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HigH-Performance Heterogeneous  
comPuting witH tHe convey Hc-1
By Jason D. Bakos

A t Supercomputing 2009, Con-
vey Computer unveiled the 
HC-1, an all-in-one compute 

server containing a socket-based re-
configurable coprocessor board. The 
HC-1 is unique in several ways. Unlike  
in-socket coprocessors from Nallatech 
(www.nallatech.com/Intel-Xeon- 
FSB-Socket-Fillers/fsb-development- 
systems.html), DRC (www.drccomputer. 
com/drc/modules.html), and Xtreme-
Data (www.xtremedata.com/products/
accelerators/in-socket-accelerator/
xd2000i)—all of which are confined 
to a socket-sized footprint—Convey 
uses a mezzanine connector to bring 
the front side bus (FSB) interface to a 
large coprocessor board roughly the 
size of an ATX motherboard. This co-
processor board is housed in a one-unit 
(1U) chassis that’s fused to the top of 
another 1U chassis containing the host 
motherboard.

In addition to the machine, Con-
vey designed a selection of accelera-
tor designs to use with it. Some of 
these implement soft-core floating 
point vector processors for which 
Convey has also developed a C and 
FORTRAN compiler. Others, such 
as their Smith-Waterman sequence 
alignment accelerator design, include 
an easy-to-use interface library. This 
makes the HC-1’s FPGAs acces-
sible to programmers who lack the 
expertise or patience to design their 
own FPGA-based coprocessors in  

hardware description language. How-
ever, realizing that the HC-1 appeals 
to customers who would like to do 
this, Convey offers support and tools 
accordingly.

Here, I examine the HC-1, empha-
sizing its system architecture, per-
formance, ease of programming, and 
flexibility. 

System Overview
The HC-1’s host consists of a dual-
socket Intel server motherboard, an 
Intel 5400 memory-controller hub 
chipset, 24 Gbytes of RAM, 1,066 
MHz FSB, and a 2.13 GHz Intel Xeon 
5138—a dual-core, low-voltage pro-
cessor (the 65-nanometer Intel Core 
architecture released in 2006). Newer 
Intel Xeons based on the Nehalem or 
later architectures can’t be used in an 
HC-1-like system until Convey com-
pletes the Quick Path Interconnect 
interface for their coprocessor board. 
The HC-1 host runs a 64-bit 2.6.18 
Linux kernel with a modified vir-
tual memory system to accommodate 
memory coherency for the coproces-
sor board.

Top-Level Design
Figure 1 shows the coprocessor 
board’s design. There are four user-
programmable Virtex-5 LX 330s, 
which Convey calls the application 
engines (AEs). Convey refers to a 
particular configuration of these 

field-programmable gate arrays  
(FPGAs) as a “personality.” The four 
AEs each connect to eight memory 
controllers through a full crossbar. 
Each memory controller is imple-
mented on its own FPGA and is 
connected to two Convey-designed 
scatter-gather dual inline memory 
modules (SG-DIMMs) contain-
ing 64 banks each and an integrated 
Stratix-2 FPGA. The AEs themselves 
are interconnected in a ring configu-
ration with 668 Mbytes/s, full duplex 
links for AE-to-AE communication. 
These links can be useful for multi-
FPGA applications.

Memory Interleave Modes
Each AE has a 2.5 Gbyte/s link to 
each memory controller, and each 
SG-DIMM has a 5 Gbyte/s link to 
its corresponding memory control-
ler. As such, the effective memory 
bandwidth of the AEs is dependent 
on their memory access pattern to 
the eight memory controllers and 
their two SG-DIMMs. Each AE can 
achieve a theoretical peak bandwidth 
of 20 Gbyte/s when striding across 
eight different memory controllers, 
but this bandwidth would drop if two 
other AEs attempt to read from the 
same set of SG-DIMMs because this 
would saturate the 5 Gbytes/s DIMM 
memory controller links.

