personalities are
individually licensed and are each
designed for specific application
types. Currently, the set includes a
single-precision vector personality,

double-precision vector personality,
financial analytics personality, and
Smith-Waterman personality.

The two vector personalities act
as vector coprocessors for the scalar
processor and are targets for Convey’s
vectorizing compiler. When using
these personalities, each AE imple-
ments eight floating point multiply-
adder pipelines and eight load/store
units (for a total of 32 logically com-
bined across four AEs).

The financial analytics personality
is a double-precision personality that
adds additional vector instructions,
transcendental functions, probability
distribution functions, and various
random number generators designed
for high-performance Monte Carlo
simulation. In addition to the com-
piler, the vector and financial per-
sonalities also have robust debuggers,
simulators, and performance analyz-
ers. The single-precision vector per-
sonality also has the Convey math
library (CML), a corresponding,
hand-optimized basic linear algebra
subroutines (BLAS) implementation.
The Smith-Waterman personality is a
parameterized, scalable processing el-
ement and is built around the Convey
Sequence Library, a customized API.

As mentioned earlier, users who
wish to develop their own person-
alities with HDL-based design must
license the PDK, which includes de-
sign flows and robust system mod-
els that support hardware/software
co-simulation.

Convey Instruction
Set Architecture
Convey developed its own entirely new
instruction set architecture from the
ground up. The Convey ISA includes
a scalar instruction set that’s common
to all personalities, including cus-
tom ones. All scalar instructions are

Convey develops and licenses its own set of personalities

but also allows users to develop their own using the

personality development kit (PDK).

CISE-12-6-Novel.indd 82 16/10/10 2:33 PM

november/DeCember 2010 83

executed on the scalar processor. The
scalar instruction set includes instruc-
tions for program control (branches),
context saves, scalar arithmetic, load/
store, and move instructions for the
set of A and S registers (which reside
on the scalar processor). The instruc-
tion set also includes a large set of vec-
tor instructions that are offloaded to
the vector personalities (if present).

The Convey ISA features a virtual-
ized register set. The three register
sets (scalar, address, and vector) are
of arbitrary size because the hard-
ware dynamically maps user registers
to physical registers at runtime. This
also applies to each vector register’s
length and the vector stride for the
load/store units, both of which can be
dynamically changed by the software
at runtime if you change the vector
registers’ length and stride values.

Peak Floating Point
Performance
The HC-1’s hardware, compiler, and
only one of their vector personalities
cost approximately 10 times that of
a state-of-the-art dual-socket Xeon-
based Dell PowerEdge server, or that
of a rack-mounted four-GPU Nvidia
Tesla server, despite the fact that each
of these systems have approximately
the same physical footprint. In my
lab, my research group has one of each
of these systems, which allows for
convenient cost-performance com-
parisons. We ran a series of simple
tests to pit our HC-1 against our Dell
PowerEdge R710 with dual Xeon 5520
processors, which use the Nehalem
architecture and were Intel’s state-of-
the-art server processor architecture
from March 2009 to March 2010.
This product was recently supersed-
ed by the Xeon 5600-series (West-
mere), which is a technology-scaled
version of the same architecture.

This PowerEdge server is attached to
our Nvidia Tesla S1070, containing
four Tesla GPUs. The Tesla has also
recently been superceded by the Fermi.

We designed a series of tests to
measure both raw performance and
ease of programming. To estimate
the systems’ peak floating point per-
formance, we targeted dense single-
precision general matrix–matrix mul-
tiply (SGEMM) from the level-three
BLAS library, because an equivalent
platform-optimized implementation
of this function is available in the Intel’s
math kernel library (MKL), Nvidia’s
compute unified basic linear algebra
subprograms (Cublas) library (http://
developer.download.nvidia.com/
compute/cuda/3_0/toolk it /docs/
CUBLAS_Library_3.0.pdf), and the
Convey math library (CML). Specially,
we tested the operation was C	= AB	
where A and B are square matrices.

Table 1 shows the effective Gflops/s
for each test, where we measure
Gflops as:

time
order2 3×

on an unloaded system.	 The time
includes I/O time for the Tesla and
HC-1.	 We ran each test only once
rather than averaging over a large set
of runs because these results are in-
tended to be illustrative only.

