
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Faculty Publications Computer Science and Engineering, Department
of

10-1993

Declarative Representations of Multiagent Systems Declarative Representations of Multiagent Systems

Munindar P. Singh

Michael N. Huhns
University of South Carolina - Columbia, huhns@sc.edu

Larry M. Stevens
University of South Carolina - Columbia, stephens@cec.sc.edu

Follow this and additional works at: https://scholarcommons.sc.edu/csce_facpub

 Part of the Computer Engineering Commons

Publication Info Publication Info
Published in IEEE Transactions on Knowledge and Data Engineering, Volume 5, Issue 5, 1993, pages
721-739.

This Article is brought to you by the Computer Science and Engineering, Department of at Scholar Commons. It has
been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more
information, please contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/csce_facpub
https://scholarcommons.sc.edu/csce
https://scholarcommons.sc.edu/csce
https://scholarcommons.sc.edu/csce_facpub?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

IEEE TR.A\S..K-tIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5, OCTOBER 1993 721

Declarative Representations of Multiagent Systems
Munindar P. Singh, Student Member, IEEE, Michael N. Huhns,

Member, IEEE, and Larry M. Stephens, Senior Member, IEEE

Abstract-This paper explores the specification and semantics
of multiagent problem-solving systems, focusing on the represen-
tations that agents have of each other. It provides a declarative
representation for such systems. Several procedural solutions
to a well-known test-bed problem are considered, and the re-
quirements they impose on different agents are identified. A
study of these requirements yields a representational scheme
based on temporal logic for specifying the acting, perceiving,
communicating, and reasoning abilities of computational agents.
A formal semantics is provided for this scheme. The resulting
representation is highly declarative, and useful for describing
systems of agents solving problems reactively.

Index Terms-Declarative Representations, Distributed Artifi-
cial Intelligence, Formal Specifications, Knowledge Representa-
tion, Multiagent Systems, Problem-Solving Systems

I. INTRODUCTION

D ISTRIBUTED artificial intelligence (DAI) is concerned
with how a group of intelligent computational agents

should coordinate their activities to achieve their goals. When
pursuing common or overlapping goals, they should act coop-
eratively so as to accomplish more as a group than individ-
ually: when pursuing conflicting goals, they should compete
intelligently. Interconnecting computational agents and expert
systems enables them to cooperate in solving problems, to
share expertise, to work in parallel on common problems, to
be developed and implemented modularly, to be fault-tolerant
through redundancy, to represent multiple viewpoints and the
knowledge of multiple human experts, and to be reusable. DA1
is the appropriate technology for applications where

1) expertise is distributed, as in design;
2) information is distributed, as in office automation;
3) data are distributed, as in distributed sensing;
4) decisions are distributed, as in manufacturing control;

and
5) knowledge bases are developed independently but must

be interconnected or reused, as in next-generation knowl-
edge engineering.

I DAI has progressed much in recent years and has been
garnering an increasing amount of attention lately. There
have been several successful implementations of DAI systems,
notably the distributed vehicle monitoring testbed (DVMT) for

Manuscript received July 1. 1990: revised May 22, 1991.
M. P. Singh is with Microelectronics and Computer Technology, Austin,

TX 78759, and the Department of Computer Sciences, University of Texas,
Austin TX 78712.

M. N. Huhns is with the Object-Oriented Database Laboratory, Microelec-
tronics and Computer Technology Corporation, Austin, TX 78759.

L. M. Stephens is with the Department of Electrical and Computer Engi-
neering, University of South Carolina, Columbia, SC 29208.

IEEE Log Number 9211315.

distributed sensing [8], the Pilot’s Associate for control of jet
fighters [24], the MINDS system for information retrieval [17],
and the RAD platform for multiagent system development
[3]. Most of these implementations were designed to solve
particular domain problems or to demonstrate the feasibility
of some DA1 features and architectures.

However, principles for the systematic design of DA1 sys-
tems are still hard to find. For the most part, the capabilities
and features of the above DA1 systems were represented pro-
cedurally. Although useful, these procedural representations
are difficult to extend to novel domains or to characterize
formally. They also make it difficult to compare different kinds
of agents. By contrast, the declarative representation espoused
herein makes explicit the knowledge and other capabilities
that agents must possess in order to interact successfully. It
also permits a formal model of the agents to be developed.
A formal model is useful because it is possible to prove its
properties and specify its predictions. It yields representations
that are concise, yet clear and uniform across several domains.
The development of a formal model is the first step in the
development of design rules and then of tools for the design
and validation of DA1 systems-a formal model provides the
basis for verifying that a given system meets its specification
and that only the desired properties hold of it.

Declarative representations can be difficult to develop, how-
ever. Our methodology is to develop a declarative model for
a simple problem, and then to extend the model to cover
increasingly more general and more interesting versions of
that problem. The model specifies what the agents know and
what capabilities they have. The problem we consider is the
pursuit problem of Benda, et al. [6], which is a well-known
test problem for distributed systems [9], [12], [13], [2.5]. This
problem is simple to describe and understand, but allows a
large number of interesting variations. Our version is taken
from [25].

A finite square grid of locations is given (see Fig. l), each of
which may be occupied by either an entity called “Red” (the
“enemy”) or any of a given number of “Blue agents” (who
try to capture Red). At each step of the game, each entity can
stay in its location or move one square up, down, left, or right.
The pursuit starts in some arbitrary configuration and ends in
either a win or a loss. The Blue agents win when they occupy
the four locations surrounding Red; they lose if Red gets to
the edge of the grid.

A problem such as this is solved by a problem-solving
system, which consists of a problem, some agents, and an
agent organization. These are specified externally. However,
each agent has an internal representation for the problem

1041+347/93$03.00 0 1993 IEEE

722 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5, OCI-OBER 1993

(* = Red, o = Blue)

Fig. 1. An example configuration of the pursuit problem.

he is solving and the agents he interacts with. An agent’s
representations may differ from those of other agents, and
those given in the system. The system describes the problem,
the agents, and their organization as they really are; an agent’s
representations, however, may be partial or incorrect. The
global problem may be solved successfully even if agents
represent only parts of the original problem. For example, if
different Blue agents try only to occupy different locations
surrounding Red (e.g., one on the left, one on the right, and
so on) they do not represent the original pursuit problem;
however, when their individual problems are solved, the given
problem is solved as well. And if one agent is the controller
and the other Blue agents his slaves, only the controller needs
to represent the given problem; the other agents just follow
orders and need not represent anything at all.

We employed the following methodology to develop declar-
ative representations of distributed agents.

l Start with a procedural description of a solution for the
simple case of a centrally controlled system in which the
central controller is omniscient (but not able to predict
the moves of the Red agent).

l Abstract out the parts of the problem and problem-solving
method that depend only on the peculiarities of the test-
bed problem.

II. SYSTEMS FOR SOLVING THE DAI PURSUIT PROBLEM

A variety of problem-solving systems can be designed
for the pursuit problem: each could incorporate different
assumptions about the agents’ abilities and organizations. We
start with the simplest case in which one agent controls the
others, and proceed to an organization in which the agents are
autonomous. Often, we refer to the Red agent as being the
environment. At no point do we assume that the environment
can be perfectly modeled by the Blue agents, either singly or
jointly.

2.1. Omniscient Central Controller
In this variation, one of the four Blue agents, B1, is made

the controller. He is omniscient about the state of the entire
system and issues commands to the other three Blue agents
(who must accept all his orders).

2.1.1. The Algorithm: The basic solution scheme follows.
1)

2)

l Identify the assumptions made tacitly in the problem-
solving system, especially about the agents’ knowledge
and capabilities.

3)

l Remove the assumptions one at a time to obtain increas-
ingly more realistic versions of the distributed system and
to identify the impact of relaxing each assumption.

l Represent the uncovered parameters of the method ex-
plicitly.

4)

B1 perceives the location of Red and of the Bk ‘s,
15 Ic < 4.
B1 computes “quadrants” using Red’s current location
as the origin. Quadrants [13] are defined as the partitions
of the grid induced by the two diagonal lines passing
through Red’s location. Using the locations of the B”‘s,
B’ assigns different quadrants to different B”‘s.
B1 decides the moves the agents should make in order
to enter the quadrants that were assigned to them and
commands them accordingly.
The slave Blue agents move as commanded, thus chang-
ing their locations on the grid. Red may also move at
the same time.

5)

l Define a formal language with a formal semantics for
writing the declarations, so that the representations are
genuinely explicit representations of the problem, the
agents’ abilities, and the state of the solution.

l Using this notation, write declarative representations of
the pursuit problem and the various possible systems that
may be used to solve it.

6)

l Identify the connections among different parts of the
problem and the nature of the agents solving it. Express
these connections in a frame system so that specifications
of new problems and problem-solving systems may be
made more compact.

Red’s movement changes the exact description of each
quadrant, possibly leading to a reassignment of quadrants
to the agents. This process continues until either Red
escapes, is captured, or each quadrant determined by
Red’s location is occupied by some Blue agent.
If each quadrant is occupied by Blue agents, Red cannot
escape unless the Blue agents fail, or make a mistake.
Now the moves of the Blue agents are determined in the
following manner:

a. If Red does not move, they should all draw closer
to Red.

b. If Red moves in some direction (i.e., into some
quadrant) then:

We develop the following in this paper: . If Red moves next to B”, B” should not
l a scheme for declaratively specifying the acting, perceiv- move at all.

ing, communicating, and reasoning abilities of agents in
a distributed system;
a scheme for specifying the different kinds of proto-
cols (namely, information, command, request, permission,
prohibition, and explanation protocols) used for commu-
nicating at the problem-solving level;
a formal semantics for the above schemes in terms of a
simple language based on temporal logic. A novel feature
is the specification of protocols in terms of constraints
among the agents.

-

SINGH ct al.: DECLARATIVE REPRESENTATIONS 723

. The Blue agent in the quadrant into which capable of perceiving Red within a limited range. The Blue
Red moves should move so as to stay within agents patrol the grid until one of them detects Red. Then the
the quadrant assigned to it. pursuit begins. Since we have assumed that the Blue agents

. The agent in the opposite quadrant should are all as fast as Red, the one who detects Red need never
simply follow Red. lose him. Since we are not interested in the pursuit problem

. If the other agents are still within their as- for its own sake, we simply assume that the viewing ranges
signed quadrants, they should move perpen- of the Blue agents are defined appropriately.
dicular to Red (toward him); otherwise, they 2.3.1. The Algorithm: The revised algorithm is as follows.
should move to stay in their quadrants. 1) Each Bk informs B1 of his location.

2) B1 partitions the grid into regions and assigns each to
The procedure terminates either when Red escapes-i.e., a Blue agent.

gets to the edge of the grid-or when Red is captured-i.e., 3) B1 commands the slaves to make them enter their
is surrounded by the Blue agents. assigned regions.

2.1.2. Knowledge and Capability Requirements: For the Blue 4) B1 repeatedly commands the slaves to “patrol” those
agents to execute this method, they must possess certain regions.
abilities and knowledge. 5) Each B” looks out for Red and on detecting him informs

1) B1 must know where Red is at all times.
2) B1 must know where each Blue agent is at all times.
3) B1 must be able to compute appropriate quadrant as-

signments.
4) B1 must know what commands each Blue agent can

execute.
5) B1 must be able to compute appropriate moves for the

Blue agents.
6) B1 must be able to communicate commands to its slaves.
7) The slave Blue agents must be able to receive commands

from B1. They do not need to send any acknowledg-
ment, since B1 can perceive their location at all times.

8) The Blue agents must be able to move up, down, left,
and right, or simply maintain their position.

