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Declarative Representations of Multiagent Systems 
Munindar P. Singh, Student Member, IEEE, Michael N. Huhns, 

Member, IEEE, and Larry M. Stephens, Senior Member, IEEE 

Abstract-This paper explores the specification and semantics 
of multiagent problem-solving systems, focusing on the represen- 
tations that agents have of each other. It provides a declarative 
representation for such systems. Several procedural solutions 
to a well-known test-bed problem are considered, and the re- 
quirements they impose on different agents are identified. A 
study of these requirements yields a representational scheme 
based on temporal logic for specifying the acting, perceiving, 
communicating, and reasoning abilities of computational agents. 
A formal semantics is provided for this scheme. The resulting 
representation is highly declarative, and useful for describing 
systems of agents solving problems reactively. 

Index Terms-Declarative Representations, Distributed Artifi- 
cial Intelligence, Formal Specifications, Knowledge Representa- 
tion, Multiagent Systems, Problem-Solving Systems 

I. INTRODUCTION 

D ISTRIBUTED artificial intelligence (DAI) is concerned 
with how a group of intelligent computational agents 

should coordinate their activities to achieve their goals. When 
pursuing common or overlapping goals, they should act coop- 
eratively so as to accomplish more as a group than individ- 
ually: when pursuing conflicting goals, they should compete 
intelligently. Interconnecting computational agents and expert 
systems enables them to cooperate in solving problems, to 
share expertise, to work in parallel on common problems, to 
be developed and implemented modularly, to be fault-tolerant 
through redundancy, to represent multiple viewpoints and the 
knowledge of multiple human experts, and to be reusable. DA1 
is the appropriate technology for applications where 

1) expertise is distributed, as in design; 
2) information is distributed, as in office automation; 
3) data are distributed, as in distributed sensing; 
4) decisions are distributed, as in manufacturing control; 

and 
5) knowledge bases are developed independently but must 

be interconnected or reused, as in next-generation knowl- 
edge engineering. 

I DAI has progressed much in recent years and has been 
garnering an increasing amount of attention lately. There 
have been several successful implementations of DAI systems, 
notably the distributed vehicle monitoring testbed (DVMT) for 
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distributed sensing [8], the Pilot’s Associate for control of jet 
fighters [24], the MINDS system for information retrieval [17], 
and the RAD platform for multiagent system development 
[3]. Most of these implementations were designed to solve 
particular domain problems or to demonstrate the feasibility 
of some DA1 features and architectures. 

However, principles for the systematic design of DA1 sys- 
tems are still hard to find. For the most part, the capabilities 
and features of the above DA1 systems were represented pro- 
cedurally. Although useful, these procedural representations 
are difficult to extend to novel domains or to characterize 
formally. They also make it difficult to compare different kinds 
of agents. By contrast, the declarative representation espoused 
herein makes explicit the knowledge and other capabilities 
that agents must possess in order to interact successfully. It 
also permits a formal model of the agents to be developed. 
A formal model is useful because it is possible to prove its 
properties and specify its predictions. It yields representations 
that are concise, yet clear and uniform across several domains. 
The development of a formal model is the first step in the 
development of design rules and then of tools for the design 
and validation of DA1 systems-a formal model provides the 
basis for verifying that a given system meets its specification 
and that only the desired properties hold of it. 

Declarative representations can be difficult to develop, how- 
ever. Our methodology is to develop a declarative model for 
a simple problem, and then to extend the model to cover 
increasingly more general and more interesting versions of 
that problem. The model specifies what the agents know and 
what capabilities they have. The problem we consider is the 
pursuit problem of Benda, et al. [6], which is a well-known 
test problem for distributed systems [9], [12], [13], [2.5]. This 
problem is simple to describe and understand, but allows a 
large number of interesting variations. Our version is taken 
from [25]. 

A finite square grid of locations is given (see Fig. l), each of 
which may be occupied by either an entity called “Red” (the 
“enemy”) or any of a given number of “Blue agents” (who 
try to capture Red). At each step of the game, each entity can 
stay in its location or move one square up, down, left, or right. 
The pursuit starts in some arbitrary configuration and ends in 
either a win or a loss. The Blue agents win when they occupy 
the four locations surrounding Red; they lose if Red gets to 
the edge of the grid. 

A problem such as this is solved by a problem-solving 
system, which consists of a problem, some agents, and an 
agent organization. These are specified externally. However, 
each agent has an internal representation for the problem 
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(* = Red, o = Blue) 

Fig. 1. An example configuration of the pursuit problem. 

he is solving and the agents he interacts with. An agent’s 
representations may differ from those of other agents, and 
those given in the system. The system describes the problem, 
the agents, and their organization as they really are; an agent’s 
representations, however, may be partial or incorrect. The 
global problem may be solved successfully even if agents 
represent only parts of the original problem. For example, if 
different Blue agents try only to occupy different locations 
surrounding Red (e.g., one on the left, one on the right, and 
so on) they do not represent the original pursuit problem; 
however, when their individual problems are solved, the given 
problem is solved as well. And if one agent is the controller 
and the other Blue agents his slaves, only the controller needs 
to represent the given problem; the other agents just follow 
orders and need not represent anything at all. 

We employed the following methodology to develop declar- 
ative representations of distributed agents. 

l Start with a procedural description of a solution for the 
simple case of a centrally controlled system in which the 
central controller is omniscient (but not able to predict 
the moves of the Red agent). 

l Abstract out the parts of the problem and problem-solving 
method that depend only on the peculiarities of the test- 
bed problem. 