The Intel results reflect the use of
all eight processor cores (two sock-
ets each with four-core CPUs) and

a SSE4.2 vector unit for each core.
The Nehalem system achieved an
average throughput of approximately
130 Gflops/s. This is reasonable,
because each of the eight cores has
an SSE unit that can perform four
multiplies and four adds per cycle at
2.26 GHz, giving a theoretical peak of
145 Gflops/s without considering any
effects of the memory system. The
GPU-based system showed an aver-
age throughput of approximately 358
Gflops/s. The HC-1 achieved an aver-
age throughput of 76 Gflops/s.

These performance metrics don’t
look encouraging for the HC-1, es-
pecially given that both the Nehalem
and the Tesla GT200 GPUs are
already previous-generation archi-
tectures, while the HC-1 is still cur-
rent generation. Convey admits that
the peak throughput of the HC-1
is “nearly 80 Gflops/s” based on its
coprocessor memory bandwidth, so
these results indicate that the HC-1 is
more capable of achieving throughput
closer to its peak than the Xeon.

However, these performance results
are given by heavily hand-optimized
BLAS routines. In our next set of
performance tests, we explored the
performance given of the Intel and
Convey vectorizing compilers when
given non-optimized high-level code.

Power Consumption
The tested machines are powered by a
power distribution unit that is capable
of measuring the total current being

Table 1. Level 3 BLAS Performance, Nehalem Xeon vs. Tesla vs. HC-1

Matrix order

Single-precision general matrix–matrix multiply
(Gflops/s)

Dual Xeon 5520
MKL w/Intel C
compiler 11.1

NVIDIA Tesla
S1070 CUBLAS
w/Nvidia C
compiler 3.1

HC-1 coprocessor
CML 1.2.2
w/Convey C
Compiler 2.0.0

8,000 110 347 75

10,000 126 348 76

12,000 136 355 76

14,000 140 363 75

16,000 140 378 76

Average 130 358 76

CISE-12-6-Novel.indd 83 16/10/10 2:33 PM

N o v E l A r C h I t E C t u r E S

84	 Computing in SCienCe & engineering

drawn with a granularity of one amp.
Although this is obviously an inac-
curate method for testing power con-
sumption, it allows us to make rough
approximations.

While running the SGEMM tests,
the PowerEdge alone drew 3 amps,
indicating a 360-watt consumption,
and thus achieved 360 Mflops/watt.
During the Tesla SGEMM test, the
PowerEdge and Tesla together drew 6
amps (720 watts) and thus achieved ap-
proximately 500 Mflops/watt. During
the HC-1 SGEMM test, the HC-1
alone drew 6 amps (720 watts) and thus
achieved approximately 100 Mflops/
watt. These results indicate that the
Tesla actually wins in flops per watt
and the HC-1 comes in third, which
runs contrary to public popular opin-
ion regarding the power efficiency
of GPUs versus FPGAs. This indi-
cates that there might be inefficiencies
in the HC-1’s system design.

Convey Compiler
Convey has developed a vectorizing
C and FORTRAN compiler based on
Open64 (www.open64.net) that can
target the scalar processor coupled with
one of its vector personalities. To use
one of these personalities, users sim-
ply insert Convey pragmas—notably,
#pragma cny begin_coproc and
#pragma cny end_coproc—into C
or FORTRAN code to denote which
sections of code to execute on the
coprocessor (other pragmas are also
available to give programmer hints to
the compiler). The Convey vectoriz-
ing compiler compiles these sections
targeting the Convey ISA and ex-
ecutes them on the scalar processor,
which offloads any vector instructions
to the appropriate personality on the
AEs (which are automatically config-
ured with the appropriate personality
at runtime).

To determine how well the Intel
and Convey vector architectures lend
themselves to automatic compiler vec-
torization of naïvely written, (mostly)
architecture-oblivious, and (mostly)
non-hand-optimized code, we wrote
a simple three-loop implementation
of matrix multiply, compiled this
code with the maximum optimiza-
tion settings with both the Intel and
Convey compilers, and then com-
pared the resulting performance on
their corresponding platforms with
that of the their corresponding BLAS
performance.

For the Intel version, we paral-
lelized the outermost loop with
OpenMP (using the parallel for
directive), which distributed the loop
across 16 threads during runtime,
fully utilizing the eight cores with
two-way symmetric multithreading.
Also, from prior experience we know
that the Intel load/store units perform
best with vector strides of one—that
is, floating point values can only be
loaded directly into the streaming
single-instruction multiple-data ex-
tensions (SSE) extended multimedia
(XMM) registers from consecutive
memory locations. Because transpos-
ing one of the matrices is a minor
change to the code, our Intel imple-
mentation includes this simple optimi-
zation (that is, transposing matrix B,	
making matrix A row-major and ma-
trix B	column-major). This optimiza-
tion doesn’t effect HC-1 performance
because, as I discuss later, it’s indiffer-
ent to vector stride length. As such,
in our tests, the input matrices for
the HC-1 implementation are both
row-major.