Slave agents need not know their own location, or that of
any other agent. They need not be able to transmit anything
to anyone, or to reason.

2.2. Central Controller, Agents Perceive Own Location

In the previous case, the central controller was responsible
not only for making optimal decisions, but also for gathering
all factual knowledge about the locations of the agents and the
state of the environment. Now, the agents perceive their own
location. The rest of the algorithm proceeds as before.

2.2.1. Knowledge and Capability Requirements: The knowl-
edge requirements are unchanged because the central
controller still makes all the decisions. The capability
requirements change since

1) The B”‘s should be able to perceive their own location.
2) The slave B”‘s should be able to communicate their

location to B1 from anywhere on the grid.
This method requires that the controller “combine” location

information from the other agents. Therefore, B1 should be
able to express the locations of the different agents and to
relate the coordinate systems used by each. Later we suggest
that the appropriate translations be made by the protocols that
exist between B1 and the other agents.

2.3. Central Controller, Agents Search for Red

We now relax the assumption that the controller is always
able to detect Red’s location by making all the Blue agents

B1.
The rest of the algorithm is as before, with the restriction that
the agent who detects Red be assigned his current quadrant
(so that, once detected, Red will not be lost).

2.3.2. Knowledge and Capability Requirements:
1) B1 knows the viewing range for each Bk and can

compute an appropriate patrolling region for him.
2) The Blue agents are equally capable of perceiving Red.
3) The slave agents can transmit Red’s location to the

controller.

2.4. Central Control by Abstract Commands
The agents can already perceive their own location as well

as that of Red. Now we make them smart enough to make some
decisions by themselves. The simplest way of incorporating
local decision making, while allowing a single global goal, is
to have the agents execute commands more complex than the
directly physical ones like move-left, move-right, and so on.

2.4.1. The Algorithm:
1) Each B” reports his location to B1.
2) B1 assigns a region to each.
3) B1 commands the agents to go to the assigned regions.
4) As each agent enters his assigned region, B1 commands

him to patrol that region. When some B” detects Red,
he informs B’, as before.

5) Now B’ makes quadrant assignments, as before, and
commands each agent to go to his assigned quadrant.

6) As each B” enters the quadrant, he is commanded to
approach Red; i.e., to get closer to Red if possible and
to maintain distance otherwise.

2.4.2. Knowledge and Capability Requirements:
1) The B”‘s must be capable of executing the abstract

commands go, patrol, and approach as used above, by
computing the optimal physical move; i.e., they must
have a limited ability to plan.

2) B1 need no longer know which physical actions the
slaves can perform.

3) B1 has to compute the appropriate high level commands
for the slaves, and the physical commands, just for
himself.

124 IEEE TRANSACYIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5, OCTOBER 1993

4) n’ must be able to communicate those high level
commands.

The basic structure of the algorithm stays the same. A
modification is that a slave need transmit his location to the
controller only when commanded to do so or on moving to a
new region (so that the controller always knows where he is).

2.5. Control Distributed among Altruistic Peers

Already the slaves can perceive their environment, commu-
nicate, and choose their actions for abstract commands. Now
we make the Blue agents peers of each other, so they all
participate in making global decisions (e.g., deciding which
agent should be assigned what task). Such global decision
making can be difficult in the general case, so we let each
agent broadcast all his information to other agents, and require
that they all use the same globally optimal method in deciding
which tasks each should do.

2.5.1. The Algorithm:
1)
2)

3)

3)
5)

The Blue agents broadcast their locations to each other.
Each agent computes the globally optimal assignment
of agents to the regions to be patrolled and takes on the
right task for himself.
The agent who detects Red broadcasts his location to
the other agents.
The agents broadcast their own locations to each other.
Each agent computes the globally optimal assignment
of agents to quadrants and takes on the right assignment
for himself.

2.5.2. Know,ledge and Capability Requirements:
1) Each agent must now be able to broadcast to other

agents.
2) Each agent must compute the globally optimal assign-

ment whenever it is needed.
This algorithm relies on the agents being “altruistic” in the

sense that each of them takes on an assignment depending
on global optimality (i.e., for the good of all), rather than on
local optimality (i.e., for the good of just himself). Each agent
decides locally, but always comes to a conclusion that coheres
with the conclusions of the others.

2.6. Control Distributed among Self-Interested Agents

While we can often design our systems so that the agents
in them are aware of the global goal and are altruistic, the
requirement of making the same information available to each
agent can prove troublesome. Now agents estimate their costs
locally, but optimize over these estimates globally. An agent
may use local information (e.g., his physical condition and
his other pending tasks) for estimating the costs of achieving
different goals. We need to assume that the agents are “honest”
to the system; i.e., they do not give improper estimates just
to avoid work!

2.6.1. The Algorithm:
1) Each agent estimates his costs of occupying different

regions of the grid.
2) Each agent broadcasts his estimates to other agents.

3) Each agent makes the globally optimal assignment and
takes on the task of getting to the appropriate region.

4) As before, the agents search for Red. The agent who
detects Red broadcasts Red’s location to the other agents.

5) Each agent estimates the cost of his occupying each
quadrant and broadcasts his table of estimated costs to
the other agents.

6) Each agent then chooses his own task assignment on the
basis of global optimization, using the local information
supplied by the other agents.

2.6.2. Knowledge and Capability Requirements:
1) Each agent is able to estimate his cost for achieving

each goal.
2) Each agent is able to determine the globally optimal

assignment given some cost estimates.

III. FORMAL SPECIFICATIONS

Our specification language must be usable for a variety of
domains. Therefore, it must be able to express at least the
following about any domain:

The state of the environment and the important parts of
the states of the agents in the system.
The legal state transitions of the environment.
Constraints on the state of the environment that must be
respected.
The legal moves for the agents, i.e., the actions that
the agents can perform, or be requested, permitted, or
commanded to perform.
The important parts of the reasoning abilities of the
agents, i.e., how their beliefs at one time lead to their
beliefs at a later time.
The perceiving abilities of the agents, i.e., how the
environment and some parts of their internal state are
related.
The communicating abilities of the agents.

One way of specifying problems and actions declaratively
is to use the situation calculus [19]. However, the situation
calculus, while quite simple, is not very usable in practice.
It requires that one specify for each possible action what its
preconditions and effects are, and how it affects different parts
of the world state. These problems, respectively known as
the qualification, ramification, and frame problems [16], [23],
are themselves the objects of considerable research; no good
solution that works for all of them is available at present. The
situation calculus also assumes that there is only one agent
acting in the world, and the world changes only because of
his actions-this is rather restrictive in DAI.

The option that seems best is to define a formal represen-
tational scheme based on a simple version of Propositional
Linear Temporal Logic (PLTL) [lo]. PLTL provides an ab-
stract language for characterizing time and events. Procedural
knowledge can be characterized in PLTL, yielding formal
specifications that can then be used for explicit reasoning.
PLTL provides a simple mechanism for abstractly specifying
the actions performed and the choices taken by different
agents. It is abstract in that the actions taken do not need to
be mentioned at any stage. By contrast, approaches based on

SINGH et al. DECLARATIVE REPRESENTATIONS

the situation calculus require that all knowledge be expressed
declaratively, and that all reasoning be theorem proving us-
ing low-level declarative knowledge. This turns out to be
prohibitively inefficient in practice [2], [22].

3.1. The Formal Language
A PLTL formula may be defined by the following grammar:
1) (cond) ::= (atomic-cond)
2) (cond) ::= 7 (cond)
3) (cond) ::= (cond) V (cond)
4) (cond) ::= (cond) A (cond)
5) (cond) ::= (cond) + (cond)
6) (cond) ::= X (cond)
7) (cond) ::= F (cond)
8) (cond) ::= G (cond)
9) (cond) ::= (cond) U (cond)

The temporal operators (X, F, G, U) are described in Section
3.2.

An action description describes an action that may be done
by an agent, i.e., action descriptions are types of actions. Some
actions have names (e.g., move-left, move-right) of their own
and can be described directly. Other actions are described in
terms of the conditions with which they are related. Using
PLTL as inspiration, actions may be written as

1) (action-desc) ::= (action-name)
2) *Iaction-desc) ::= Achieve((cond))
3) action-desc) ::= Maintain((cond)).

3.2. Intuitions about the Semantics

The above language includes just the operators required for
reasoning about all multiagent systems; for each domain, an
extension of this language would be required that included
the operators required to represent the specific aspects of that
domain: e.g., we assume that the language is augmented to
allow a certain amount of arithmetic to compute distances
over the grid.

The semantics for the above language is given relative to
a formal model composed of temporal structures. A linear
temporal structure is a sequence of world states, each following
the previous one in time. We use linear temporal structures,
with each structure taken to be a “run” of the problem-solving
system, i.e., a possible way in which the system may evolve
over time. An atomic condition is true at some time in a
structure iff it has been stipulated to be true there. Boolean

I combinations of conditions are determined in the obvious
manner. The temporal condition “X cond” is true at some
time in a structure iff the condition “cond” is true at the next
time in that structure. That is, X stands for “next time” and
makes sense only in discrete structures. “F cond” is true at
some time in a structure iff “cond” is true at some later time
in that structure. That is, F is to be read as “sometimes in the
future.” Similarly, G stands for “always in the future” and U
stands for “until.” cl Ucz is true at a time ti, iff cp holds at
some time t2 in the future of tl, and cl holds continuously
from tl to t2.

The semantics for conditions are quite standard, as are the
applications of PLTL to the specifications of procedures. The

72s

novel part of the semantics concerns the different kinds of
protocols that we have introduced. Roughly, these correspond
to one agent making utterances to another agent: the dif-
ferent protocol types discussed in Section VI correspond to
different “illocutionary forces,” as described by J. L. Austin
[4]. Philosophers, such as Hamblin [15], recognize at least
two different levels of semantics: “extensional” satisfaction,
and “wholehearted” satisfaction. Extensional satisfaction is
more basic and, in giving a semantics based on PLTL, we
analyze protocols at just that level. A theory of wholehearted
satisfaction is the ultimate goal, but extensional satisfaction is
a reasonable approximation for our DAl needs.

Action descriptions are either action names or constructed
from conditions by Achieve and Maintain. The semantics of an
action name is the set of structures and times where its defining
condition is satisfied. The semantics of “Achieve(cond)” is
the set of structures and times where “F cond” holds; i.e.,
from where “cond” can be achieved in the future. Similarly
the semantics for “Maintain(cond)” is the set of structures
and times where “G cond” holds; i.e., where “cond” always
holds in the future. This is what is meant by “extensional
satisfaction”: we do not care whether the condition “cond”
is achieved intentionally by the agent, or due to the actions
of other agents, or through events in the environment, or
even because of mistakes on the part of the agent. (By
contrast, wholehearted satisfaction involves the agent’s doing
the action by means of other intentional actions, in a manner
he intends-this is a far more complex notion and not easily
usable in simple kinds of reactive systems.) We emphasize,
however, that Achieve and Maintain are not merely nicer
syntax for F and G, respectively. While F and G yield
conditions, Achieve and Maintain yield action descriptions.
These descriptions may be used in the abstract plans of agents,
and issued as commands or requests to other agents. Their final
pragmatic impact depends on how they are finally interpreted,
e.g., whether the agent begins to work for them immediately
and whether he succeeds with them.

The semantic intuition formalized here is that several linear
temporal structures are a priori possible, but only one of them
will be actualized. A statement, which expresses a condition
or describes an action, is evaluated relative to a structure and a
time in that structure. A statement thus excludes the structures
and times where it is not satisfied. For example, a constraint
is a statement of the form “always p.” When evaluated at the
“start of time,” it excludes all structures where p does not
hold throughout.