II. SYSTEMS FOR SOLVING THE DAI PURSUIT PROBLEM 

A variety of problem-solving systems can be designed 
for the pursuit problem: each could incorporate different 
assumptions about the agents’ abilities and organizations. We 
start with the simplest case in which one agent controls the 
others, and proceed to an organization in which the agents are 
autonomous. Often, we refer to the Red agent as being the 
environment. At no point do we assume that the environment 
can be perfectly modeled by the Blue agents, either singly or 
jointly. 

2.1. Omniscient Central Controller 
In this variation, one of the four Blue agents, B1, is made 

the controller. He is omniscient about the state of the entire 
system and issues commands to the other three Blue agents 
(who must accept all his orders). 

2.1.1. The Algorithm: The basic solution scheme follows. 
1) 

2) 

l Identify the assumptions made tacitly in the problem- 
solving system, especially about the agents’ knowledge 
and capabilities. 

3) 

l Remove the assumptions one at a time to obtain increas- 
ingly more realistic versions of the distributed system and 
to identify the impact of relaxing each assumption. 

l Represent the uncovered parameters of the method ex- 
plicitly. 

4) 

B1 perceives the location of Red and of the Bk ‘s, 
15 Ic < 4. 
B1 computes “quadrants” using Red’s current location 
as the origin. Quadrants [13] are defined as the partitions 
of the grid induced by the two diagonal lines passing 
through Red’s location. Using the locations of the B”‘s, 
B’ assigns different quadrants to different B”‘s. 
B1 decides the moves the agents should make in order 
to enter the quadrants that were assigned to them and 
commands them accordingly. 
The slave Blue agents move as commanded, thus chang- 
ing their locations on the grid. Red may also move at 
the same time. 

5) 

l Define a formal language with a formal semantics for 
writing the declarations, so that the representations are 
genuinely explicit representations of the problem, the 
agents’ abilities, and the state of the solution. 

l Using this notation, write declarative representations of 
the pursuit problem and the various possible systems that 
may be used to solve it. 

6) 

l Identify the connections among different parts of the 
problem and the nature of the agents solving it. Express 
these connections in a frame system so that specifications 
of new problems and problem-solving systems may be 
made more compact. 

Red’s movement changes the exact description of each 
quadrant, possibly leading to a reassignment of quadrants 
to the agents. This process continues until either Red 
escapes, is captured, or each quadrant determined by 
Red’s location is occupied by some Blue agent. 
If each quadrant is occupied by Blue agents, Red cannot 
escape unless the Blue agents fail, or make a mistake. 
Now the moves of the Blue agents are determined in the 
following manner: 

a. If Red does not move, they should all draw closer 
to Red. 

b. If Red moves in some direction (i.e., into some 
quadrant) then: 

We develop the following in this paper: . If Red moves next to B”, B” should not 
l a scheme for declaratively specifying the acting, perceiv- move at all. 

ing, communicating, and reasoning abilities of agents in 
a distributed system; 
a scheme for specifying the different kinds of proto- 
cols (namely, information, command, request, permission, 
prohibition, and explanation protocols) used for commu- 
nicating at the problem-solving level; 
a formal semantics for the above schemes in terms of a 
simple language based on temporal logic. A novel feature 
is the specification of protocols in terms of constraints 
among the agents. 
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. The Blue agent in the quadrant into which capable of perceiving Red within a limited range. The Blue 
Red moves should move so as to stay within agents patrol the grid until one of them detects Red. Then the 
the quadrant assigned to it. pursuit begins. Since we have assumed that the Blue agents 

. The agent in the opposite quadrant should are all as fast as Red, the one who detects Red need never 
simply follow Red. lose him. Since we are not interested in the pursuit problem 

. If the other agents are still within their as- for its own sake, we simply assume that the viewing ranges 
signed quadrants, they should move perpen- of the Blue agents are defined appropriately. 
dicular to Red (toward him); otherwise, they 2.3.1. The Algorithm: The revised algorithm is as follows. 
should move to stay in their quadrants. 1) Each Bk informs B1 of his location. 

2) B1 partitions the grid into regions and assigns each to 
The procedure terminates either when Red escapes-i.e., a Blue agent. 

gets to the edge of the grid-or when Red is captured-i.e., 3) B1 commands the slaves to make them enter their 
is surrounded by the Blue agents. assigned regions. 

2.1.2. Knowledge and Capability Requirements: For the Blue 4) B1 repeatedly commands the slaves to “patrol” those 
agents to execute this method, they must possess certain regions. 
abilities and knowledge. 5) Each B” looks out for Red and on detecting him informs 

1) B1 must know where Red is at all times. 
2) B1 must know where each Blue agent is at all times. 
3) B1 must be able to compute appropriate quadrant as- 

signments. 
4) B1 must know what commands each Blue agent can 

execute. 
5) B1 must be able to compute appropriate moves for the 

Blue agents. 
6) B1 must be able to communicate commands to its slaves. 
7) The slave Blue agents must be able to receive commands 

from B1. They do not need to send any acknowledg- 
ment, since B1 can perceive their location at all times. 

8) The Blue agents must be able to move up, down, left, 
and right, or simply maintain their position. 

Slave agents need not know their own location, or that of 
any other agent. They need not be able to transmit anything 
to anyone, or to reason. 

2.2. Central Controller, Agents Perceive Own Location 

In the previous case, the central controller was responsible 
not only for making optimal decisions, but also for gathering 
all factual knowledge about the locations of the agents and the 
state of the environment. Now, the agents perceive their own 
location. The rest of the algorithm proceeds as before. 

2.2.1. Knowledge and Capability Requirements: The knowl- 
edge requirements are unchanged because the central 
controller still makes all the decisions. The capability 
requirements change since 

1) The B”‘s should be able to perceive their own location. 
2) The slave B”‘s should be able to communicate their 

location to B1 from anywhere on the grid. 
This method requires that the controller “combine” location 

information from the other agents. Therefore, B1 should be 
able to express the locations of the different agents and to 
relate the coordinate systems used by each. Later we suggest 
that the appropriate translations be made by the protocols that 
exist between B1 and the other agents. 