The Convey compiler is still
relatively early in its development,
and—according to the compiler
manual—the high-level code must
be written in specific ways to ensure

vectorization. The compiler also pro-
vides detailed feedback to the pro-
grammer, reporting exactly which
loops are vectorized and what type
and number of vector instructions are
used in the generated code.

For the Convey compiler to vector-
ize our code, we had to apply a minor
transformation, using one loop nest
to initialize the result matrix to zero,
followed by a second loop nest that
performs the matrix multiply by com-
puting the inner products and add-
ing each into the entries of the result
matrix. To be fair, we also tried this
optimization to the Intel code but it
resulted in a slight slowdown so we
didn’t use it for the Intel tests. In the
HC-1 C code, both loops together are
marked for coprocessor execution:

#pragma cny array(cm[size]

[size])

#pragma cny array(am[size]

[size])

#pragma cny array(bm[size]

[size])

#pragma cny begin_coproc

 for (i=0;i<size;i++) {

 for (j=0;j<size;j++) {

 cm[i][j]=0.0;

 }

 }

 for (i=0;i<size;i++) {

 for (j=0;j<size;j++) {

 for (k=0;k<size;k++) {

cm[i][j] += am[i]

[k]*bm[k][j];

 }

 }

 }

#pragma cny end_coproc

CUDA requires that programmers
explicitly parallelize code into threads
and blocks, making it impossible to

CISE-12-6-Novel.indd 84 16/10/10 2:33 PM

november/DeCember 2010 85

write architecture-oblivious code.
However, Nvidia’s CUDA software
development kit (SDK) includes a
relatively simple matrix multiply that
parallelizes the matrix multiply us-
ing a simple blocking technique.
We measured this implementation’s
performance (not allowing a “kernel
warmup” and including the host-GPU
I/O time, which the code doesn’t in-
corporate in its own instrumenta-
tion) and included these results for
discussion.

Table 2 shows the test results. The
Intel implementation achieves 8 to 10
percent of its MKL performance us-
ing the naïvely written code, while the
HC-1 outperforms the Intel imple-
mentation and achieves 20 to 24 per-
cent of its CML performance. These
results indicate the HC-1 has more
potential for extracting performance
and automatically parallelizing float-
ing point linear algebra kernels that
aren’t mapped directly into BLAS
routines. The CUDA SDK code
achieves 48 to 54 percent of its peak
performance but (as noted earlier)
this code is explicitly parallelized by
Nvidia, unlike the Intel and Convey
code, so it’s not a fair comparison.

Convey Simulator and
Performance Analysis Tool
To help developers get the most per-
formance out of their code, Convey

also offers a simulator and corre-
sponding performance analysis tool
called “Spat” that graphically plots
how various aspects of the code map
to the architecture and can assist in
code tuning.

As Figure 2a shows, the information
is presented as a plot of clock cycle vs.
usage of various architectural features.
The tool can also graphically depict
detailed state information for various
units within the scalar and vector pro-
cessors (see Figure 2b). This informa-
tion lets users step across clock cycles
and witness how the system executes
various instructions. The figure’s
plots originate from my handwritten
assembly-language implementation of
the matrix-multiplier, with which I at-
tempted to outperform the compiler-
generated implementation. After

approximately one day’s effort, I was
able to match only the compiled code’s
performance, which speaks well of the
Convey compiler.

Memory-Intensive
Applications
HC-1’s real strength is its memory-
centric applications, or applications
that require nonconsecutive memory
access strides.1 Our experimental
results are evidence of this; but to
demonstrate, I offer results from a
benchmark designed to stress memory
systems.

The Stride3 benchmark is part of
Lawrence Livermore National Lab’s
Sequoia benchmark suite (https://
asc.llnl.gov/sequoia/benchmarks) and
uses a series of sequential kernels that
perform double-precision floating

(a) (b)

Figure 2. Screen examples from Spat, Convey’s toolset for assisting programmers in tuning their code. (a) A plot depicting
the utilization of the processor subsystems versus clock cycle during a loop execution. (b) An interactive trace of the
instruction stream, showing the processor’s internal state during a specific clock cycle.

Table 2. Compiler effectiveness for optimizing naïve code.