A linear temporal structure may be discrete, dense, con-
tinuous, or even arbitrary [27]; only the discrete case is
computationally tractable. We assume that time is discrete and
point-based, but allow concurrent events. Only variables that
correspond to parts of the environment are used in its specifi-
cation. The agents’ internal variables are considered only for
the specification of their internal states and capabilities. The
flow of time corresponds to the happening of an external or
internal event, i.e., time flows as the environment changes, or
as agents act, communicate, or reason. Thus the same “clock’
applies to reasoning as does to acting. The granularity of the
model corresponds to the shortest event (action, or step of

r -

726 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5, OCTOBER 1993

reasoningtiif none of our specifications uses the “next-time”
operator, this is not required. Each action name has a defining
temporal condition, called the action-condition of the action.

Using the semantics for action descriptions, we can obtain
a semantics of the protocols. A transmitted action description
must be in the language of the protocol. In a command
protocol, a receiver must accept the action description (i.e.,
agree to perform it) when it is received, which depends on
the time delay of the communication channels being used for
the protocol. The structure and time must then be such that
the action can be performed successfully. Receivers in request
protocols can choose whether or not to perform a requested
action, depending on their internal states when they receive
the request. We assume that the request itself includes details
of how much delay can be tolerated by the requesting agent,
so that the receiver does not have to perform the requested
action immediately and can drop it after it has lapsed.

The effect of a message, sent according to some protocol,
depends on not only the static relationship between the agents
involved, but also the state of the receiver. The effects of the
messages may be predicted in cases where other constraints on
the states of the agents are known; e.g., if in a system a request
for an action always occurs after the receiver has agreed to be
helpful and has the requisite know-how, it would certainly be
carried out. It is known that there are no monotonic theories
that may be used to predict the effects of simple actions, let
alone those that (like message transmissions and receptions)
involve more than one agent over a period of time. So instead
of striving for such a theory, we propose that protocols, and
the actions they result in, be represented in terms of constraints
on structures. While, for simplicity, constraints are treated as
simple conditionals, they could be refined to be defeasible
conditionals, or statements of probability or certainty. This
idea is elaborated later in this section. Treating constraints in
this manner as an objective part of the world has proven quite
effective in linguistics and philosophy [5], [26].

3.3. Formal Semantics

We define a model, M, as a set of structures and an
assignment of atomic formulae to time indexes in those
structures; i.e., M = (S, P). Each structure, S E S, is a linear
sequence of time indexes, (to, . . .). The function P assigns
to each time index the set of atomic formulae that are true
in it (the indexes in different structures are distinct). When
the model is understood from the context, it is not mentioned
explicitly. We thus write “the formula p is satisfied in structure
S at index t” as S, t b p. A formula, p, for which such
a structure and index can be found is called satisfiable. A
formula that is satisfied at all structures and time indexes is
called valid. Given the motivation of the previous subsection,
the following definitions result:

l S, t b p, where p is an atomic formula, iff p E P(t)
l S,t + -y iff S,t k p
l S, t + p V q iff S, t k p or S, t /= q
l S,t~pAqiffS,t~pandS,t~q
l S,t~p+qiffS,t~porS,t~q

l S, t + Xp iff S, t’ + p, where t’ is the successor of t

in structure S
l S, t b Fp iff for some t’: S, t’ + p, where t’ > t

l S, t + Gp iff for all t’: S, t’ + p, where t’ > t

l S, t b pUq iff for some t”: S, t” /= q, where t’ > t , and
for all t’ : t < t’ < t”: s, t’ + p.

Using the intuitions expressed earlier about what we mean
by actions in the model, we can provide the following satis-
faction conditions for actions:

l S, t t= A, where A is an action name, iff S, t b
action-condition(A)

l S, t b Achieve(p) iff S, t b Fp
l S, t b Maintain(p) iff S, t k Gp.
A linear temporal structure satisfies the sending of a mes-

sage on a protocol at a particular time iff that message
is actually sent on that protocol then. Whether and when
that message actually arrives depends on the conditions un-
der which it was sent and the protocol used. The relevant
conditions and properties of the protocol are captured by
a constraint on the sending and potential reception of that
message. The message would be received if this constraint is
satisfied. The reception of a message, in turn, imposes another
constraint: one which relates the reception of that message to
the (eventual) invocation of some processing routine on it;
e.g., it would relate the reception of a request to the receiving
agent’s adding it to his agenda. Another kind of constraint is
needed to involve the capabilities of an agent. Thus we might
have a constraint that if a certain action is on the agent’s
agenda, then it is eventually acted upon.

Constraints, applied in the manner described above, have
several important consequences: 1) the capabilities of agents,
the behaviors of protocols, the modes of reasoning and acting
of agents, and properties of the environment can all be
uniformly described; 2) it is possible to consider both the
internal (representational) view, and the external (objective)
view simultaneously-we can go from an agent’s decision
to send a request, to its actual transmission through the
physical world, to its reception and eventual incorporation in
the receiver’s agenda, to action on it by the receiver (in the
real world), and so on, with ease; 3) while our original aim
was to take care of just extensional satisfaction, we actually
do better, because constraints allow us to model behavior in
classes of situations, rather than the individual situations that
are realized in the real world. As we show below, many of the
constraints that would be useful from a DAI point of view can
be expressed simply as formulae in the logic as defined so far.
Nothing more is required for them in the formalism. However,
it is another problem to express these constraints-we expect
that the condition-result form of the constraints will greatly
simplify this task.

IV. THE PROBLEM-SOLVING SYSTEM

A problem-solving system consists of a problem, agents, and
an agent organization. A simulation of such a system includes
the environment of the agents as well (here it contains the
process that decides Red’s moves). The Blue agents have,
in general, inaccurate models of the environment, based on

SINGH er al.: DECLARATIVE REPRESENTATIONS 121

those parts of it that we explicitly declare they can perceive.
However, the simulation maintains the global state of the
problem, consisting of the real state of the environment and
of each agent.

the agent has no useful interaction are best either ignored or
treated as a part of the environment.

4.1. The Parameters of the Problem-Solving System
Several parameters can be used to distinguish among multi-

agent problem-solving systems. We consider reactive problem-
solving systems only. Reactive problems, a generalization of
the pursuit problem that we have been discussing, have the
following features:

An important point is that, while the world is complex,
agents are limited. As a result, they might act inappropriately:
they act on the basis of their possibly inaccurate represen-
tations. We consider the agents’ internal representations to
be important, but make no claim about the form they must
take. The accuracy and detail of these representations depends
on the agents’ capabilities. Potentially, we could have the
following aspects (relative to a particular problem instance):

l The environment changes rapidly and unpredictably.
l The agents are limited reasoners.
l The agents are able to perceive only a small part of the

environment.
l The agents may act concurrently with each other and with

events in the environment.
A reactive problem-solving system can be specified by the

following information.
l The initial state of the problem.
l The way in which the environment may change.
l The legal moves for the agents.
l The organization of the agents.
l The abilities of the agents (these determine, in part, the

organizations they can participate in, and in what roles).
Important abilities are the ones of reasoning, perceiving,
communicating, and acting.

The state of the environment according to the agent.
The problem that the agent is solving.
The abstract plan adopted for execution.
An agenda of tasks to do.
Current tasks; i.e., tasks selected from the agenda for
working on now, or those derived directly from some
unprecedented change in the environment. The latter
option is important in reactive systems-events can occur
that demand immediate action. Once an agent has the
situation under control locally, he can always resume
working on the long-term or global task. Such reactive
behavior could be accounted for by the presence on the
agenda, at all times, of a basic task like “stay alive,” which
could, e.g., yield a subtask “run” if a fire starts nearby.
Of course, the agent may use an interrupt mechanism to
invoke it.
The resources available to the agent. For each resource,
the agent needs to represent the following information:

l The resources available to the agents, and how the agents
try to optimize their usage of these resources.

The specifications of the above parameters can be simplified
if we specify separately the properties of the protocols that the
agents would use in their communications and the different
kinds of agents they would have to deal with. That is, we
need specifications for

l The protocols that are used by the agents in different
organizations; e.g., in a master-slave organization, only
command protocols are needed.

l The abilities and dispositions (e.g., helpfulness) of the
different kinds of agents in an organization.

4.2. Description of the Agents’ Internal States
Just as in a single-agent system, an agent in a multiagent

system has to manage all his tasks using the resources available
to him. The primary differences are 1) a multiagent system
may achieve much more than any of its agents could individ-
ually, and 2) the resources of an agent in a multiagent system
might themselves be “intelligent” and the tasks an agent has
to do could be simplified by other agents. Agents who provide
services to other agents (e.g., by accepting commands or
requests, or by giving permissions) are resources of the other
agents. Such resources can be assigned high level tasks and
do not need to be actively controlled by the assigning agent.
The resource interfaces capture the expertise, knowledge, and
availability of the other agents, and do so uniformly for both
intelligent agents and “dumb” resources. Agents with whom

a. Static information, e.g., about the protocol for
accessing it.

b. A cost metric for the resource.
C. A model for the usage of the resource, e.g., the

other resources that have to be assigned to the
resource in order to get a particular performance
out of it. In the pursuit problem example, the con-
troller can use a Blue agent to occupy a quadrant,
but an agent can occupy only one quadrant at a
time. Also, it costs fuel and time to get an agent
to the quadrant assigned to him.

d. The current state of the resource: 1) how much of
it is available, and 2) what operations are needed
to be able to use it, e.g., whether the agent is
facing in the wrong direction, and whether the
agent is in sensing or moving mode.

.

.

4.3.

An assignment of the resources to the current tasks.
Factors such as cost metrics, which tacitly represent the
agent’s self interest, need to be considered in making
these assignments.
The actions to be done now. These depend on the re-
sources assigned to different tasks and the protocols for
using them.

The Simulation Process
The simulation proceeds as follows. At any given moment,

the real world is in a certain state. The Blue agents are able to
access parts of the global state depending on their perceptual

728 IEEE TRANSACIIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5, OCTOBER 1993

abilities, such as range of perception and accuracy. Depending
on the state of the world as he perceives it, each Blue agent
computes the optimal resource assignments for himself and
decides what actions he must take. The resources available to
an agent include the other agents whom he might command, or
somehow get to act for himself. Agents may make predictions
about the effects of their actions, but only the actions that they
perform affect the state of the world. Any action may fail, or
have unexpected consequences, or have consequences that are
not perceptible until much later. However, the world “knows”
its actual state immediately; the agents only know what they
can perceive or infer. Thus the agents perceive, decide, and
act, the world changes, and the simulation continues.

4.4. Specifications of the Pursuit Problem

This section contains an example specification for our main
example, the pursuit problem. We define a notation in order to
simplify the specification. The two coordinates of the problem
grid are X and 1: and the variables i and j range over these
coordinates, respectively. We refer to the Red agent as R and
to the Blue agents as 0’;‘s. B is used for any B” and A is
used for both R and the Bk’s. B’ denotes the agent to whom
the specification applies. The coordinates of A are written as
A, and A,.

1)

4

3)

4)

5)

6)

The initial state of the problem, i.e., the environment and
the agent locations: R, = 9. R, = 9, Bi = 1, and so on.
Legal transitions for the environment: [(R,, RY) =
(i. j)] - [S((R,. R,) = (i’.j’))], where (i’,j’) E
{(i. j). ii + 1. j).(i - 1. j). (i.j + l),(i,j - 1)).
Constraints on the system: (1 5 A,, A, 5 30) A
(CR,. R,) # (B,. Bu)).
Legal moves for the agents at the physical level:
[(Bl. B&) = (i. j)] - [X((BL. Bh) = (i’,j’))], where
(i’.j’) E {(i.j).(i+l.j).(a-l:j),(i,j+l),(i,j-1)).
Win condition: (3k : (0,“. B,“) = (R, - l,R,)) A
(3 : (B,k. B,“) = (R, + 1. Ry)) A (3k : (B;, B;) =
(R,. R, - 1)) A (5% : (B,“. B,“) = (R,, R, + 1)).
This complex condition is referred to as “Win” in what
follows.
Loss condition: (R, = 1) v (R, = 30) v (R, =
1) v (R, = 30).