2.3. Central Controller, Agents Search for Red 

We now relax the assumption that the controller is always 
able to detect Red’s location by making all the Blue agents 

B1. 
The rest of the algorithm is as before, with the restriction that 
the agent who detects Red be assigned his current quadrant 
(so that, once detected, Red will not be lost). 

2.3.2. Knowledge and Capability Requirements: 
1) B1 knows the viewing range for each Bk and can 

compute an appropriate patrolling region for him. 
2) The Blue agents are equally capable of perceiving Red. 
3) The slave agents can transmit Red’s location to the 

controller. 

2.4. Central Control by Abstract Commands 
The agents can already perceive their own location as well 

as that of Red. Now we make them smart enough to make some 
decisions by themselves. The simplest way of incorporating 
local decision making, while allowing a single global goal, is 
to have the agents execute commands more complex than the 
directly physical ones like move-left, move-right, and so on. 

2.4.1. The Algorithm: 
1) Each B” reports his location to B1. 
2) B1 assigns a region to each. 
3) B1 commands the agents to go to the assigned regions. 
4) As each agent enters his assigned region, B1 commands 

him to patrol that region. When some B” detects Red, 
he informs B’, as before. 

5) Now B’ makes quadrant assignments, as before, and 
commands each agent to go to his assigned quadrant. 

6) As each B” enters the quadrant, he is commanded to 
approach Red; i.e., to get closer to Red if possible and 
to maintain distance otherwise. 

2.4.2. Knowledge and Capability Requirements: 
1) The B”‘s must be capable of executing the abstract 

commands go, patrol, and approach as used above, by 
computing the optimal physical move; i.e., they must 
have a limited ability to plan. 

2) B1 need no longer know which physical actions the 
slaves can perform. 

3) B1 has to compute the appropriate high level commands 
for the slaves, and the physical commands, just for 
himself. 
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4) n’ must be able to communicate those high level 
commands. 

The basic structure of the algorithm stays the same. A 
modification is that a slave need transmit his location to the 
controller only when commanded to do so or on moving to a 
new region (so that the controller always knows where he is). 

2.5. Control Distributed among Altruistic Peers 

Already the slaves can perceive their environment, commu- 
nicate, and choose their actions for abstract commands. Now 
we make the Blue agents peers of each other, so they all 
participate in making global decisions (e.g., deciding which 
agent should be assigned what task). Such global decision 
making can be difficult in the general case, so we let each 
agent broadcast all his information to other agents, and require 
that they all use the same globally optimal method in deciding 
which tasks each should do. 

2.5.1. The Algorithm: 
1) 
2) 

3) 

3) 
5) 

The Blue agents broadcast their locations to each other. 
Each agent computes the globally optimal assignment 
of agents to the regions to be patrolled and takes on the 
right task for himself. 
The agent who detects Red broadcasts his location to 
the other agents. 
The agents broadcast their own locations to each other. 
Each agent computes the globally optimal assignment 
of agents to quadrants and takes on the right assignment 
for himself. 

2.5.2. Know,ledge and Capability Requirements: 
1) Each agent must now be able to broadcast to other 

agents. 
2) Each agent must compute the globally optimal assign- 

ment whenever it is needed. 
This algorithm relies on the agents being “altruistic” in the 

sense that each of them takes on an assignment depending 
on global optimality (i.e., for the good of all), rather than on 
local optimality (i.e., for the good of just himself). Each agent 
decides locally, but always comes to a conclusion that coheres 
with the conclusions of the others. 

2.6. Control Distributed among Self-Interested Agents 

While we can often design our systems so that the agents 
in them are aware of the global goal and are altruistic, the 
requirement of making the same information available to each 
agent can prove troublesome. Now agents estimate their costs 
locally, but optimize over these estimates globally. An agent 
may use local information (e.g., his physical condition and 
his other pending tasks) for estimating the costs of achieving 
different goals. We need to assume that the agents are “honest” 
to the system; i.e., they do not give improper estimates just 
to avoid work! 

2.6.1. The Algorithm: 
1) Each agent estimates his costs of occupying different 

regions of the grid. 
2) Each agent broadcasts his estimates to other agents. 

3) Each agent makes the globally optimal assignment and 
takes on the task of getting to the appropriate region. 

4) As before, the agents search for Red. The agent who 
detects Red broadcasts Red’s location to the other agents. 

5) Each agent estimates the cost of his occupying each 
quadrant and broadcasts his table of estimated costs to 
the other agents. 

6) Each agent then chooses his own task assignment on the 
basis of global optimization, using the local information 
supplied by the other agents. 

2.6.2. Knowledge and Capability Requirements: 
1) Each agent is able to estimate his cost for achieving 

each goal. 
2) Each agent is able to determine the globally optimal 

assignment given some cost estimates. 

III. FORMAL SPECIFICATIONS 

Our specification language must be usable for a variety of 
domains. Therefore, it must be able to express at least the 
following about any domain: 

The state of the environment and the important parts of 
the states of the agents in the system. 
The legal state transitions of the environment. 
Constraints on the state of the environment that must be 
respected. 
The legal moves for the agents, i.e., the actions that 
the agents can perform, or be requested, permitted, or 
commanded to perform. 
The important parts of the reasoning abilities of the 
agents, i.e., how their beliefs at one time lead to their 
beliefs at a later time. 
The perceiving abilities of the agents, i.e., how the 
environment and some parts of their internal state are 
related. 
The communicating abilities of the agents. 