Because each memory address 
maps only to one SG-DIMM (and 

Unlike other socket-based reconfigurable coprocessors, the Convey HC-1 contains nearly 40 field-programmable 
gate arrays, scatter-gather memory modules, a high-capacity crossbar switch, and a fully coherent memory system.
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its corresponding memory control-
ler), Convey’s goal when designing 
its memory system was to maximize 
the likelihood that an arbitrary set 
of unique memory references would 
be uniformly distributed across all 16 
SG-DIMMs and eight memory con-
trollers. Convey provides two user-
selectable memory mapping modes to 
partition the coprocessor’s virtual ad-
dress space among the SG-DIMMs: 

• Binary interleave, which maps bit-
fields of the memory address to a 
particular controller, DIMM, and 
bank, and

• 31-31 interleave, a modulo 31 map-
ping optimized for constant memory  
strides (strides lengths that are a 
power-of-two are guaranteed to hit 
all 16 SG-DIMMs for any sequence 
of 16 consecutive references).

The memory banks are divided into 
32 groups of 32 banks each. In 31-31 
interleave, one group isn’t used, and 
one bank within each of the remaining 

groups isn’t used. Because the number 
of groups and banks per group is a 
prime number, this reduces the like-
lihood of strides aliasing to the same 
SG-DIMM. Selecting the 31-31 inter-
leave comes at a cost of approximately  
1 Gbyte of addressable memory space 
(6 percent) and a 6 percent reduction 
in peak memory bandwidth.

Coprocessor Memory Coherency
The coprocessor memory is cache co-
herent with the host memory and is 
implemented using the snoopy coher-
ence mechanism built into the Intel 
FSB protocol. This essentially creates 
a common virtual address space that 
both the host and coprocessor share.

In the coherence protocol, both 
the host and the coprocessor possess 
copies of the global memory space. 
Each block of memory addresses in 
both the host memory and coproces-
sor memory are marked as exclusive, 
shared, or invalid. A write by the host 
to an address block will change its sta-
tus to exclusive and invalidate the block 

on the coprocessor (indicating that it’s 
out-of-date). If one of the application 
engines on the coprocessor reads from 
this block, an updated copy of the 
block’s memory contents is sent to the 
coprocessor memory, and the memory 
block changes to shared in both the 
host and coprocessor memory. The 
coherence mechanism is transparent 
to the user and removes the need for 
explicit direct memory access (DMA) 
transactions, which coprocessors based 
on peripheral component intercon-
nect (PCI) require.

Host Interface
The coprocessor board contains two 
non-user programmable FPGAs that 
together form the application engine 
hub (AEH). One FPGA serves as the 
physical interface between the copro-
cessor board and the FSB, and its logic  
monitors the FSB to maintain the 
snoopy memory coherence protocol 
and manages the coprocessor memo-
ry’s page table. This FPGA is actually 
mounted to the mezzanine connector. 

Figure 1. the hC-1 coprocessor board. Four application engines connect to eight memory controllers through a full crossbar. 
Each memory controller is implemented on its own field-programmable gate array.
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The second AEH FPGA contains 
the scalar processor, a soft-core proces-
sor that implements the base Convey 
instruction set. The scalar processor 
is a substantial architecture, including 
a cache and features such as multiple 
issue out-of-order execution, branch 
predication, register renaming, and 
sliding register windows. 

The scalar processor is the mecha-
nism by which the host invokes com-
putations on the AEs. In Convey’s 
programming model, the AEs act as 
coprocessors to the scalar processor, 
while the scalar processor acts as a co-
processor for the host CPU. To facili-
tate this, the binary executable file on 

the host (Intel processor) contains in-
tegrated scalar processor code (using 
a “fat binary” linker format), which is 
transferred to and executed on the sca-
lar processor when the host code calls 
a scalar processor routine through 
one of Convey’s runtime library calls 
(a similar mechanism is employed on 
Nvidia GPUs). The scalar processor 
code can contain instructions that are 
dispatched and executed (that is, off-
loaded) onto the AEs.

Code for the scalar processor can be 
generated by one of Convey’s compil-
ers or handwritten in assembly lan-
guage. After compilation and assembly, 
the scalar processor code is linked into 
the executable in the ctext linker sec-
tion. Upon execution, the host code 
can invoke scalar processor routines 
using the synchronous and asynchro-
nous copcall API functions. The 

host CPU can also use this mechanism 
to send parameters to and receive sta-
tus information from the AEs.

The scalar processor is connected 
to each AE via a point-to-point link, 
and uses this link to dispatch instruc-
tions to the AEs that aren’t entirely 
implemented on the scalar processor. 
Instruction examples include 

• move instructions for exchanging 
data between the scalar processor 
and AEs; and

• custom AE instructions, which 
consist of 32 unimplemented in-
structions that can be used to in-
voke user-defined AE behaviors.