V. AGENT AEHLITIES

As stated in Section 4.1, agents have at least four classes
of abilities: acting, perceiving, communicating, and reasoning.
These abilities must be specified declaratively 1) to define a
particular problem-solving system, and 2) to define an agent’s
representations of other agents. Each agent tries to enter into
protocols with other agents and predicts and explains their
actions, on the basis of the representations he has of them.
These representations also determine whether he should aid
or hinder others. A controlling agent must have the expertise
to guide other agents. Thus he must represent the abilities,
availability, and work-load of the agents he controls, as
representations of his resources.

5.1. Acting Abilities

The acting abilities of an agent are the actions he can
perform. These may be simple actions that can be done in a
single step, or more complex ones that require that a coudition
be achieved or maintained. The latter kind of actions may call
for an arbitrary number of steps; in particular, a maintenance
action may never terminate. Clearly, the actions an agent
can do depend on his perceiving and reasoning abilities and
his physical attributes. As described below, actions may be
specified both by name (e.g., move-left, move-right), and by ap-
plying the operators, Achieve and Maintain, to specifications of
conditions (e.g., Achieve(good-state), Achieve(good-state, V
good-stutez), Muintuin(Tbad-state)). All agents can do the
following actions:

1) yyeilefi: [(Bk,Bh) = (i,j)] --+ [X((BL,Bh) = (i -

2) move-right: [(BL.BL) = (i,j)] --f [X((Bk, Bh) =
(i + l,d)l

3) move-down: [(BL,Bh) = (i,j)] + [X((BL.Bh) =
(i>j - 1111

4) move-up: [(Bk, Bh) = (i,j)] + [X((BJ., Bb) = (i,j +
I))1

5) no-op: [(B;, B;) = (i,j)] + [X((B;, B;) = (i,j))].
For agents that execute abstract commands, we can spec-
ify the acting abilities as a set that includes not only the
moves above but also the constructs Achieve(right-quadrant),
Maintain(distance), and so on, where each of the conditions
on which the constructors are applied might itself be further
written as a complex temporal condition. Other actions, which
may take more than one step, could have the intermediate steps
undefined, as in the case of actions constructed using Achieve
and Maintain, or partially defined, as in the following three
possible specifications for move-lefr-up:

1) move-lefr-up by “first move left, then move up”:
(B;. B;) = (i.j) -+ (X((B;.B;) = (i - 1,j)) A
XX((B:, B;) = (i - l.j + 1))).

2) move-left-up by a partially determined path: (Bk, Bh) =
(i. j) + (X(((B;. BI/) = (i - 1,j)) v ((B:, Bj) =
(1:. j + 1))) A XX((Bk. Bb) = (i - 1,j + 1))). Now it
is possible to move left and then up, or up and then left.

3) move-left-up by an undetermined path: If the intermedi-
ate states are not important, they need not be specified
at all. Just to add further indeterminacy, we will make
this specification allow four units of time: (Bk, Bb) =
(i,j) + XXXX((B;, B;) = (i - l,j + 1)). Now B’
may go from (i, j) to (i - 1, j + 1) using any path that
takes four steps.

A possible strategy for the Blue agents, since they must
surround the Red agent in order to win, is for each Blue
agent to occupy one of the four quadrants around Red. This
strategy is called “Lieb” [13]. It is thus useful to define a
quadrant condition, which is true when a Blue agent occupies
the appropriate quadrant around Red:

1) left quadrant condition, qt : (BL < R,) A (1 Bb - R,] <
Rx - B;)

2) right quadrant condition, qr : (BL > R,) A (1 Bh - R,] <
Bh - Rz)

SINGH er al DECLARATIVE REPRESENTATIONS

3) down quadrant condition, qd : (Bh < Ry)~(1 B; - R, I <
R, - B;)

4) up quadrant condition, qU : (Bh > RY) A (IB: - R, I <
B: - 4,)

There may be task descriptions corresponding to these quad-
rant descriptions, e.g., we may define a new task description,
tql, corresponding to Achieve(ql). When a task is assigned
to an agent, the task specification must take into account the
identity of the agent being assigned the task. For example, if
B3 is to be assigned the task of occupying the left quadrant,
the condition in the command must involve B3; we write this
as tql. B3). In general, this allows tasks for which the assigned
agent must find the appropriate physical actions.

5.2. Perceiving Abilities

The perceiving abilities of an agent depend on both his
reasoning abilities and his perceptual hardware. Indeed, per-
ception and reasoning may be distinguished only by looking
at an agent’s internal architecture. For example, whether an
agent “sees” a comer, or just sees edges and “infers” a corner,
depends on whether his perception module can, by itself, detect
a comer. Perceiving abilities are specified formally as follows:
an agent has a particular perceiving ability if, given a state
of the world, he can come to a particular internal state. An
example specification is “if Red is i steps away from a Blue
agent and i < 5, then the Blue agent believes that Red is i steps
from him.” The ac’curucy of an agent’s perceptions can also be
captured: e.g., “if Red is more than j steps from a Blue agent
and 1 > 10, then the Blue agent believes that Red is exactly
10 steps away.” These specifications state that the given Blue
agent’s sensor for Red is accurate for a distance of up to
4 steps. and cannot distinguish among distances greater than
10 steps. Nothing is known about its accuracy for distances
beween 5 and 10 steps.

An agent might not perceive and represent all of the features
of the problem-solving system as they are externally specified;
on the other hand, an agent might represent some features
that are not in the externally given specifications. We refer
to different components of the problem-solving system, as
perceived by an agent, by using the agent’s name followed
by a dot followed by the name of the relevant component.

We specify perceiving abilities by expressions of the form
%‘I conditioni + condition2),” where the two conditions
are formulas in the temporal specification language, with the
following use and meaning intended. “Conditioni” expresses
the conditions under which the given perceiving ability applies,
e.g.. whether the object being examined is well-lit, whether
the agent is at a suitable location and facing in the right
direction, and whether the agent is attentive. “Condition2”
expresses a restriction on the agent’s internal representations,
as a result of his perception using the given perceiving
ability, e.g., the agent knows the actual location of Red, or
believes it to be within a range of 5 of the true value of
the X-coordinate. Thus “conditiona” must necessarily involve
the agent’s internal representations; even “conditioni” may
involve these representations, e.g., to express that the agent is
in a oarticular state of attentiveness. However. soecifications

729

of perceiving abilities must not involve the internal states of
other agents. If there are any connections among the internal
states of different agents, they must emerge in their interactions
through the shared world or through explicit communication.
Some interesting examples of perceiving abilities follow. We
notate “agent B’s representation of a” as B.a.

.

.

.

5.3.

G(B’.Bk = Bk): “agent B’ always knows his x coor-
dinate.” Note that in this example, the condition corre-
sponding to “conditionl” is identically true.
G((0 < (R, - BL) 5 5) + (B’.R, = R,)): “agent B’
knows the z coordinate of Red, whenever the latter is
within 5 steps to his right.”
G(((Rz - Bk) > 15) + (B’.R, = BL + 15)): “agent
B’ knows the x coordinate of Red, whenever the latter is
exactly 15 steps to his right, but cannot distinguish among
locations of Red further to his right.”

Reasoning Abilities

The reasoning abilities of an agent are the hardest to
specify formally. We specify them as relationships between
an agent’s internal representations at one point in time and his
representations at a later time. This time difference captures
the speed of the agents’ reasoning system, in terms of a real-
time clock. The time referred to by the agents’ representations
can also vary: present for beliefs about the current state of the
world, future for predictions, and past for explanations. The
time delay due to reasoning can be ignored, if one assumes
that the reasoning is especially simple relative to the agents’
capabilities. For example, if an agent believes that a particular
coded message was transmitted and is able to decipher the
code, he might come to believe that a command, say move-left,
was transmitted. Other aspects of reasoning abilities are more
domain dependent and involve whether an agent can compute
the optimal usage of his resources or not, predict another
agent’s actions or not, and so on.

We specify reasoning abilities by expressions of the
form “G(conditioni -+ conditionz).” Both “conditionl”
and “conditiona” must involve just the agent’s internal
representation, the first expressing his state before the
corresponding reasoning ability is invoked, and the second
expressing his state after the invocation. Some important
examples of reasoning abilities that we use later in this paper
follow.

1) Reasoning-ability-quadrant-assignment: the ability to
compute optimal quadrant assignments. We do not
discuss the predicate “optimal-l” and similar domain
dependent functions in this paper. The algorithm
discussed here assumes global optimality.

G(optimal-l((t,,, Bkl), (tq,,Bk2), (&, Bk3), (t,,,Bk4))
+ B’.resource-assignment =

2) Reasoning -ability -optimal -resource -moves -for -all (see
top of page): the ability to compute optimal moves, given
a resource-assignment, and to decide to act according to
those moves. The action Send is described in Section
VI.

730 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5, OCTOBER 1993

G(optimal-2(B’.resource-assignment, (movel, B’), (moves, B’s), (movea, Bk3), (moved, Bk4))

+ B’.actions = mover,

(
Send(B’, BkZ , access-protocol, movea),
Send(B’, Bk3, access-protocol, moves),

Send(B’, Bk4, access-protocol, moveb)))

3)

4)

5)

Reasoning-ability-send-own-location: the ability to send
one’s own location to the controller, B”.

G((Bk, B;) = (Cd)
--+ B’.actions = Send(B’, B”, blue-location, (i, j)) 8)

Reasoning-ability-send-red-location: the ability to send
Red’s location to the controller, B”.

GWLR,) = (i,j))
+ B’.actions = Send(B’, B”, red-locution, (i, j))

Reasoning-ability-mount-search: the ability to compute
optimal moves in order to have all agents search for
Red, if his location is not known. This can be specified in
greater detail following the specifications for Reasoning-
ability-start-patrolling, Reasoning-ability-scan-outwards,
and Reasoning-ability-scan-inwards.

G(lB’.found A optimal-3 ((mover, B’), (movea, Bkz),

(movea, Bk3), (moveq, B”“))

+ B’.actions = (mover,
Send(B’, Bk2, basic-commands, moves),
Send(B’, B”” , basic-commands, movea),
Send(B’, B”” , basic-commands, moved)))

6) Reasoning-ability-close-in-on-red: the ability to compute
optimal moves to have all agents close in on Red. This
can be specified in greater detail using the specification
for Reasoning-ability-approach-red as a guide.

G(optima14 ((mover, B’), (movea, Bk2),

(movea, Bk3), (moved, B”“))

--+ B’.actions =(mover,

Send(B’, Bk2, basic-commands, moves),
Send(B’, Bk3, basic-commands, movea),
‘Send(B’, Bk4, basic-commands, move4)))

7) Reasoning-ability-start-patrolling: the ability to patrol
a quadrant about vertex (i, j). Here only the case of
quadrant qr is given. Note that here and in the sequel,
current-tasks just denotes a set of tasks.