One way of specifying problems and actions declaratively 
is to use the situation calculus [19]. However, the situation 
calculus, while quite simple, is not very usable in practice. 
It requires that one specify for each possible action what its 
preconditions and effects are, and how it affects different parts 
of the world state. These problems, respectively known as 
the qualification, ramification, and frame problems [16], [23], 
are themselves the objects of considerable research; no good 
solution that works for all of them is available at present. The 
situation calculus also assumes that there is only one agent 
acting in the world, and the world changes only because of 
his actions-this is rather restrictive in DAI. 

The option that seems best is to define a formal represen- 
tational scheme based on a simple version of Propositional 
Linear Temporal Logic (PLTL) [lo]. PLTL provides an ab- 
stract language for characterizing time and events. Procedural 
knowledge can be characterized in PLTL, yielding formal 
specifications that can then be used for explicit reasoning. 
PLTL provides a simple mechanism for abstractly specifying 
the actions performed and the choices taken by different 
agents. It is abstract in that the actions taken do not need to 
be mentioned at any stage. By contrast, approaches based on 
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the situation calculus require that all knowledge be expressed 
declaratively, and that all reasoning be theorem proving us- 
ing low-level declarative knowledge. This turns out to be 
prohibitively inefficient in practice [2], [22]. 

3.1. The Formal Language 
A PLTL formula may be defined by the following grammar: 
1) (cond) ::= (atomic-cond) 
2) (cond) ::= 7 (cond) 
3) (cond) ::= (cond) V (cond) 
4) (cond) ::= (cond) A (cond) 
5) (cond) ::= (cond) + (cond) 
6) (cond) ::= X (cond) 
7) (cond) ::= F (cond) 
8) (cond) ::= G (cond) 
9) (cond) ::= (cond) U (cond) 

The temporal operators (X, F, G, U) are described in Section 
3.2. 

An action description describes an action that may be done 
by an agent, i.e., action descriptions are types of actions. Some 
actions have names (e.g., move-left, move-right) of their own 
and can be described directly. Other actions are described in 
terms of the conditions with which they are related. Using 
PLTL as inspiration, actions may be written as 

1) (action-desc) ::= (action-name) 
2) *Iaction-desc) ::= Achieve( (cond)) 
3) action-desc) ::= Maintain((cond)). 

3.2. Intuitions about the Semantics 

The above language includes just the operators required for 
reasoning about all multiagent systems; for each domain, an 
extension of this language would be required that included 
the operators required to represent the specific aspects of that 
domain: e.g., we assume that the language is augmented to 
allow a certain amount of arithmetic to compute distances 
over the grid. 

The semantics for the above language is given relative to 
a formal model composed of temporal structures. A linear 
temporal structure is a sequence of world states, each following 
the previous one in time. We use linear temporal structures, 
with each structure taken to be a “run” of the problem-solving 
system, i.e., a possible way in which the system may evolve 
over time. An atomic condition is true at some time in a 
structure iff it has been stipulated to be true there. Boolean 

I combinations of conditions are determined in the obvious 
manner. The temporal condition “X cond” is true at some 
time in a structure iff the condition “cond” is true at the next 
time in that structure. That is, X stands for “next time” and 
makes sense only in discrete structures. “F cond” is true at 
some time in a structure iff “cond” is true at some later time 
in that structure. That is, F is to be read as “sometimes in the 
future.” Similarly, G stands for “always in the future” and U 
stands for “until.” cl Ucz is true at a time ti, iff cp holds at 
some time t2 in the future of tl, and cl holds continuously 
from tl to t2. 

The semantics for conditions are quite standard, as are the 
applications of PLTL to the specifications of procedures. The 
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novel part of the semantics concerns the different kinds of 
protocols that we have introduced. Roughly, these correspond 
to one agent making utterances to another agent: the dif- 
ferent protocol types discussed in Section VI correspond to 
different “illocutionary forces,” as described by J. L. Austin 
[4]. Philosophers, such as Hamblin [15], recognize at least 
two different levels of semantics: “extensional” satisfaction, 
and “wholehearted” satisfaction. Extensional satisfaction is 
more basic and, in giving a semantics based on PLTL, we 
analyze protocols at just that level. A theory of wholehearted 
satisfaction is the ultimate goal, but extensional satisfaction is 
a reasonable approximation for our DAl needs. 

Action descriptions are either action names or constructed 
from conditions by Achieve and Maintain. The semantics of an 
action name is the set of structures and times where its defining 
condition is satisfied. The semantics of “Achieve(cond)” is 
the set of structures and times where “F cond” holds; i.e., 
from where “cond” can be achieved in the future. Similarly 
the semantics for “Maintain(cond)” is the set of structures 
and times where “G cond” holds; i.e., where “cond” always 
holds in the future. This is what is meant by “extensional 
satisfaction”: we do not care whether the condition “cond” 
is achieved intentionally by the agent, or due to the actions 
of other agents, or through events in the environment, or 
even because of mistakes on the part of the agent. (By 
contrast, wholehearted satisfaction involves the agent’s doing 
the action by means of other intentional actions, in a manner 
he intends-this is a far more complex notion and not easily 
usable in simple kinds of reactive systems.) We emphasize, 
however, that Achieve and Maintain are not merely nicer 
syntax for F and G, respectively. While F and G yield 
conditions, Achieve and Maintain yield action descriptions. 
These descriptions may be used in the abstract plans of agents, 
and issued as commands or requests to other agents. Their final 
pragmatic impact depends on how they are finally interpreted, 
e.g., whether the agent begins to work for them immediately 
and whether he succeeds with them. 

The semantic intuition formalized here is that several linear 
temporal structures are a priori possible, but only one of them 
will be actualized. A statement, which expresses a condition 
or describes an action, is evaluated relative to a structure and a 
time in that structure. A statement thus excludes the structures 
and times where it is not satisfied. For example, a constraint 
is a statement of the form “always p.” When evaluated at the 
“start of time,” it excludes all structures where p does not 
hold throughout. 