Simple three-loop matrix multiplication (Gflops/s)

Xeon 5520
C code SSE4.2/
OMP
w/ICC 11.1
(row major ×
row major)

Xeon 5520
C code SSE4.2/
OMP
ICC 11.1
(row major ×
column major)

Nvidia CUDA
SDK matrixMul
routine

HC-1 C code
single-
precision vector
personality

1 (<1 % peak) 11 (10% peak) 189 (54% peak) 15 (21% peak)

1 (<1 % peak) 11 (9% peak) 190 (54% peak) 15 (20% peak)

1 (<1 % peak) 11 (8% peak) 189 (53% peak) 16 (21% peak)

1 (<1 % peak) 11 (8% peak) 184 (51% peak) 16 (21% peak)

1 (<1 % peak) 10 (8% peak) 180 (48% peak) 15 (24% peak)

CISE-12-6-Novel.indd 85 16/10/10 2:33 PM

N o v E l A r C h I t E C t u r E S

86	 Computing in SCienCe & engineering

point operations using values from
two matrices at various stride dis-
tances. In our particular test, we set
the matrix sizes such that they’re too
large to fit in the Xeon’s cache.

Table 3 shows the results: HC-1 eas-
ily outperformed the Xeon 5520 (the
Stride3 benchmark is single-threaded,
which might be a disadvantage for the
Xeon).

Convey has also recently developed
a Smith-Waterman personality for
high-throughput genomic database
searches.2 The Smith-Waterman per-
sonality derives its performance from
the FPGA’s ability to perform com-
parisons on sub-byte data units (that
is, 2 bits for nucleotide and 5 bits for
protein), which allows it to pack more
operations per memory access than is
possible with fixed-architecture CPUs
and GPUs. However, the current ver-
sion of the Smith-Waterman person-
ality seems to use a simplistic variant
of the Smith-Waterman algorithm in
that it considers match, mismatch, in-
sert, and delete penalties rather than
more aggressive implementations
with more complex cost models that
allow different costs for opening gaps
and extending gaps.

To approximate the Smith-
Waterman personality’s perfor-
mance relative to a well-known soft-
ware implementation, we ran a series
of performance tests of the per-
sonality against the University
of Virginia’s SSearch35 version
35.04 (http://fasta.bioch.virginia.
edu/fasta_www2/fasta_list2.shtml),

a highly optimized multithreaded
SSE-based Smith-Waterman im-
plementation. SSearch35 uses the
slightly more complex cost model
described earlier, so these imple-
mentations use a slightly different
scoring model. However, both are
based on the traditional dynamic
programming approach to compute
optimal alignment scores and both
use the Blosum substitution matrix.
As before, the time values include
I/O time between the host and
coprocessor.

Table 4 shows the results. For the
three sample database sizes, the HC-1
performs just over eight times better
than the Xeon. Although these are
encouraging results, it’s not clear if
FPGAs will continue to maintain this
lead as CPUs architectures continue
to scale.

Developing Custom
Personalities
According to Convey, its target cus-
tomers are primarily interested in
using predesigned personalities. We
purchased the system primarily as
a platform for testing our research
group’s customized accelerator de-
signs. We chose the HC-1 because it
had four large Virtex-5 330 LX
FPGAa and because its memory-
coherent host interface eliminates the
extra engineering time required for
DMA-based interfacing. Because I’ve
worked with PCI-based FPGA co-
processors, working with the HC-1’s
memory model is much easier than
having to coordinate with the host to
set up explicit DMA transfers, which
greatly simplifies host interfacing.

Designing custom personalities
requires the use of Convey’s PDK,
which contains

• a set of makefiles to support simula-
tion and synthesis design flows,

• a set of Verilog support and inter-
face files,

• a set of simulation models for all
of the coprocessor board’s non-
programmable components (such as
the memory controllers and memo-
ry modules), and

• a programming-language interface
(PLI) to let the host code interface
with a behavioral HDL simulator
such as Modelsim.

The kit’s simulation framework is
easy to use and allows users switch be-
tween a simulated coprocessor and an
actual coprocessor by changing only
one environment variable.

Developing with the PDK involves
working within a Convey-supplied
wrapper that gives the user logic ac-
cess to instruction dispatches from
the scalar processor, access to all eight

Table 3. Stride3C benchmark for Xeon vs. HC-1 coprocessors.