G(B’.current-tasks = (patrol-region(i,j, qr)} A
TB’.found -+ [[(Bk, Bk) = (i+ l,j)] -+ [[B’.actions =
move-down]A[B’.current-tasks = (patrol-region(i, j, qr),

9)

B’.out-scan(i,j,q~)}]]] A[[(BL,Bb) # (i + l,j)] -+
[[B’.actions = move-down] A [B/current-tasks =
(patrol-region(i, j, qr), B’.in-scan(i, j, qr)}]]])
Reasoning-ability-scan-outwards: the ability to scan a
quadrant outwards from vertex (i, j). Only the case of
quadrant qr is given here. Note that B’.found E (3i, j :
(B’.R,,B’.R,) = (i,j)), and is made true due to the
agent’s perceiving abilities. Fig. 2 shows the patrolling
path taken by B’ when using this reasoning ability.

G(B’.out-scun(i, j, qr) E B’.current-tasksAlB’.found
Aodd(BL -i) + [[(J’ - Bk) < (Bk -i) --+ B’.actions =
move-down] A [(j - Bh) = (BL - i) A (BL < 30) -+
B’.actions = move-right]A [(j - Bb) = (BL -i) A(BL =
30) --+ B’.current-tasks = (patrol-region(i, j, qr),
B’.in-scan(i,j, qT)]}])A G(B’.out-scun(i, j, qr) E B’.
current-tasks A lB’.found A Todd(Bj, - i) + [[(BL -
i) > (Bh - j) + B’.actions = move-up]A
[(B; - j - 1) = (B; - i) A (B; < 30) -+
B’.actions = move-right] A [(Bh - j - 1) =
(BL - i) A (Bk = 30) -+ B’.current-tasks =
(patrol-region(i, j, qr), B’.in-scan(i, j, qr)]}])
Reasoning-ability-scan-inwards: the ability to scan a
quadrant inwards from vertex (i, j). Only the case of
quadrant qr is given here.

G(B’.in-scan(i, j, qr) E B’.current-tasksA TB’.found
A Todd(B; - i) + [[(j - Bh) < (Bk - i -

1) + B’.actions = move-down]A [(j - Bb) =
(Bk - i - 1) + B’.actions = move-lefr]])A
G(B’.in-scun(i, j, qr) E B’.current-tasks A lB’.found A
odd(B; - i) + [[(B; - i) > (B; - j - 2) A

((Bh,Bh) # (i + L.d) + B’.actions = move-up]/\
[(BL - i) > (Bh - j - 2) A ((Bh,Bb) = (i +
1, j)) --t B’.actions = move-down A B’.current-tasks =
(patrol-region(i,j, qr), B’ .out-scan(i,j, qT)}]A [(Bk -
j) = (Bk - i - 2) ---t B’.actions = move-left]])

10) Reasoning-ability-approach-red: the ability to approach
Red; i.e., to follow Red if he moves, and to get closer,
if he does not.

G(B’.current-tasks = {approach-red} -+ [(R,, R,)
= (i,j)] A [X((R,, RY) = (i,j + l))] + [B’.actions =
move-q@ [(R,,R,) = (i,.i)]A[X((&,R,) = (i,j-
l>)l + [B’.actions = move-down]A [(R,, RY) =
(i,j)] A [X((R,, RY) = (i + l,j))] -+ [B’.actions =
move-right]A [(R2, RY) = (i,j)] A [X((R,,&) =
(i - l,j))] + [B’.actions = move-left]1 [(R,, RY) =
(i,dl A W((LR,) = (i,d>l --+ I(% >

r- -

SINGH er al. DECLARATIVE REPRESENTATIONS

xi

j _____-

1
1

Fig. 2. Path Taken when Scanning Outwards.

Rz) --+ [B’.actions = move-left]1 (BL < RI) +
[B’.actions = move-right]A ((Bk = R,) A (Bj >
44)) + [B’.actions = move-down]A ((BL =
Rz) A (B; < 4)) + [B’.actions = move-up]])
The correctness of this can be seen from the
fact that approach-red is really an abbreviation for
Muintuin((lB~ - R,I + IB; - R,j = m) + X(IB; -
R,I + IB; -R,I I m) A(IB: - R,I + IB; -R,I =
m)A(m >l)+ F(IB; - R,l+lB; -R,I <m))

11) Reasoning-ability-optimal-resource-abstract-moves-for-
self: the ability to compute optimal moves, given a
resource-assignment, and to decide to do only ones own
action according to those moves.

G(optimal-2 (B’.resource-assignment,

(taskl, B’), (taskz, Bk2),

(tasks, Bk3), (task*, Bk4))

4 B’.current-tasks = (taskl))

12) Reasoning-ability-send-cost-estimate:

G((cost = c +

B’.actions = Send(B’, B”, cost-estimate-protocol, c)))

the ability to make and send the optimal cost estimate
to the controller, B”.

13) Reasoning-ability-abstract-resource-commands: the ab-
ility to give abstract commands to subordinates.

G(optimal-5 (B’.resource-assignment,

CabsI, B’), (ah Bk2),

(abss, Bk3), (absd, B”“))

+ B’.actions

= (absl,

Send(B’, B”’ , abstract-commands, absz),

Send(B’, Bk3 , abstract-commands, absa),

Send(B’, Bk4, abstract-commands, absa)))

14) Reasoning-ability-achieve-anything: the ability to do an
Achieve task optimally. In general, this is too powerful

731

a requirement for real-life agents.

G(B’.current-tasks ={Achieve(t)}A

optimal-4(Achieve(t), move)

+ B’.actions = move).

5.4. Communicating Abilities
The communicating abilities of an agent tell us what kinds

of messages he can send, to which kinds of agents, over
what distances, and in what circumstances. These abilities
fix the physical restrictions under which one agent is able
to communicate with another. We specify communicating
abilities in two ways: 1) as conditions on when certain
agents can send or receive messages on different protocols,
and 2) as conditions on the operations of those protocols
themselves. The latter are considered in Section VI along with
other conditions on protocols. Communicating abilities are
specified in the first way by “G(condition1 --+ conditionz).”
“Conditionl” may involve conditions about the real world
and the agent’s internal state, as well as the state of the
agent with whom he is to communicate. “Conditionz” must
be of the form Can-send or Can-receive applied to arguments
specifying the protocol and both of the agents involved. An
example specification expressing “if B’ is within 5 steps of
B”, then B’ and B” can communicate using the protocol for
basic-commands” is

G((IB; -B;I < 5)+
(Can-send(B’, B”, basic-commands)))

G((IB; -B;I < 5)--+
(Can-receive(B”, B’, basic-commands))).

This specification language can also express the reliability
of a communication channel. However, the security of a
communication channel cannot be expressed by this language,
since that depends on the knowledge and perceiving and
reasoning abilities of other agents (a communication channel is
secure if no other agent than the intended receiver can monitor
it).

VI. COMMUNICATION PROTOCOLS

Protocols determine how agents communicate. To a large
extent, they determine the organization that exists among the
agents, and the nature and extent of the interactions allowed
among them. Since agents can command, permit, inform, give
explanations to, and request other agents, they can participate
in the protocols that correspond to these activities. It is
sometimes convenient to talk of a “protocol” with the sender
and receiver abstracted out, i.e., to have the same protocol
exist between different pairs of agents.

We consider synchronous and perfectly reliable protocols
only, and focus on their logical aspects, which are the most
important for our purposes here-their physical aspects are
relatively unimportant since we are not considering perfor-
mance issues. Some protocols, such as elections, can involve
many agents, but we assume in the following that all protocols
involve only two agents. A message to be broadcast will thus

732 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5, OCTOBER 1993

have to be transmitted to each agent in turn, and knowledge
about synchronization will not be available, even tacitly, to
the agents. The following aspects of protocols are relevant.

l The sender: the agent who sends communications under
this protocol.

l The receiver: the agent who receives communications sent
under the protocol.

l The languages used in the protocol by the senders and
the responders. respectively. These languages determine
what may be communicated using the protocol.

l The functions that are used first to encode the message
of the sender, and second (on its arrival at the receiver’s
site) to decode the message into a form acceptable to the
receiver.

l The actions to be taken by the receiver of the protocol
when a message is actually received, so as to incorporate
the contents of the message into its local data structures
for further processing.

Protocols are specified simply in terms of the language of
communication that they allow and the pairs of agents who
use them to communicate. However, the more interesting part
of their specification concerns their other properties. These
include the specification of when they are effective, how much
time-delay they introduce in the transmission of particular
messages, and what kinds of errors they may introduce in
the transmitted message. These properties and the information
that is communicated by the use of a protocol between two
agents are specified by the use of the predicates Sends and
Recei\,es corresponding to the occurrence of the actions Send
and Recei\,e. respectively. Sends(B’. B”. P. n/r) evaluated at t
means that message -11 is sent by agent B’ at time t according
to protocol P: if agent B” can understand protocol P, then B”
receives JI’ at t’. .U’ is the message received after the noise
of the channel is factored in and (t’ - t) is the communication
delay. Note that the above specification applies only to B’.
An example specification is

G((I BI - I3: 1 < 5) - (Sends(I?‘. B”. basic-commands, M)
- SS(Receives(I3”. D’, basic-commands. M’)))).

The above are more or less the physical properties of
protocols. We would like to clarify that we have not addressed
the problem of what agents or systems ought to do to transmit
messages successfully or to recover from failure: the first is
a problem in networks and distributed computing; the second
concerns domain-dependent heuristics. Each is an important
research problem that we are abstracting out. We indicated
above that different types of protocols correspond to different
types of illocutionary force. We now give the illocutionary
force semantics of protocols.

6. I. Information Protocols

Information protocols provide the languages for commu-
nicating factual knowledge. The messages received on these
protocols are interpreted as information about a particular
part of the world. However, they are best treated uniformly
as information about the sender’s internal state, and then
processed (depending on how the sender and receiver are

related) to cause changes in the receiver’s internal state about
the world. There is no monotonic theory possible for how the
internal states of agents should be updated after the receipt of
information from other agents [21], so we rely on a processing
function associated with the protocol to provide the operational
semantics of the computation required. If P is an information
protocol, then

G(Receive(B’, B”, P, message)
+ X([P.function-to-apply]

(message, B’local-state, P.slot-affected)))

P.slot-affected is the slot whose value is affected
by the information received on protocol P. Note that
P.function-to-apply is treated like a predicate, and is applied
to its arguments at the next time index. In practice,
P.function-to-apply would be a function used to compute the
value of B’.P.slot-affected at the next time index. For exam-
ple, let P be a protocol instance of blue-location using which
an agent B2 sends its location, (i, j), to controller B1. Then
P.function-to-apply((i, j), B’.local-state, B1 .B2-location) is
true at the next time index.

6.2. Command Protocols
The messages transmitted on command protocols are action

descriptions, interpreted as commands from the sender to the
receiver. These protocols specify the receiving agent’s acting
abilities as they can be directly used by the sender. The
receiver might be able to perform other actions, but may
not accept those as commands under the given protocol. This
could occur if the sender does not know of those abilities at
all, or can get them done, not as a matter of right, but only
by making proper requests. Even legitimate commands are
accepted only conditionally, i.e., the receiver would accept
and work on only those commands that do not violate any
of several kinds of constraints. As an example of a physical
constraint, a Blue agent cannot move off the grid or move
into a location occupied by Red. Furthermore, a command
may be executed only if some local interrupt (e.g., a fire) does
not change the receiver’s immediate priorities or render him
unable to execute it. Even “social” constraints might come
into play, e.g., a subordinate may refuse to follow an order if
he believes that doing so would be unethical. As a specific
example of using this protocol, if P is a basic command
protocol, then

G(Receives(B’, P, B”, message) +
X(message E B’.actions)).

For abstract command protocols, the slot affected is “current-
tasks.”