A linear temporal structure may be discrete, dense, con- 
tinuous, or even arbitrary [27]; only the discrete case is 
computationally tractable. We assume that time is discrete and 
point-based, but allow concurrent events. Only variables that 
correspond to parts of the environment are used in its specifi- 
cation. The agents’ internal variables are considered only for 
the specification of their internal states and capabilities. The 
flow of time corresponds to the happening of an external or 
internal event, i.e., time flows as the environment changes, or 
as agents act, communicate, or reason. Thus the same “clock’ 
applies to reasoning as does to acting. The granularity of the 
model corresponds to the shortest event (action, or step of 
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reasoningtiif none of our specifications uses the “next-time” 
operator, this is not required. Each action name has a defining 
temporal condition, called the action-condition of the action. 

Using the semantics for action descriptions, we can obtain 
a semantics of the protocols. A transmitted action description 
must be in the language of the protocol. In a command 
protocol, a receiver must accept the action description (i.e., 
agree to perform it) when it is received, which depends on 
the time delay of the communication channels being used for 
the protocol. The structure and time must then be such that 
the action can be performed successfully. Receivers in request 
protocols can choose whether or not to perform a requested 
action, depending on their internal states when they receive 
the request. We assume that the request itself includes details 
of how much delay can be tolerated by the requesting agent, 
so that the receiver does not have to perform the requested 
action immediately and can drop it after it has lapsed. 

The effect of a message, sent according to some protocol, 
depends on not only the static relationship between the agents 
involved, but also the state of the receiver. The effects of the 
messages may be predicted in cases where other constraints on 
the states of the agents are known; e.g., if in a system a request 
for an action always occurs after the receiver has agreed to be 
helpful and has the requisite know-how, it would certainly be 
carried out. It is known that there are no monotonic theories 
that may be used to predict the effects of simple actions, let 
alone those that (like message transmissions and receptions) 
involve more than one agent over a period of time. So instead 
of striving for such a theory, we propose that protocols, and 
the actions they result in, be represented in terms of constraints 
on structures. While, for simplicity, constraints are treated as 
simple conditionals, they could be refined to be defeasible 
conditionals, or statements of probability or certainty. This 
idea is elaborated later in this section. Treating constraints in 
this manner as an objective part of the world has proven quite 
effective in linguistics and philosophy [5], [26]. 

3.3. Formal Semantics 

We define a model, M, as a set of structures and an 
assignment of atomic formulae to time indexes in those 
structures; i.e., M = (S, P). Each structure, S E S, is a linear 
sequence of time indexes, (to, . . .). The function P assigns 
to each time index the set of atomic formulae that are true 
in it (the indexes in different structures are distinct). When 
the model is understood from the context, it is not mentioned 
explicitly. We thus write “the formula p is satisfied in structure 
S at index t” as S, t b p. A formula, p, for which such 
a structure and index can be found is called satisfiable. A 
formula that is satisfied at all structures and time indexes is 
called valid. Given the motivation of the previous subsection, 
the following definitions result: 

l S, t b p, where p is an atomic formula, iff p E P(t) 
l S,t  + -y iff S,t k p 
l S, t + p V q iff S, t k p or S, t /= q 
l S,t~pAqiffS,t~pandS,t~q 
l S,t~p+qiffS,t~porS,t~q 

l S, t  + Xp iff S, t’ + p, where t’ is the successor of t  

in structure S 
l S, t b Fp iff for some t’: S, t’ + p, where t’ > t  

l S, t + Gp iff for all t’: S, t’ + p, where t’ > t  

l S, t b pUq iff for some t”: S, t” /= q, where t’ > t ,  and 
for all t’ : t < t’ < t”: s, t’ + p. 

Using the intuitions expressed earlier about what we mean 
by actions in the model, we can provide the following satis- 
faction conditions for actions: 

l S, t  t= A, where A is an action name, iff S, t  b 
action-condition(A) 

l S, t b Achieve(p) iff S, t  b Fp 
l S, t b Maintain(p) iff S, t  k Gp. 
A linear temporal structure satisfies the sending of a mes- 

sage on a protocol at a particular time iff that message 
is actually sent on that protocol then. Whether and when 
that message actually arrives depends on the conditions un- 
der which it was sent and the protocol used. The relevant 
conditions and properties of the protocol are captured by 
a constraint on the sending and potential reception of that 
message. The message would be received if this constraint is 
satisfied. The reception of a message, in turn, imposes another 
constraint: one which relates the reception of that message to 
the (eventual) invocation of some processing routine on it; 
e.g., it would relate the reception of a request to the receiving 
agent’s adding it to his agenda. Another kind of constraint is 
needed to involve the capabilities of an agent. Thus we might 
have a constraint that if a certain action is on the agent’s 
agenda, then it is eventually acted upon. 

Constraints, applied in the manner described above, have 
several important consequences: 1) the capabilities of agents, 
the behaviors of protocols, the modes of reasoning and acting 
of agents, and properties of the environment can all be 
uniformly described; 2) it is possible to consider both the 
internal (representational) view, and the external (objective) 
view simultaneously-we can go from an agent’s decision 
to send a request, to its actual transmission through the 
physical world, to its reception and eventual incorporation in 
the receiver’s agenda, to action on it by the receiver (in the 
real world), and so on, with ease; 3) while our original aim 
was to take care of just extensional satisfaction, we actually 
do better, because constraints allow us to model behavior in 
classes of situations, rather than the individual situations that 
are realized in the real world. As we show below, many of the 
constraints that would be useful from a DAI point of view can 
be expressed simply as formulae in the logic as defined so far. 
Nothing more is required for them in the formalism. However, 
it is another problem to express these constraints-we expect 
that the condition-result form of the constraints will greatly 
simplify this task. 