Through the AE’s dispatch interface, 
AE logic can also trigger exceptions 
and implement memory synchroniza-
tion behaviors.

Personalities
Convey develops and licenses its own 
set of personalities but also allows 
users to develop their own using the 
personality development kit (PDK). 
Convey has established a global 
numeric identifier system for per-
sonalities and maintains a publicly ac-
cessible registration database for these 
identifiers, evidentially in the hope of 
fostering a marketplace for custom 
personalities.

Convey’s “stock” personalities are 
individually licensed and are each 
designed for specific application 
types. Currently, the set includes a 
single-precision vector personality,  

double-precision vector personality, 
financial analytics personality, and 
Smith-Waterman personality.

The two vector personalities act 
as vector coprocessors for the scalar 
processor and are targets for Convey’s 
vectorizing compiler. When using 
these personalities, each AE imple-
ments eight floating point multiply-
adder pipelines and eight load/store 
units (for a total of 32 logically com-
bined across four AEs).

The financial analytics personality 
is a double-precision personality that 
adds additional vector instructions, 
transcendental functions, probability 
distribution functions, and various 
random number generators designed 
for high-performance Monte Carlo 
simulation. In addition to the com-
piler, the vector and financial per-
sonalities also have robust debuggers, 
simulators, and performance analyz-
ers. The single-precision vector per-
sonality also has the Convey math 
library (CML), a corresponding, 
hand-optimized basic linear algebra 
subroutines (BLAS) implementation. 
The Smith-Waterman personality is a 
parameterized, scalable processing el-
ement and is built around the Convey 
Sequence Library, a customized API.

As mentioned earlier, users who 
wish to develop their own person-
alities with HDL-based design must 
license the PDK, which includes de-
sign flows and robust system mod-
els that support hardware/software 
co-simulation.

Convey Instruction  
Set Architecture
Convey developed its own entirely new 
instruction set architecture from the 
ground up. The Convey ISA includes 
a scalar instruction set that’s common 
to all personalities, including cus-
tom ones. All scalar instructions are  

Convey develops and licenses its own set of personalities 

but also allows users to develop their own using the 

personality development kit (PDK).
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executed on the scalar processor. The 
scalar instruction set includes instruc-
tions for program control (branches), 
context saves, scalar arithmetic, load/
store, and move instructions for the 
set of A and S registers (which reside 
on the scalar processor). The instruc-
tion set also includes a large set of vec-
tor instructions that are offloaded to 
the vector personalities (if present).

The Convey ISA features a virtual-
ized register set. The three register 
sets (scalar, address, and vector) are 
of arbitrary size because the hard-
ware dynamically maps user registers 
to physical registers at runtime. This 
also applies to each vector register’s 
length and the vector stride for the 
load/store units, both of which can be 
dynamically changed by the software 
at runtime if you change the vector 
registers’ length and stride values.

Peak Floating Point  
Performance
The HC-1’s hardware, compiler, and 
only one of their vector personalities 
cost approximately 10 times that of 
a state-of-the-art dual-socket Xeon-
based Dell PowerEdge server, or that 
of a rack-mounted four-GPU Nvidia 
Tesla server, despite the fact that each 
of these systems have approximately 
the same physical footprint. In my 
lab, my research group has one of each 
of these systems, which allows for 
convenient cost-performance com-
parisons. We ran a series of simple 
tests to pit our HC-1 against our Dell 
PowerEdge R710 with dual Xeon 5520 
processors, which use the Nehalem 
architecture and were Intel’s state-of-
the-art server processor architecture 
from March 2009 to March 2010. 
This product was recently supersed-
ed by the Xeon 5600-series (West-
mere), which is a technology-scaled 
version of the same architecture.  

This PowerEdge server is attached to 
our Nvidia Tesla S1070, containing 
four Tesla GPUs. The Tesla has also 
recently been superceded by the Fermi.

We designed a series of tests to 
measure both raw performance and 
ease of programming. To estimate 
the systems’ peak floating point per-
formance, we targeted dense single- 
precision general matrix–matrix mul-
tiply (SGEMM) from the level-three 
BLAS library, because an equivalent 
platform-optimized implementation 
of this function is available in the Intel’s 
math kernel library (MKL), Nvidia’s 
compute unified basic linear algebra 
subprograms (Cublas) library (http://
developer.download.nvidia.com/
compute/cuda/3_0/toolk it /docs/
CUBLAS_Library_3.0.pdf), and the 
Convey math library (CML). Specially,  
we tested the operation was C	= AB	
where A and B are square matrices.