6.3. Request Protocols
A sending agent uses a request protocol to ask a receiving

agent to grant a permission, or provide information, or perform
an action that he desires. Request protocols are somewhat
harder to specify than command protocols, since action de-
scriptions sent over them are not necessarily accepted for
doing by the receiver. Even if the receiver initially agrees

SINGH er ui DECLARATIVE REPRESENTATIONS

to do the requested action, there is no guarantee that it will (and not another). Accordingly, they directly affect just the
be done-rdinarily, actions that are done in order to satisfy receiver’s view of the sender’s internal state. The justifications
requests are of a lower priority than actions that are done to or explanations received may also be accepted by the receiver,
satisfy commands or the agent’s own plans. Even if priorities in which case they may affect his own representations about
are ignored, the semantics of a request protocol cannot be the world; however, we treat this process as a part of the
determined statically, because it depends on the situations receiver applying his reasoning abilities on his own internal
under which the protocol is used and on the state of the state. There is no easy specification for this. We use the
receiving agent at that point. following (with P an explanation protocol):

But as in the specification for information protocols, we
may use the function associated with the protocol to decide
how a given message affects the receiver’s agenda. If P is a
request protocol, then

G(Receives(B’, P, B”, message)
-+ X ([P.function-to-apply] (message, B’.B”.local-state))).

G(Receives(B’, P, B”, message)
+ X([P.function-to-apply]

(message! B’.local-state, B’.agenda))).

VII. SPECIFICATIONS OF EXAMPLE SYSTEMS

This section contains specifications in our formal language
for several variations of the pursuit problem. The centrally
controlled systems involve a master and some slaves, so
both kinds of agents must be specified; only one kind of
agent is needed for distributively controlled systems. The
resource assignments and actions given below are meant only
as examples; the actual values would vary with time. The other
slot values are defined in Section V. For brevity, the empty
slots are not displayed.

6.4. Permission Protocols
A permission protocol is used by a sender to grant permis-

sions to a receiver. These permissions might not have been
solicited by the receiver, and could be given just to allow
cenain options that are not available by default, e.g., the
sender may allow the receiver to enter a certain region should
the latter ever need to. We analyze permission protocols in
terms of the actions they make available to the receiver. This
presumes that the sender has the requisite authority to issue
such permissions. In many cases, we would want that once
an agent is assigned some acting-abilities, it continues to have

7.1. Omniscient Central Controller

1) The problem: as given above
2) The agents: master B1, and slaves B*, B3, B4

a. master:

acting abilities: move-le f &move-right,
move-down,moue-up,no-op.
perceiving abilities: G(B’.A, = A,), and
G(B’.Ay = Ay), where A may be Red, or
any Blue agent
communicating abilities: G(Can-send(B’, B”,
basic-commands)), where B” is any slave
reasoning abilities: Reasoning-ability-quadrant-
assignment, Reasoning-ability-optimal-resource-
moves-for-all

them for some unspecified period, perhaps until it is issued
a counteracting prohibition. How an agent’s abilities ought to
persist in the face of sequences of permissions and prohibitions
is an issue that we leave to future research (see Section IX).
For permission protocol P,

G(Receives(B’, P: B”, message) +
S (message E B’.acting-abilities)) . .

6.5. Prohibition Protocols

Prohibition protocols are used by a sending agent to limit the
choices that are available to the receiver. Prohibitions might
explicitly rule out certain actions, or introduce new conditions
that the receiver must not allow to be violated. We analyze
prohibition protocols in terms of the actions they disallow the
receiver that he was allowed before. This presumes that the
sender has the requisite authority. For prohibition protocol P,

G(Receives(B’. P. B”. message) +
S(message @ B’.acting-abilities)).

6.6. Explanation Protocols

Explanation protocols are like information protocols, but
more explicitly involve an agent transmitting justifications (or,
at least, potential or putative justifications). Such knowledge
is useful when an agent who received some information
must try to estimate its reliability, or predict the effects of
some action he is considering performing. These protocols
concern the internal state of the receiver being a particular way

problem state: ((R,, Ry), (Bi, Bi), (Bz, B$),
(B,3, B;), (B:, B,4))
method: Achieve(Lieb), Achieve(Win)
current tasks: tql, tq,, tqd, tq,
resources: B”, k E [l . . .4]

. augmented access protocol: basic-
commands

. cost metric: time

. constraints: G(1 5 B$ B/J < 30) and
G((B:. B;) # (fL> 4,))

. state vector: B!j, B$

resource assignment: (tqt, B1), (tqr, B’),
@a, B3), (bu, B4)
actions: move-left, Send(B’, B2,
basic-commands, move-right), .

. acting abilities: move-left, move-right, move-
down, move-up, no-op

. communicating abilities: G(Can-receive(B’,
B1 ? basic-commands))

. actions: Receive(B’. B1 . basic-commands,
message)

7.2. Central Controller, Agents Perceive Own Location

1) The problem: as given above
2) The agents: master B’, and slaves B2, B3, B4

a. master:

acting abilities: move-lefr, move-right,
move-down, move-up, no-op
perceiving abilities: G(B’.R, = R,),
G(B’.R, = Ry), G(B’.BL = BL), and
G(B’.BS, = B;)
communicating abilities:
G(Can-send(B’, B”,basic-commands))
G(Can-receive(B’, B”,blue-location)), where
B” is any slave

. reasoning abilities: Reasoning-ability-quadrant-
assignment, Reasoning-ability-optimal-resource-
moves-for-all

. problem state: ((R,, Ry): (Bi, Bi), (Bz, Bi),
(% %I. (B,4, B,4))

. method: Achieve(iieb), Achieve(Win)

. current tasks: tql, tq,, tqd, tq,

. resources: B”, k E [l . . .4]

. augmented access protocol: basic-com-
mands

. cost metric: time

. constraints: G(1 5 Bi, Bi 2 30) and
GW:> B;) # (Rx, 4,))

. state vector: B$ Bi

. resource assignment: (tql, B’), (tqT, B2),
(hd, B3L (~qu, B4)

. actions: move-left, Send(B’, B2, basic-com-
mands move-right), . . .

b. slave:

. acting abilities: move-lefr, move-right, move-
down, move-up, no-op

. perceiving abilities: G(B’.BL = Bk), and
G(B’.B:, = B;)

. communicating abilities: G(Can-receive(B’,
B1, basic-commands)), G(Can-send(B’, I?‘,
blue-location))

. reasoning abilities:
own-location

Reasoning-ability-send-

1) The problem: as given above
2) The agents: master B’, and slaves B2, B3, B4

a. master:
acting abilities: move-left, move-right,move-
down, move-up, no-op
perceiving abilities: G(IBL - R, 1 + 1 Bb -
R,I 5 2) -+ (B’.R, = R,)r\(B’.R, = Ry),
G(B’.Bk = Bk), and G(B’.Bh = Bh)
communicating abilities: G(Can-send(B’, B”,
basic-commands)),G(Can-receive(B’, B”,
blue-location)), and G(Can-receive(B’, B”,
red-location)), where B” is any slave
reasoning abilities: Reasoning-ability-quadrant-
assignment, Reasoning-ability-optimal-resource-
moves-for-all, Reasoning-ability-mount-search,
Reasoning-ability-close-in-on-red
problem state: ((R,, Ry), (Bi, Bi), (B$ Bt),
(B,3, B;), (B,4, B,4))
method: Achieve (B’.found), Achieve(Lieb),
Achieve(Win)
current tasks: tql, tq,, tqd, tq, resources:
B”,k E [1...4]

. augmented access protocol: basic-com-
mands

. cost metric: time

. constraints: G(1 2 Bi, Bi 5 30) and
G((Bi, B;) # (Rx, Ry))

. state vector: BE, BY”

resource assignment: (tql, B1), (tqT, B2),
(tqd, B3Mbu, B4)
actions: move-left, Send(B’, B2,
basic-commands,move-right), . . .

b. slave:
. acting abilities: move-leji, move-right,

move-down, move-up, no-op, as specified
previously

. perceiving abilities: G(1 BL - R, 1 + 1 Bh -
R,I 5 2) + (B’.R, = R,)r\(B’.R, = Ry),
G(B’.BL = BL), and G(B’.Bh = Bk)

. communicating abilities: G(Can-receive
(B’, B1, basic-commands)),G(Can-send
(B’, B1 ,blue-location)), and G(Can-send
(B’, B1, red-location))

. reasoning abilities: Reasoning-ability-
send-own-location, Reasoning-ability-send-
red-location

. actions: Receive(B’, B1, basic-commands,
message)

SINGH et al.: DECLARATIVE REPRESENTATIONS

2) The agents: master B1, and slaves B2, B3, B4

a. master: a.
. acting abilities: move-left, move-right,

move-down, move-up, no-op b.
. perceiving abilities: G(IBk - R, I + IBh -

R,I 5 2) --+ (B’.R, = R,)r\(B’.R, = Ry),
G(B’.Bk = BL), and G(B’.Bb = Bh) C.

. communicating abilities: G(Can-send(B’, B”,
abstract-commands)),G(Can-receive(B’, B”,
blue-location)), and G(Can-receive(B’, B”,
red-location)), where B” is any slave

. reasoning abilities: Reasoning-ability-quadrant- d.
assignment, Reasoning-ability-start-patrolling,
Reasoning-ability-scan-outwards, Reasoning-
ability-scan-inwards, Reasoning-ability-
approach-red, Reasoning-ability-abstract-
resource-commands

l problem state: ((R,, Ry), (Bk, Bt), (B$ B,2), e.

(B%% (B,4, B:>)
. method: Achieve “(B’.found), Achieve(Lieb), f.

Achieve(Win)
. current tasks: tqt, tq,, tqd, tq, resources: g.

B”,k E [1...4]

135

2) The agents: B1, B2, B3, and B4

acting abilities: move-left, move-right, move-down,
move-up, no-op
perceiving abilities: G(IBk - R,I + IBh - R, 1 5
2) -+ (B’.R, = R,) A (B’.R, = Ry),
G(B’.Bk = Bk), and G(B’.Bh = Bh)
communicating abilities: G(Can-receive(B’, B”,
blue-location)),G(Can-receive(B’, B”,
red-location)), G(Can-send(B’, B”,
blue-location)), and G(Can-send(B’, B”,
red-location)), where B” is any other blue agent
reasoning abilities: Reasoning-ability-quadrant-
assignment, Reasoning-ability-start-patrolling,
Reasoning-ability-scan-outwards, Reasoning-
ability-scan-inwards, Reasoning-ability-approach-
red, Reasoning-ability-optimal-resource-abstract-
moves-for-self
problem state: ((R,, Ry), (Bk, Bt), (Bz, Bi),
(Bit, B;), (B$,B,4))

method: Achieve (B1 .found A B2 .found A B3.
found A B4.found), Achieve(Lieb), Achieve(Win)
current tasks: tqt, tqr, tq& tq, resources: Bk, k E
[l . . .4]

augmented access protocol:
abstract-commands

. cost metric: time

. constraints: G(1 5 Bk, BY” < 30) and
GUB:, B;) # (Rm 4,))

. state vector: B:, Bi h.
. resource assignment: (tql, B1), (tqr, B2),

(tar B3), (bu, B4)
i.