IV. THE PROBLEM-SOLVING SYSTEM 

A problem-solving system consists of a problem, agents, and 
an agent organization. A simulation of such a system includes 
the environment of the agents as well (here it contains the 
process that decides Red’s moves). The Blue agents have, 
in general, inaccurate models of the environment, based on 
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those parts of it that we explicitly declare they can perceive. 
However, the simulation maintains the global state of the 
problem, consisting of the real state of the environment and 
of each agent. 

the agent has no useful interaction are best either ignored or 
treated as a part of the environment. 

4.1. The Parameters of the Problem-Solving System 
Several parameters can be used to distinguish among multi- 

agent problem-solving systems. We consider reactive problem- 
solving systems only. Reactive problems, a generalization of 
the pursuit problem that we have been discussing, have the 
following features: 

An important point is that, while the world is complex, 
agents are limited. As a result, they might act inappropriately: 
they act on the basis of their possibly inaccurate represen- 
tations. We consider the agents’ internal representations to 
be important, but make no claim about the form they must 
take. The accuracy and detail of these representations depends 
on the agents’ capabilities. Potentially, we could have the 
following aspects (relative to a particular problem instance): 

l The environment changes rapidly and unpredictably. 
l The agents are limited reasoners. 
l The agents are able to perceive only a small part of the 

environment. 
l The agents may act concurrently with each other and with 

events in the environment. 
A reactive problem-solving system can be specified by the 

following information. 
l The initial state of the problem. 
l The way in which the environment may change. 
l The legal moves for the agents. 
l The organization of the agents. 
l The abilities of the agents (these determine, in part, the 

organizations they can participate in, and in what roles). 
Important abilities are the ones of reasoning, perceiving, 
communicating, and acting. 

The state of the environment according to the agent. 
The problem that the agent is solving. 
The abstract plan adopted for execution. 
An agenda of tasks to do. 
Current tasks; i.e., tasks selected from the agenda for 
working on now, or those derived directly from some 
unprecedented change in the environment. The latter 
option is important in reactive systems-events can occur 
that demand immediate action. Once an agent has the 
situation under control locally, he can always resume 
working on the long-term or global task. Such reactive 
behavior could be accounted for by the presence on the 
agenda, at all times, of a basic task like “stay alive,” which 
could, e.g., yield a subtask “run” if a fire starts nearby. 
Of course, the agent may use an interrupt mechanism to 
invoke it. 
The resources available to the agent. For each resource, 
the agent needs to represent the following information: 

l The resources available to the agents, and how the agents 
try to optimize their usage of these resources. 

The specifications of the above parameters can be simplified 
if we specify separately the properties of the protocols that the 
agents would use in their communications and the different 
kinds of agents they would have to deal with. That is, we 
need specifications for 

l The protocols that are used by the agents in different 
organizations; e.g., in a master-slave organization, only 
command protocols are needed. 

l The abilities and dispositions (e.g., helpfulness) of the 
different kinds of agents in an organization. 

4.2. Description of the Agents’ Internal States 
Just as in a single-agent system, an agent in a multiagent 

system has to manage all his tasks using the resources available 
to him. The primary differences are 1) a multiagent system 
may achieve much more than any of its agents could individ- 
ually, and 2) the resources of an agent in a multiagent system 
might themselves be “intelligent” and the tasks an agent has 
to do could be simplified by other agents. Agents who provide 
services to other agents (e.g., by accepting commands or 
requests, or by giving permissions) are resources of the other 
agents. Such resources can be assigned high level tasks and 
do not need to be actively controlled by the assigning agent. 
The resource interfaces capture the expertise, knowledge, and 
availability of the other agents, and do so uniformly for both 
intelligent agents and “dumb” resources. Agents with whom 

a. Static information, e.g., about the protocol for 
accessing it. 

b. A cost metric for the resource. 
C. A model for the usage of the resource, e.g., the 

other resources that have to be assigned to the 
resource in order to get a particular performance 
out of it. In the pursuit problem example, the con- 
troller can use a Blue agent to occupy a quadrant, 
but an agent can occupy only one quadrant at a 
time. Also, it costs fuel and time to get an agent 
to the quadrant assigned to him. 

d. The current state of the resource: 1) how much of 
it is available, and 2) what operations are needed 
to be able to use it, e.g., whether the agent is 
facing in the wrong direction, and whether the 
agent is in sensing or moving mode. 

. 

. 

4.3. 

An assignment of the resources to the current tasks. 
Factors such as cost metrics, which tacitly represent the 
agent’s self interest, need to be considered in making 
these assignments. 
The actions to be done now. These depend on the re- 
sources assigned to different tasks and the protocols for 
using them. 

The Simulation Process 
The simulation proceeds as follows. At any given moment, 

the real world is in a certain state. The Blue agents are able to 
access parts of the global state depending on their perceptual 
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abilities, such as range of perception and accuracy. Depending 
on the state of the world as he perceives it, each Blue agent 
computes the optimal resource assignments for himself and 
decides what actions he must take. The resources available to 
an agent include the other agents whom he might command, or 
somehow get to act for himself. Agents may make predictions 
about the effects of their actions, but only the actions that they 
perform affect the state of the world. Any action may fail, or 
have unexpected consequences, or have consequences that are 
not perceptible until much later. However,  the world “knows” 
its actual state immediately; the agents only know what they 
can perceive or infer. Thus the agents perceive, decide, and 
act, the world changes, and the simulation continues. 