Table 1 shows the effective Gflops/s 
for each test, where we measure 
Gflops as:

time
order2 3×  

on an unloaded system.	 The time 
includes I/O time for the Tesla and  
HC-1.	 We ran each test only once 
rather than averaging over a large set 
of runs because these results are in-
tended to be illustrative only.

The Intel results reflect the use of 
all eight processor cores (two sock-
ets each with four-core CPUs) and 

a SSE4.2 vector unit for each core. 
The Nehalem system achieved an 
average throughput of approximately  
130 Gflops/s. This is reasonable, 
because each of the eight cores has 
an SSE unit that can perform four 
multiplies and four adds per cycle at  
2.26 GHz, giving a theoretical peak of  
145 Gflops/s without considering any 
effects of the memory system. The 
GPU-based system showed an aver-
age throughput of approximately 358 
Gflops/s. The HC-1 achieved an aver-
age throughput of 76 Gflops/s.

These performance metrics don’t 
look encouraging for the HC-1, es-
pecially given that both the Nehalem 
and the Tesla GT200 GPUs are 
already previous-generation archi-
tectures, while the HC-1 is still cur-
rent generation. Convey admits that 
the peak throughput of the HC-1 
is “nearly 80 Gflops/s” based on its 
coprocessor memory bandwidth, so 
these results indicate that the HC-1 is 
more capable of achieving throughput 
closer to its peak than the Xeon.

However, these performance results 
are given by heavily hand-optimized 
BLAS routines. In our next set of 
performance tests, we explored the 
performance given of the Intel and 
Convey vectorizing compilers when 
given non-optimized high-level code.

Power Consumption
The tested machines are powered by a 
power distribution unit that is capable 
of measuring the total current being 

Table 1. Level 3 BLAS Performance, Nehalem Xeon vs. Tesla vs. HC-1

Matrix order

Single-precision general matrix–matrix multiply 
(Gflops/s)

Dual Xeon 5520 
MKL w/Intel C 
compiler 11.1

NVIDIA Tesla 
S1070 CUBLAS 
w/Nvidia C 
compiler 3.1

HC-1 coprocessor 
CML 1.2.2  
w/Convey C 
Compiler 2.0.0

8,000 110 347 75

10,000 126 348 76

12,000 136 355 76

14,000 140 363 75

16,000 140 378 76

Average 130 358 76
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drawn with a granularity of one amp. 
Although this is obviously an inac-
curate method for testing power con-
sumption, it allows us to make rough 
approximations.

While running the SGEMM tests, 
the PowerEdge alone drew 3 amps, 
indicating a 360-watt consumption, 
and thus achieved 360 Mflops/watt. 
During the Tesla SGEMM test, the 
PowerEdge and Tesla together drew 6 
amps (720 watts) and thus achieved ap-
proximately 500 Mflops/watt. During 
the HC-1 SGEMM test, the HC-1 
alone drew 6 amps (720 watts) and thus 
achieved approximately 100 Mflops/
watt. These results indicate that the 
Tesla actually wins in flops per watt 
and the HC-1 comes in third, which 
runs contrary to public popular opin-
ion regarding the power efficiency  
of GPUs versus FPGAs. This indi-
cates that there might be inefficiencies 
in the HC-1’s system design.

Convey Compiler
Convey has developed a vectorizing 
C and FORTRAN compiler based on 
Open64 (www.open64.net) that can 
target the scalar processor coupled with 
one of its vector personalities. To use 
one of these personalities, users sim-
ply insert Convey pragmas—notably,  
#pragma cny begin_coproc and 
#pragma cny end_coproc—into C 
or FORTRAN code to denote which 
sections of code to execute on the 
coprocessor (other pragmas are also 
available to give programmer hints to 
the compiler). The Convey vectoriz-
ing compiler compiles these sections 
targeting the Convey ISA and ex-
ecutes them on the scalar processor, 
which offloads any vector instructions 
to the appropriate personality on the 
AEs (which are automatically config-
ured with the appropriate personality 
at runtime).