. actions: move-left, Send(B’, B2,
abstract-commands, abss), . . . 7.6. Control Distributed among Self-Interested Agents

. augmented access protocol: basic-commands

. cost metric: time

. constraints: G(1 5 Bt , Bi 5 30) and
G((%B;) # (Rm 4,))

. state vector: B$ Bi

resource assignment: (tqt , B1), (tq,, B2),
(t&i, B3), (ho B4)

actions: if assignment-to-self(tq) then tq

b. slave:
. acting abilities: move-left, move-right,

move-down, move-up, no-op, as specified
previously

. perceiving abilities: G(IBh - R,I + IBh -
R,I < 2) + (B’.R, = R,)r\(B’.R, = Ely),
G(B’.Bk = BL), and G(B’.Bb = Bh)

. communicating abilities: G(Can-receive(B’,
Bl,abstract-commands)), G(B’, B1, Can-send
(blue-location)), and G(Can-send(red-loca-
tion))

. reasoning abilities: Reasoning-ability-send-
own-location, Reasoning-ability-start-patrol-
ling, Reasoning-ability-scan-outwards, Reason-
ing-ability-scan-inwards, Reasoning-ability-
approach-red

. actions: Receive(B’, B1, abstract-
command, message)

7.5. Control Distributed among Altruistic Peers
1) The problem: as given above

1) The problem: as given above
2) The agents: B1, B2, B3, and B4

a.

b.

C.

d.

e.

acting abilities: move-left, move-right, move-down,
move-up, no-op, as specified previously
perceiving abilities: G(] BL - R, I + I Bk - R, I 5
2) + (B’.R, = R,) A (B’.Ry = Ry),
G(B’.BL = BL), and G(B’.Bk = Bb)
communicating abilities: G(Can-receive(B’, B”,
red-location)), G(Can-send (B’, B”,red-location,
G(Can-receive(B’, B”, cost-estimate)), and G
(Can-send(B’, B”, cost-estimate))
reasoning abilities: Reasoning-ability-quadrant-
assignment, Reasoning-ability-start-patrolling,
Reasoning-ability-scan-outwards, Reasoning-
ability-scan-inwards, Reasoning-ability-approach-
red, Reasoning-ability-optimal-resource-abstract-
moves-for-self, Reasoning-ability-send-cost-est-
imate, Reasoning-ability-abstract-resource-com-
mands
problem state: ((R,, Ry), (BA, B:), (Bz,
B;), (B:, B,3), (B:, B,4))

f. method:Achieve (B’.foundr\B’.foundAB”.found
Ah” .found), Achieve(Lieb), Achie\,e(Win)

g. current tasks: tql, tq,., tqd, tqu resources: B”. k E
[l.. .4]
. augmented access protocol: basic-commands
. cost metric: time
. constraints: G(l 5 0:. BfJ < 30) and

G((B:. 0;) # (&.R,))
. state vector: B$. By”

h. resource assignment: (tqr. B’). (tqr, B’).
(tqd. B3). (tqu. D4)

1. actions: if assignment-to-self(tq) then tq

VIII. THE IMPLEMENTATION

The representation scheme developed in this paper has
been implemented in a small system built on top of the
CYC knowledge base [18]. The implementation uses a set
of frames (called “units” in CYC terminology) to define the
attributes of different parts of the system. We describe only
the important slots of some important units to give the reader
a feel for the implementation. The core of the implementation
is an interpreter that ensures that the appropriate semantics is
operationally assigned to the different frames. Thus, when a
frame contains, say. “condl” and “cond2,” it may actually
stand for a temporal condition of the form: “G(cond1 --+
X(cond2)).”

The problem-solving system on which the interpreter is
to be executed is defined by defining the environment, the
agent organization. and the win and lose conditions for the
system. The environment is specified by giving a function
that returns its initial state and a bunch of functions that
generate its successive states. The win and lose conditions are
simple functions on the state of the environment that return
T under the appropriate conditions. The agent organization
is the most complex part of the specification. It is given by
listing the agents who participate in it, and the relationships
they have among themselves. These are given in terms of the
protocols that are defined between pairs of agents. The agents
are further specified by giving the different abilities they have,
each ability corresponding to a function in the implementation.
The interpreter begins with the initial state of the environment.
Then it loops as follows. It checks whether the win or the loss
condition holds in the current state of the environment. If either
does. it terminate. Otherwise, it invokes the agents’ perceiving
abilities on the environment. These yield values for some of the
slots in the agents. The agents’ internal representations are thus
modified in virtual parallelism. Next, it invokes the agents’
reasoning abilities on their internal representations, also in
virtual parallelism. Since each ability has a precondition, the
preconditions are tested to see which apply. We assume that
when more than one ability is applicable, the order of applying
them is not significant. The reasoning abilities lead to some
slots of the agents being updated. Some of these slots could
describe the agent’s actions. The interpreter then looks at these
slots and incorporates the effects of the physical actions in the
environment. For actions that involve communication, it uses

superclasses (ProblemSolvingSystem)

canHaveSlots (environmentOfSystem

initdStateORPSS

usesAgentOrga&ation . ..)

Fig. 3. ReactiveProblemSolvingSystem Class

instanceof

configurationConstraints

environmentOfSystem

initialStateOfRPSS

involvesAgents

lossCondition

usesAgentOrgz&zation (BlueOrganization-CC3)

winCondition (WIN-CONDITION)

(ReactiveProblemSolvingSystem)

(BLUENOT-OVER-RED?

IN-GRID?)

(PurauitEnvironment-1)

(INITIAL-STATE)

(Blue-4 Blue-3 Blue-2 Blue-l)

(LOSS-CONDITION)

Fig. 4. CentralController-3.

the encoding function of the protocol in composing messages
for transmission to other agents. As these messages arrive, and
are decoded using the decoding function of the given protocol,
they may trigger further reasoning by their receivers, leading
to further actions by them. If a zero delay is assumed, these
actions too have to be incorporated in the environment. Finally,
the interpreter incorporates the changes due to events in the
environment itself, and the loop continues.

We emphasize that the temporal language described in
previous sections is merely the specification language: it is not
interpreted itself. Indeed, as already argued, if we attempted
to have the specification language itself be interpreted, we
would quickly run into the problems that plague the situation
calculus approach. Some of the specifications correspond to
assertions in the declarative representation; others are just
specifications of different procedures. The general declarative
scheme is useful even in those cases, since it “parses” a
complex distributed system into simple chunks that can be
coded easily and reliably. Also, the implementation is designed
as a frame system, so different systems can be easily composed
by reusing previously defined agents. This makes it easy to
modify parts of a specification to see what the agents must
know or be capable of doing in each case.

The functions named in the slot values have been imple-
mented in Common Lisp. Some terminology in what follows
has been modified, and some extraneous slot values have
been deleted for expository purposes. At the top of the frame
hierarchy for our implementation is the unit defining the class
of ReactiveProblemSolvingSystem, displayed in Fig. 3. One of
the instances of this class is Centralcontroller-3, displayed
in Fig. 4. This system’s organization is described by the unit
BlueOrganization-CC3 in Fig. 5. Fig. 6 shows ReactiveProb-
lemSolvin@gent, the class of agents who participate in the
reactive problem-solving systems.

The perceiving ability of some agents to sense their own
location is given by the unit, SensingSelf, displayed in Fig. 11.
The slot conditionOfPerception is filled with the condition

SINGH e, 0: DECLARATIVE REPRESENTATIONS 737

instanceor (CentrallyContralledAgentOrg)

usedByRPSS (Ce”tralCo”troller-3)

controllerAgent (Blue-l)

slaveAgents (Blue-2 Blue-3 Blue-4)

slotInfoProtocols (RedLocationInfo-Blue-2-l

RedLocationInf~Blue-3-1

FkdLocationInfo-Blue%-1 . ..)

slotInfoResources (SlaveLocation-2-rean-1

Slavelocation-Z-reason-2

Slavelocation-3-rein-1 . ..)

agents (Blue-2 Blue-3 Blue-4 Blue-l)

(ReactiveProblemSolvingAgent)

canHeveSlots (i&laveI”Organizatio”) !
Fig. 8. SlarvAgent class.

under which this ability is operable (in this case it is identically
T), and the slot whatIsPerceived with what the agent actually
perceives (in this case, the agent’s own location).

The physical constraints on the participation by agent Blue-
1 in different communication protocols are expressed by the
unit ProtocolForBlue-1 shown in Fig. 12. This communicat-
ing ability endows this agent with the ability to send basic
commands to the other three slave agents; i.e., to use the
appropriate command protocols.

The unit Locationlnfo-Blue-2-1, shown in Fig. 13, specifies
the protocol used by agent Blue-2 to send information about
his own location to agent Blue-l. This protocol is described in
terms of its encoding and decoding functions, the reasoning
abilities of the receiver that it influences, and the way in
which it influences them. The unit SlaveLocation-2-reason-
I, displayed in Fig. 14, specifies the agent who supplies the
information carries over the above information protocol as a
“resource” of the receiving agent.

The reasoning ability of an agent (in this case Blue-I) to
compute the moves for all agents to converge on Red is
specified by the unit Reasoning-Converge-On-Red. This unit,

Fig. 5. BlueOrganization-CC.~

(ControllerAgent SlaveAgent)

canHaveSlots (IocationOfFkd IocationOfSelf

Fig. 6. ReactiveProhlemSolvingAgent class.

(ReactiveProblemSolvingAgent)

canHaveSlots (ControlsAgentOrganization)

Fig. 7. ConfrolierAgent class

instanceOf (ControllerAgent)

actingAbilities (NoOp MoveDown MoveUp . ..)

controlsOrganization (BlueOrga”izatio”XC3)

communicatingAbilities (ProtocolForBluc-1)

isInAgantOrga&ation (BlueOrganizationXC3)

isInvolvedInFLPSS (Ce”tralCo”troller-3 .)

reasoningAbilities (Reasoning-ConvergeOnRed

Reasoning-OccupyQuadrant

Reasoning-SearchForRd)

receivesfiomProtocols (LocationInfc-Blue-2-l

LocationI”feBlue3-1

LocstionInfo-Blue-Cl)

sensingAbilities (SensingRed SensingSelf)

Fig. 9. Blue-l

(MoveLeft MoveRight MoveUp . ..)

i,sInAgentOrganization (BlueOrganizationXC3)

isInvolvedInRPSS (CentralCo”troller-3)

isResourceIn (ResourceBlue-2)

isSlaveInOrganizetion (BlueOrganizatianXC3)

reasoningAbilities (Reasoning-SlaveSendRedLacation

Reasoning-SlaveSendSelfLocation)

rec&esFromProtocols (BwicComm-l-2)

sensingAbilities (SensingRed SensingSelf)

Fig. IO. Blue-2.

shown in Fig. 15, specifies the information protocols this
ability relies on to supply the required information, the slot
whose value this ability changes, the values it assigns, and the
condition under which this ability is effective (in this case,
always).

IX. CONCLUSIONS AND FUTURE WORK

Starting with some obvious intuitions about the knowl-
edge and capability requirements that even simple distributed
algorithms impose upon the agents in a system, we have
devised a simple scheme for declaratively representing such
problem-solving systems, and the agents who compose them.
This scheme simplifies the task of the system designer by
encouraging him to think in terms of what the different agents

conditio”Ofl’erception (SENSING-CONDITION-l)

Fig. 11. SensingSelf.