4.4. Specifications of the Pursuit Problem 

This section contains an example specification for our main 
example, the pursuit problem. We define a notation in order to 
simplify the specification. The two coordinates of the problem 
grid are X and 1: and the variables i and j range over these 
coordinates, respectively. We refer to the Red agent as R and 
to the Blue agents as 0’;‘s. B is used for any B” and A is 
used for both R and the Bk’s. B’ denotes the agent to whom 
the specification applies. The coordinates of A are written as 
A, and A,. 

1) 

4 

3) 

4) 

5) 

6) 

The initial state of the problem, i.e., the environment and 
the agent locations: R, = 9. R, = 9, Bi = 1, and so on. 
Legal transitions for the environment: [(R,, RY) = 
(i. j)] - [S((R,. R,) = (i’.j’))], where (i’,j’) E 
{(i. j). ii + 1. j).(i - 1. j). (i.j + l),(i,j - 1)). 
Constraints on the system: (1 5 A,, A, 5 30) A 
(CR,. R,) # (B,. Bu)). 
Legal moves for the agents at the physical level: 
[(Bl. B&) = (i. j)] - [X((BL. Bh) = (i’,j’))], where 
(i’.j’) E {(i.j).(i+l.j).(a-l:j),(i,j+l),(i,j-1)). 
Win condition: (3k : (0,“. B,“) = (R, - l,R,)) A 
(3 : (B,k. B,“) = (R, + 1. Ry)) A (3k : (B;, B;) = 
(R,. R, - 1)) A (5% : (B,“. B,“) = (R,, R, + 1)). 
This complex condition is referred to as “Win” in what 
follows. 
Loss condition: (R, = 1) v (R, = 30) v (R, = 
1) v (R, = 30). 

V. AGENT AEHLITIES 

As stated in Section 4.1, agents have at least four classes 
of abilities: acting, perceiving, communicating, and reasoning. 
These abilities must be specified declaratively 1) to define a 
particular problem-solving system, and 2) to define an agent’s 
representations of other agents. Each agent tries to enter into 
protocols with other agents and predicts and explains their 
actions, on the basis of the representations he has of them. 
These representations also determine whether he should aid 
or hinder others. A controlling agent must have the expertise 
to guide other agents. Thus he must represent the abilities, 
availability, and work-load of the agents he controls, as 
representations of his resources. 

5.1. Acting Abilities 

The acting abilities of an agent are the actions he can 
perform. These may be simple actions that can be done in a 
single step, or more complex ones that require that a coudition 
be achieved or maintained. The latter kind of actions may call 
for an arbitrary number of steps; in particular, a maintenance 
action may never terminate. Clearly, the actions an agent 
can do depend on his perceiving and reasoning abilities and 
his physical attributes. As described below, actions may be 
specified both by name (e.g., move-left, move-right), and by ap- 
plying the operators, Achieve and Maintain, to specifications of 
conditions (e.g., Achieve(good-state), Achieve(good-state, V 
good-stutez), Muintuin( Tbad-state)). All agents can do the 
following actions: 

1) yyeilefi: [(Bk,Bh) = (i,j)] --+ [X((BL,Bh) = (i - 

2) move-right: [(BL.BL) = (i,j)] --f [X((Bk, Bh) = 
(i + l,d)l 

3) move-down: [(BL,Bh) = (i,j)] + [X((BL.Bh) = 
(i>j - 1111 

4) move-up: [(Bk, Bh) = (i,j)] + [X((BJ., Bb) = (i,j + 
I))1 

5) no-op: [(B;, B;) = (i,j)] + [X((B;, B;) = (i,j))]. 
For agents that execute abstract commands, we can spec- 
ify the acting abilities as a set that includes not only the 
moves above but also the constructs Achieve(right-quadrant), 
Maintain(distance), and so on, where each of the conditions 
on which the constructors are applied might itself be further 
written as a complex temporal condition. Other actions, which 
may take more than one step, could have the intermediate steps 
undefined, as in the case of actions constructed using Achieve 
and Maintain, or partially defined, as in the following three 
possible specifications for move-lefr-up: 

1) move-lefr-up by “first move left, then move up”: 
(B;. B;) = (i.j) -+ (X((B;.B;) = (i - 1,j)) A 
XX((B:, B;) = (i - l.j + 1))). 

2) move-left-up by a partially determined path: (Bk, Bh) = 
(i. j) + (X(((B;. BI/) = (i - 1,j)) v ((B:, Bj) = 
(1:. j + 1))) A XX((Bk. Bb) = (i - 1,j + 1))). Now it 
is possible to move left and then up, or up and then left. 

3) move-left-up by an undetermined path: If the intermedi- 
ate states are not important, they need not be specified 
at all. Just to add further indeterminacy, we will make 
this specification allow four units of time: (Bk, Bb) = 
(i,j) + XXXX((B;, B;) = (i - l,j + 1)). Now B’ 
may go from (i, j) to (i - 1, j + 1) using any path that 
takes four steps. 

A possible strategy for the Blue agents, since they must 
surround the Red agent in order to win, is for each Blue 
agent to occupy one of the four quadrants around Red. This 
strategy is called “Lieb” [13]. It is thus useful to define a 
quadrant condition, which is true when a Blue agent occupies 
the appropriate quadrant around Red: 

1) left quadrant condition, qt : (BL < R,) A (1 Bb - R,] < 
Rx - B;) 

2) right quadrant condition, qr : (BL > R,) A (1 Bh - R, ] < 
Bh - Rz) 
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3) down quadrant condition, qd : (Bh < Ry)~( 1 B; - R, I < 
R, - B;) 

4) up quadrant condition, qU : (Bh > RY) A (IB: - R, I < 
B: - 4,) 

There may be task descriptions corresponding to these quad- 
rant descriptions, e.g., we may define a new task description, 
tql, corresponding to Achieve(ql). When a task is assigned 
to an agent, the task specification must take into account the 
identity of the agent being assigned the task. For example, if 
B3 is to be assigned the task of occupying the left quadrant, 
the condition in the command must involve B3; we write this 
as tql. B3). In general, this allows tasks for which the assigned 
agent must find the appropriate physical actions. 