To determine how well the Intel 
and Convey vector architectures lend 
themselves to automatic compiler vec-
torization of naïvely written, (mostly) 
architecture-oblivious, and (mostly) 
non-hand-optimized code, we wrote 
a simple three-loop implementation 
of matrix multiply, compiled this 
code with the maximum optimiza-
tion settings with both the Intel and 
Convey compilers, and then com-
pared the resulting performance on 
their corresponding platforms with 
that of the their corresponding BLAS 
performance.

For the Intel version, we paral-
lelized the outermost loop with 
OpenMP (using the parallel for 
directive), which distributed the loop 
across 16 threads during runtime, 
fully utilizing the eight cores with 
two-way symmetric multithreading. 
Also, from prior experience we know 
that the Intel load/store units perform 
best with vector strides of one—that 
is, floating point values can only be  
loaded directly into the streaming 
single-instruction multiple-data ex-
tensions (SSE) extended multimedia 
(XMM) registers from consecutive 
memory locations. Because transpos-
ing one of the matrices is a minor 
change to the code, our Intel imple-
mentation includes this simple optimi-
zation (that is, transposing matrix B,	
making matrix A row-major and ma-
trix B	column-major). This optimiza-
tion doesn’t effect HC-1 performance 
because, as I discuss later, it’s indiffer-
ent to vector stride length. As such, 
in our tests, the input matrices for 
the HC-1 implementation are both 
row-major. 

The Convey compiler is still 
relatively early in its development, 
and—according to the compiler 
manual—the high-level code must 
be written in specific ways to ensure  

vectorization. The compiler also pro-
vides detailed feedback to the pro-
grammer, reporting exactly which 
loops are vectorized and what type 
and number of vector instructions are 
used in the generated code.

For the Convey compiler to vector-
ize our code, we had to apply a minor 
transformation, using one loop nest 
to initialize the result matrix to zero, 
followed by a second loop nest that 
performs the matrix multiply by com-
puting the inner products and add-
ing each into the entries of the result 
matrix. To be fair, we also tried this 
optimization to the Intel code but it 
resulted in a slight slowdown so we 
didn’t use it for the Intel tests. In the 
HC-1 C code, both loops together are 
marked for coprocessor execution: 

#pragma cny array(cm[size]

[size])

#pragma cny array(am[size]

[size])

#pragma cny array(bm[size]

[size])

#pragma cny begin_coproc

 for (i=0;i<size;i++) {

  for (j=0;j<size;j++) {

  cm[i][j]=0.0;

  }

 }

 for (i=0;i<size;i++) {

  for (j=0;j<size;j++) {

  for (k=0;k<size;k++) {

cm[i][j] += am[i]

[k]*bm[k][j];

  }

  }

 }

#pragma cny end_coproc

CUDA requires that programmers 
explicitly parallelize code into threads 
and blocks, making it impossible to 
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write architecture-oblivious code. 
However, Nvidia’s CUDA software 
development kit (SDK) includes a 
relatively simple matrix multiply that 
parallelizes the matrix multiply us-
ing a simple blocking technique. 
We measured this implementation’s 
performance (not allowing a “kernel 
warmup” and including the host-GPU 
I/O time, which the code doesn’t in-
corporate in its own instrumenta-
tion) and included these results for 
discussion.

Table 2 shows the test results. The 
Intel implementation achieves 8 to 10 
percent of its MKL performance us-
ing the naïvely written code, while the 
HC-1 outperforms the Intel imple-
mentation and achieves 20 to 24 per-
cent of its CML performance. These 
results indicate the HC-1 has more 
potential for extracting performance 
and automatically parallelizing float-
ing point linear algebra kernels that 
aren’t mapped directly into BLAS 
routines. The CUDA SDK code 
achieves 48 to 54 percent of its peak 
performance but (as noted earlier) 
this code is explicitly parallelized by 
Nvidia, unlike the Intel and Convey 
code, so it’s not a fair comparison.

Convey Simulator and  
Performance Analysis Tool
To help developers get the most per-
formance out of their code, Convey 

also offers a simulator and corre-
sponding performance analysis tool 
called “Spat” that graphically plots 
how various aspects of the code map 
to the architecture and can assist in 
code tuning.