738 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5, OCTOBER 1993

instanceOf (Protocol)

conditionSpzcil%ation (PROTOCOL-CONDITION-l)

sendsOnProtocols (BaricComm-l-4

BasicComm-l-3

BaaicComml-2)

whoseCommunicatingAbility (Bluel)

Fig. 12. ProtocolForBlue-I

instanceof (SMnfoP-b)

actIox,sToBeTakenByRver (INTRODUCCSLAVvCLOC.4TION-1)

afktsRwo&gAbi,itkO-vm (Rraswin(-hwg&nR

Reaso&g-OcapyQuQusant

RcaacningBlucl

RusoningBlue-2)

aKectsIIlfc.Beaource (SlaveLocation-Z-reman-2

SlaveLocation-Z--n-l)

lmsDecdingFunetion (DECODESLOT-INFO-l)

bMEncodingFunction (ENCODESLOT-INFO-l)

involvesCommunicatingAbilitk (PmtocolSla”eI/xatKvJ-z)

hSlotlnfoPmtocolOf (BlueOrganization-CC3 . ..)

qentsfkeivingOnTbisProt.xol (Blue-l)

uses.SbtsOfSender (lOC&tl.X0fMf

ICdSrUe)

Fig. 13. Locationlnfo-Blue-2-I.

instanceof (InfoRmurce)

islnfoResourceOf (BlueOrganization-CC3)

af?ectsReasoningAbilities (ReasoningBlue-

Reasoning-OccupyQuadrant)

resourceSuppliedBySlotInfoProtocols (Locationlnf~Bluct-1)

Fig. 14. SlaveLocation-2.reason-l

are expected to know and to be able to do, at different stages
of their problem-solving activity. The structure created by
this representational scheme partitions the tasks to be done
by a system designer into simple ones that may be easily
and correctly done. The formal semantics that we provide
further crystallizes the intuitions behind this scheme. In this
way, this scheme may be used in the design of multiagent
systems. It may also be used to prove certain properties of
systems that have already been designed, e.g., whether requests
issued in a certain state would be accepted; whether, given
certain behavior by the environment, the system would be
able to succeed; and so on. By partitioning a system into
simple components, this scheme not only simplifies design, but
also implementation. This process will be further improved as
appropriate tools, such as temporal logic proof checkers and
theorem provers, become available [l], [20]. We leave these
further technical developments to future research.

One issue we left unexplored is to relate the scheme
presented here with some well-known paradigms in DAI, e.g.,
the contract net of Davis and Smith [7]. It would also be

instanceOf (ReasoningSpecification)

conditionOfLocalState (REASONING-CONDITION-l)

resuItantValueOfSlot (STEPS-TO-CONVERGE)

usesSlotInfoProtocolsForInput (LocationInf+Blue-4-l

LocationInf*Blue-3-l

LocationInfwBlucZ-1)

usesSlotInfoResources (SlaveLocation-Z-reason-2

SlaveLocation-3-rean-2

SlaveLocation-4-reason-2)

valueForAgentSlot (currentActions)

whoseReasoningAbility (Blue-l)

Fig. 15. Reasoning-Converge-On-Red.

useful to consider “metaprotocols” that may be used by agents
to establish the protocols they would use during a session of
problem-solving. We believe that the machinery to simulate
metaprotocols already exists (e.g., by using information, pro-
hibition, and permission protocols appropriately), but the spirit
of our work has been to state explicitly and declaratively
what would otherwise be hidden in hard-coded procedural
interactions. We have assumed that protocols can be accurately
specified with constraints. However; in complex systems,
the kinds of considerations that go into an agent’s decision
to accept or decline a request would not be monotonically
specifiable. Also, it would be useful to have some kind of
a normative theory of communication for agents-research
into this area has begun only recently [21]; closer connections
remain to be explored.

The representational scheme presented here is state-based,
i.e., it considers the states of the world explicitly and sees
events as transitions between successive states. This makes
it simple, but also makes it incapable of representing some
information about events naturally, e.g., about the manner
in which they are done, their direct ramifications, and their
causes. It remains to be seen how advantageous such informa-
tion would be in DAI domains. Current event-based schemes
cannot represent all such information easily either [14]. A
feature of our approach is that it uses linear temporal logic.
A possible extension of our theory is branching time logic in
which alternative actions can be expressed easily [ll]. The
positive consequences of using temporal logic of whatever
form are that it is simple and well known, and tools for it are
already under development [l], [20]. A potential weakness of
temporal logic is that it does not express actions explicitly,
even though it can be used to prove general properties of
systems; it is still to be seen how significant this limitation is
in the context of DAL

In complex systems, it is important that an agent be able
to represent other agents, especially regarding whether they
are cooperative, neutral, or antagonistic to him. In this paper,
we have referred directly to parts of the agents’ internal rep-
resentations (e.g., as B’.R,). This is satisfactory for only the
simplest agents, solving simple problems, as in this paper. In
more realistic systems, an agent must reason about other agents
explicitly, but their physical states would be too complex to

SINGH erol DECLARATIVE REPRESENTATIONS

be reasoned about directly. In such settings, beliefs, know-
ho\v. and intentions are useful abstractions to use. It would
be interesting to see how the theory of this paper would be
extended for such cases.

REFERENCES

[II

PI

[31

[41

[51

[61

[71

PI

[91

PO1

[111

[I21

P31

[I41

;:z;

[I71

1181

1191 ,

PO1

Pll

PI

M. Abadi, “Temporal-logic theorem proving,” Ph.D dissertation, Stan-
ford University, 1987, Department of Computer Science, Tech. Report
STAN-CS-87-1151.
P. Agre and D. Chapman, “Penni: An imolementation of a theorv of
activity,” in Proc. ALI-87, pp. 568-272, ‘1987.
N. Arni et al.. “Overview of RAD: A hvbrid and distributed reason-
ing tool,” Tech. Rep. ACT-R4-098.90, Microelectronics and Computer
Technology Corporation, Artificial Intelligence Laboratory, Austin, TX,
Mar. 1990.
.I. L. Austin, How to do Things with Words. Clarendon, Oxford, UK,
1962.
J. Barwise and J. Perry, Situations and Attitudes. Cambridge, MA: MIT
Press, 1983.
M. Benda, V. Jaganathan, and R. Dodhiawala, “On optimal coopera-
tion of knowledge sources,” Tech. Rep., Boeing Advanced Technology
Center, Boeing Computer Services, Seattle, WA, Sept. 1986. -.
R. Davis and R. G. Smith, “Negotiation as a metaphor for distributed
problem solving,“Artificial Intelligence, vol. 20, p. 63-109, 1983.
E. H. Durfee, V. R. Lesser, and D. D. Corkill, “Coherent cooperation
among communicating problem solvers,” IEEE Trans. Computers, vol.
C-36, pp. 1275-1291, Nov. 1987.
E. H. Durfee and T. A. Montgomery, “MICE: A flexible testbed
for intelligent coordination experiments,” in Proc. 9th Workshop on
Distribute; Artificial Intelligenie, pp. 2540, Sept. 1989. .
E. A. Emerson, “Temporal and modal logic,” in .I. van Leeuwen, Ed.,
Handbook of Theoretical Computer Science. Amsterdam, The Nether-
lands: North-Holland Publishing Company, 1989.
E. A. Emerson and J. Y. Halpern, “ ‘Sometimes’ and ‘Not Never’
revisited: On branching versus linear time temporal logic,” J. ACM,
vol. 33, pp. 151-178, 1986.
R. F. Franklin and L. A. Harmon, “Elements of cooperative behavior,”
Tech. Rep., Environmental Research Institute of Michigan, Ann Arbor,
MI, Aug. 1987.
L. Gasser, N. Rouquette, R. Hill, and J. Lieb, “Representing and using
organizational knowledge in distributed Al systems,” in M. Huhns and L.
Gasser, Eds., Distributed Artificial Intellipence II. London. UK: Pitman
Publishing Limited, 1989, ch. 3, pp. 55178.
M. P. Georaeff and A. L. Lanskv, “A representation of parallel activitv
based on events, structure and ca&ality,“‘in M. Georgeff’and A. Lansk;,
Eds., in Proc. 1986 Workshop on Reasoning about Actions and Plans,
pp. 123-160, 1987.
C. L. Hamblin, Imperatives. Oxford, UK: Basil Blackwell Ltd., 1987.
P. .I. Hayes, “The frame problem and related problems in artificial
intelligence,” in B. L. Webber and N. J. Nilsson, Eds., Readings in
Artificial Intelligence. San Mateao, CA: Morgan Kaufmann, 1981, pp.
223-230.
M. N. Huhns et al., “DA1 for document retrieval: The MINDS project,”
in M. N. Huhns, Ed., Distributed Artificial Intelligence London: Pit-
man/Morgan Kaufmann, 1987, pp. 249-283.
D. B. Lenat and R. V. Guha, Building Large Knowledge Base Systems.
Reading, MA: Addison Wesley, 1989.
J. McCarthy and P. J. Hayes, “Some philosophical problems from the
standpoint of artificial intelligence, ” in Machine Intelligence 4. American
Elsevier, 1969.
B. Moszkowski, Executing Temporal Logic Pronrams. Cambridge, UK:
Cambridge University Press, 1586. - -
R. Perrault, “An application of default logic to speech act theory,” Tech.
Rep. 90, Center f& the Study of Language and Information, Stanford,
CA, Mar. 1987.
S. J. Rosenschein, “Formal theories of knowledge in AI and robotics,”
New Generation Computing, vol. 3, 1985.

[231

[241

~251

WI

I271

719

Y. Shoham, Reasoning About Change: Time and Causation from the
Standpoint of AI. Cambridge, MA: MIT Press, 1988.
D. Smith and M. Broadwell, “The pilot’s associate-An overview,” in
Proc. SAE Aerotech Conf, Las Angeles, CA, May 1988.
L. M. Stephens and M. Merx, “The effect of agent control strategy on
the performance of a DA1 pursuit problem,” IEEE Trans. Syst., Man,
Cybern., 1990, submitted for publication.
S. Tutiya, D. Israel, and J. Perry, “Action as meaning,” in Proc. First
Co@ Situation Theory and I& Applications, Stanford, CA, 1989.
J. F. A. K. van Benthem, The Logic of Time. Dordrecht, Netherlands:
D. Reidel, 1984.

Munindar P. Singh received the Ph.D. degree in
computer science from the University of Texas at
Austin.

He works on theoretical aspects of artificial intel-
ligence, especially in the area of multiagent systems.
His research has been on theories of intention,
know-how, and communication. He is also inter-
ested in the logics of belief and time.

He is currently a member of the technical staff at
MCC.

Michael N. Huhns received the B.S.E.E. degree
from the University of Michigan in 1969, and the
M.S. and Ph.D. degrees in electrical engineering
from the University of Southern California in 1971
and 1975, respectively.

He was an associate professor of electrical and
computer engineering at the University of South
Carolina, where he also directed the Center for
Machine Intelligence. He joined MCC in 1985,
where he is a senior member of the artificial intelli-
gence laboratory conducting research on the Argo,

Antares, RAD, and Carnot projects. He is the author of 84 technical papers
in machine intelligence and an editor of the books Distributed Artificial
Intelligence, volumes I and II. His research interests are in the areas of machine
learning, distributed artificial intelligence, database schema integration, and
computer vision.

Dr. Huhns is a member of Sigma Xi, Tau Beta Pi, Eta Kappa Nu, ACM,
and AAAI.

Larry M. Stephens received the B.S. degree in
electrical engineering from the University of South
Carolina in 1968 and the MS. and Ph.D. degrees
in electrical engineering from the Johns Hopkins
University in 1974 and 1977, respectively.

As a US naval officer he was assigned to the
Naval Reactors Program, Washington, DC.Since
1978 he has been a member of the faculty of the
University of South Carolina and is currently a
professor of electrical and computer engineering and
a member of the department’s Center for Machine

Intelligence. In 1988 and 1989 he was on leave from his academic position and
served as a consultant to MCC, Austin, TX, where he participated in research
projects on distributed knowledge-based systems, reasoning architectures for
synthesis tasks, and plausible inferencing. His current research interests
include the fundamentals of knowledge representation and common-sense
reasoning.

Dr. Stephens is a member of Tau Beta Pi, Eta Kappa Nu, Phi Beta Kappa,
AAAI, and Sigma Xi.

	Declarative Representations of Multiagent Systems
	Publication Info

	tmp.1291225987.pdf.FhYmW