Stride

Stride3C benchmark (Gflops/s)

Xeon 5520
single-thread

HC-1
w/double-precision
personality

256 0.06 4.3

512 0.05 4.3

1024 0.05 4.3

961 0.04 0.1 (lowest)

992 0.06 0.3 (2nd lowest)

8 0.07 4.4 (highest)

Overall average 0.05 4.1

Table 4. Smith-Waterman performance on Xeon vs. HC-1 coprocessors
searching a protein database with an 80-character query.

Database size
(amino acids)

Xeon 5520
multithread

HC-1 w/AESW
personality HC-1 speedup

8 × 107 3,073 ms 353 ms 8.7

4 × 108 14,763 ms 1,773 ms 8.3

8 × 108 29.754 ms 3,589 ms 8.3

CISE-12-6-Novel.indd 86 16/10/10 2:33 PM

november/DeCember 2010 87

memory controllers, access to the
coprocessor’s management processor
for debugging support, and access to
the AE-to-AE links. However, the
wrapper requires fairly substantial re-
source overheads: 184 out of the 576
18-Kbytes block random access mem-
ory (BRAMS) and approximately 10
percent of each FPGA’s slices. Con-
vey supplies a fixed 150-MHz clock to
each FPGA’s user logic.

Users who develop custom personal-
ities must also develop a corresponding
API. That is, although Convey’s com-
piler, debugger, and analysis tools can
be used with their vector personalities,
there’s no compiler support—or tool
support at all—for custom personali-
ties. For example, if I were to develop a
custom personality to accelerate molec-
ular dynamics, I’d also need to develop
a corresponding software library that
would let users execute the accelerated
kernels on the AEs from their own soft-
ware. This library would be responsible
for interfacing with the scalar proces-
sor and AEs through the copcall and
custom instruction mechanism.

The HC-1’s FPGA-based coproces-
sor doesn’t compete in peak float-

ing point performance with Nvidia
GPUs or even Intel Xeon processors,
but its vector personality architecture
is more flexible and allows its compiler
to extract greater performance from
generalized high-level code than Intel’s
compiler. This is partly because the
HC-1’s vector personalities and copro-
cessor memory system are capable of
single-instruction loads of vectors that
are stored in nonconsecutive memory
locations, allowing it to achieve a high-
er ratio of its peak memory bandwidth
relative to the Xeon and Nvidia GPUs
for “strided” data. This is perhaps its
greatest advantage over the Xeon and
Nvidia architectures. In other words,

both the Xeon and Tesla lose a sub-
stantial amount of memory system per-
formance when loading vectors whose
elements are not aligned properly and
not stored in consecutive memory lo-
cations (Nvidia refers to such behavior
as “non-coalesced” loads or stores). In
addition, the FPGAs’ reconfigurable
nature lets the HC-1 perform opera-
tions on nonstandard memory units
and arbitrary precision values, making
it more efficient for applications such
as sequence alignment.

Acknowledgments
This material is based on work sup-
ported by the US National Science
Foundation under grant nos. CCF-
0844951 and CCF-0915608. Thanks
to Glen Edwards, Chris Parrott, Mark
Kelly, John Leidel, Kirby Collins, and
Tom Murphy of Convey Computer for
answering my questions, for provid-
ing prerelease versions of the Convey
compiler, and for providing free 30-day
licenses for the double-precision and
Smith-Waterman personalities.

References
1. J. leidel, “Design Philosophies for

Memory-Centric Instruction Set Archi-

tectures,” presentation, Symp. Applica-

tion Accelerators in high Performance

Computing (SAAhPC’10), 2010; http://

saahpc.ncsa.illinois.edu/presentations/

day1/session4/presentation_leidel.pdf.

2. Convey Computer, “Convey Computer

Announces record-Breaking Smith-

Waterman Acceleration of 172x,”

press release, 24 May 2010; www.

conveycomputer.com/resources/

Convey_Announces_record_Breaking_

Smith_Waterman_Acceleration.pdf.

Jason D. Bakos is an assistant professor in the

Department of Computer Science and Engi-

neering at the university of South Carolina.

his research interests include computer ar-

chitecture, very large-scale integration (vlSI)

design, and high-performance heterogeneous

computing. Bakos has a PhD in computer sci-

ence from the university of Pittsburgh. he is

a member of IEEE and the ACM. Contact him

at jbakos@sc.edu.

CISE-12-6-Novel.indd 87 16/10/10 2:33 PM

	High-Performance Heterogeneous Computing with the Convey HC-1
	Publication Info

	tmp.1291239484.pdf.ZNJrR