As Figure 2a shows, the information 
is presented as a plot of clock cycle vs. 
usage of various architectural features. 
The tool can also graphically depict 
detailed state information for various 
units within the scalar and vector pro-
cessors (see Figure 2b). This informa-
tion lets users step across clock cycles 
and witness how the system executes 
various instructions. The figure’s 
plots originate from my handwritten 
assembly-language implementation of 
the matrix-multiplier, with which I at-
tempted to outperform the compiler- 
generated implementation. After  

approximately one day’s effort, I was 
able to match only the compiled code’s 
performance, which speaks well of the 
Convey compiler. 

Memory-Intensive  
Applications
HC-1’s real strength is its memory-
centric applications, or applications 
that require nonconsecutive memory 
access strides.1 Our experimental 
results are evidence of this; but to 
demonstrate, I offer results from a 
benchmark designed to stress memory  
systems.

The Stride3 benchmark is part of 
Lawrence Livermore National Lab’s 
Sequoia benchmark suite (https:// 
asc.llnl.gov/sequoia/benchmarks) and 
uses a series of sequential kernels that 
perform double-precision floating 

(a) (b)

Figure 2. Screen examples from Spat, Convey’s toolset for assisting programmers in tuning their code. (a) A plot depicting 
the utilization of the processor subsystems versus clock cycle during a loop execution. (b) An interactive trace of the 
instruction stream, showing the processor’s internal state during a specific clock cycle.

Table 2. Compiler effectiveness for optimizing naïve code. 

Simple three-loop matrix multiplication (Gflops/s)

Xeon 5520
C code SSE4.2/
OMP
w/ICC 11.1
(row major × 
row major)

Xeon 5520
C code SSE4.2/
OMP
ICC 11.1
(row major × 
column major)

Nvidia CUDA 
SDK matrixMul 
routine

HC-1 C code 
single-
precision vector 
personality

1 (<1 % peak) 11 (10% peak) 189 (54% peak) 15 (21% peak)

1 (<1 % peak) 11 (9% peak) 190 (54% peak) 15 (20% peak)

1 (<1 % peak) 11 (8% peak) 189 (53% peak) 16 (21% peak)

1 (<1 % peak) 11 (8% peak) 184 (51% peak) 16 (21% peak)

1 (<1 % peak) 10 (8% peak) 180 (48% peak) 15 (24% peak)
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point operations using values from 
two matrices at various stride dis-
tances. In our particular test, we set 
the matrix sizes such that they’re too 
large to fit in the Xeon’s cache.

Table 3 shows the results: HC-1 eas-
ily outperformed the Xeon 5520 (the 
Stride3 benchmark is single-threaded, 
which might be a disadvantage for the 
Xeon).

Convey has also recently developed 
a Smith-Waterman personality for 
high-throughput genomic database 
searches.2 The Smith-Waterman per-
sonality derives its performance from 
the FPGA’s ability to perform com-
parisons on sub-byte data units (that 
is, 2 bits for nucleotide and 5 bits for 
protein), which allows it to pack more 
operations per memory access than is 
possible with fixed-architecture CPUs 
and GPUs. However, the current ver-
sion of the Smith-Waterman person-
ality seems to use a simplistic variant 
of the Smith-Waterman algorithm in 
that it considers match, mismatch, in-
sert, and delete penalties rather than 
more aggressive implementations 
with more complex cost models that 
allow different costs for opening gaps 
and extending gaps.

To approximate the Smith- 
Waterman personality’s perfor-
mance relative to a well-known soft-
ware implementation, we ran a series  
of performance tests of the per-
sonality against the University  
of Virginia’s SSearch35 version 
35.04 (http://fasta.bioch.virginia.
edu/fasta_www2/fasta_list2.shtml), 

a highly optimized multithreaded 
SSE-based Smith-Waterman im-
plementation. SSearch35 uses the 
slightly more complex cost model 
described earlier, so these imple-
mentations use a slightly different 
scoring model. However, both are 
based on the traditional dynamic 
programming approach to compute 
optimal alignment scores and both 
use the Blosum substitution matrix. 
As before, the time values include 
I/O time between the host and 
coprocessor.

Table 4 shows the results. For the 
three sample database sizes, the HC-1 
performs just over eight times better 
than the Xeon. Although these are 
encouraging results, it’s not clear if 
FPGAs will continue to maintain this 
lead as CPUs architectures continue 
to scale.

Developing Custom  
Personalities
According to Convey, its target cus-
tomers are primarily interested in 
using predesigned personalities. We 
purchased the system primarily as 
a platform for testing our research 
group’s customized accelerator de-
signs. We chose the HC-1 because it  
had four large Virtex-5 330 LX  
FPGAa and because its memory- 
coherent host interface eliminates the 
extra engineering time required for 
DMA-based interfacing. Because I’ve 
worked with PCI-based FPGA co-
processors, working with the HC-1’s  
memory model is much easier than 
having to coordinate with the host to 
set up explicit DMA transfers, which 
greatly simplifies host interfacing.

Designing custom personalities 
requires the use of Convey’s PDK, 
which contains

• a set of makefiles to support simula-
tion and synthesis design flows, 

• a set of Verilog support and inter-
face files, 

• a set of simulation models for all 
of the coprocessor board’s non-
programmable components (such as 
the memory controllers and memo-
ry modules), and

• a programming-language interface 
(PLI) to let the host code interface 
with a behavioral HDL simulator 
such as Modelsim. 

The kit’s simulation framework is 
easy to use and allows users switch be-
tween a simulated coprocessor and an 
actual coprocessor by changing only 
one environment variable.

Developing with the PDK involves 
working within a Convey-supplied 
wrapper that gives the user logic ac-
cess to instruction dispatches from 
the scalar processor, access to all eight 

Table 3. Stride3C benchmark for Xeon vs. HC-1 coprocessors.

Stride

Stride3C benchmark (Gflops/s)

Xeon 5520 
single-thread

HC-1
w/double-precision 
personality

256 0.06 4.3

512 0.05 4.3

1024 0.05 4.3

961 0.04 0.1 (lowest)

992 0.06 0.3 (2nd lowest)

8 0.07 4.4 (highest)

Overall average 0.05 4.1

Table 4. Smith-Waterman performance on Xeon vs. HC-1 coprocessors 
searching a protein database with an 80-character query.

Database size 
(amino acids)

Xeon 5520 
multithread

HC-1 w/AESW 
personality HC-1 speedup

8 × 107 3,073 ms 353 ms 8.7

4 × 108 14,763 ms 1,773 ms 8.3

8 × 108 29.754 ms 3,589 ms 8.3
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memory controllers, access to the  
coprocessor’s management processor 
for debugging support, and access to 
the AE-to-AE links. However, the 
wrapper requires fairly substantial re-
source overheads: 184 out of the 576 
18-Kbytes block random access mem-
ory (BRAMS) and approximately 10 
percent of each FPGA’s slices. Con-
vey supplies a fixed 150-MHz clock to 
each FPGA’s user logic.

Users who develop custom personal-
ities must also develop a corresponding 
API. That is, although Convey’s com-
piler, debugger, and analysis tools can 
be used with their vector personalities, 
there’s no compiler support—or tool 
support at all—for custom personali-
ties. For example, if I were to develop a 
custom personality to accelerate molec-
ular dynamics, I’d also need to develop 
a corresponding software library that 
would let users execute the accelerated 
kernels on the AEs from their own soft-
ware. This library would be responsible 
for interfacing with the scalar proces-
sor and AEs through the copcall and 
custom instruction mechanism.

The HC-1’s FPGA-based coproces-
sor doesn’t compete in peak float-

ing point performance with Nvidia 
GPUs or even Intel Xeon processors, 
but its vector personality architecture 
is more flexible and allows its compiler 
to extract greater performance from 
generalized high-level code than Intel’s 
compiler. This is partly because the 
HC-1’s vector personalities and copro-
cessor memory system are capable of 
single-instruction loads of vectors that 
are stored in nonconsecutive memory 
locations, allowing it to achieve a high-
er ratio of its peak memory bandwidth 
relative to the Xeon and Nvidia GPUs 
for “strided” data. This is perhaps its 
greatest advantage over the Xeon and 
Nvidia architectures. In other words, 

both the Xeon and Tesla lose a sub-
stantial amount of memory system per-
formance when loading vectors whose 
elements are not aligned properly and 
not stored in consecutive memory lo-
cations (Nvidia refers to such behavior 
as “non-coalesced” loads or stores). In 
addition, the FPGAs’ reconfigurable 
nature lets the HC-1 perform opera-
tions on nonstandard memory units 
and arbitrary precision values, making 
it more efficient for applications such 
as sequence alignment. 
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