5.2. Perceiving Abilities 

The perceiving abilities of an agent depend on both his 
reasoning abilities and his perceptual hardware. Indeed, per- 
ception and reasoning may be distinguished only by looking 
at an agent’s internal architecture. For example, whether an 
agent “sees” a comer, or just sees edges and “infers” a corner, 
depends on whether his perception module can, by itself, detect 
a comer. Perceiving abilities are specified formally as follows: 
an agent has a particular perceiving ability if, given a state 
of the world, he can come to a particular internal state. An 
example specification is “if Red is i steps away from a Blue 
agent and i < 5, then the Blue agent believes that Red is i steps 
from him.” The ac’curucy of an agent’s perceptions can also be 
captured: e.g., “if Red is more than j steps from a Blue agent 
and 1 > 10, then the Blue agent believes that Red is exactly 
10 steps away.” These specifications state that the given Blue 
agent’s sensor for Red is accurate for a distance of up to 
4 steps. and cannot distinguish among distances greater than 
10 steps. Nothing is known about its accuracy for distances 
beween 5 and 10 steps. 

An agent might not perceive and represent all of the features 
of the problem-solving system as they are externally specified; 
on the other hand, an agent might represent some features 
that are not in the externally given specifications. We refer 
to different components of the problem-solving system, as 
perceived by an agent, by using the agent’s name followed 
by a dot followed by the name of the relevant component. 

We specify perceiving abilities by expressions of the form 
%‘I conditioni + condition2),” where the two conditions 
are formulas in the temporal specification language, with the 
following use and meaning intended. “Conditioni” expresses 
the conditions under which the given perceiving ability applies, 
e.g.. whether the object being examined is well-lit, whether 
the agent is at a suitable location and facing in the right 
direction, and whether the agent is attentive. “Condition2” 
expresses a restriction on the agent’s internal representations, 
as a result of his perception using the given perceiving 
ability, e.g., the agent knows the actual location of Red, or 
believes it to be within a range of 5 of the true value of 
the X-coordinate. Thus “conditiona” must necessarily involve 
the agent’s internal representations; even “conditioni” may 
involve these representations, e.g., to express that the agent is 
in a oarticular state of attentiveness. However. soecifications 
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of perceiving abilities must not involve the internal states of 
other agents. If there are any connections among the internal 
states of different agents, they must emerge in their interactions 
through the shared world or through explicit communication. 
Some interesting examples of perceiving abilities follow. We 
notate “agent B’s representation of a” as B.a. 

. 

. 

. 

5.3. 

G(B’.Bk = Bk): “agent B’ always knows his x coor- 
dinate.” Note that in this example, the condition corre- 
sponding to “conditionl” is identically true. 
G((0 < (R, - BL) 5 5) + (B’.R, = R,)): “agent B’ 
knows the z coordinate of Red, whenever the latter is 
within 5 steps to his right.” 
G(((Rz - Bk) > 15) + (B’.R, = BL + 15)): “agent 
B’ knows the x coordinate of Red, whenever the latter is 
exactly 15 steps to his right, but cannot distinguish among 
locations of Red further to his right.” 

Reasoning Abilities 

The reasoning abilities of an agent are the hardest to 
specify formally. We specify them as relationships between 
an agent’s internal representations at one point in time and his 
representations at a later time. This time difference captures 
the speed of the agents’ reasoning system, in terms of a real- 
time clock. The time referred to by the agents’ representations 
can also vary: present for beliefs about the current state of the 
world, future for predictions, and past for explanations. The 
time delay due to reasoning can be ignored, if one assumes 
that the reasoning is especially simple relative to the agents’ 
capabilities. For example, if an agent believes that a particular 
coded message was transmitted and is able to decipher the 
code, he might come to believe that a command, say move-left, 
was transmitted. Other aspects of reasoning abilities are more 
domain dependent and involve whether an agent can compute 
the optimal usage of his resources or not, predict another 
agent’s actions or not, and so on. 

We specify reasoning abilities by expressions of the 
form “G(conditioni -+ conditionz).” Both “conditionl” 
and “conditiona” must involve just the agent’s internal 
representation, the first expressing his state before the 
corresponding reasoning ability is invoked, and the second 
expressing his state after the invocation. Some important 
examples of reasoning abilities that we use later in this paper 
follow. 

1) Reasoning-ability-quadrant-assignment: the ability to 
compute optimal quadrant assignments. We do not 
discuss the predicate “optimal-l” and similar domain 
dependent functions in this paper. The algorithm 
discussed here assumes global optimality. 

G(optimal-l((t,,, Bkl), (tq,,Bk2), (&, Bk3), (t,,,Bk4)) 
+ B’.resource-assignment = 

2) Reasoning -ability -optimal -resource -moves -for -all (see 
top of page): the ability to compute optimal moves, given 
a resource-assignment, and to decide to act according to 
those moves. The action Send is described in Section 
VI. 
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G(optimal-2(B’.resource-assignment, (movel, B’), (moves, B’s), (movea, Bk3), (moved, Bk4)) 

+ B’.actions = mover, 

( 
Send( B’, BkZ , access-protocol, movea), 
Send( B’, Bk3, access-protocol, moves), 

Send( B’, Bk4, access-protocol, moveb))) 

3) 

4) 

5) 

Reasoning-ability-send-own-location: the ability to send 
one’s own location to the controller, B”. 

G((Bk, B;) = (Cd) 
--+ B’.actions = Send(B’, B”, blue-location, (i, j)) 8) 

Reasoning-ability-send-red-location: the ability to send 
Red’s location to the controller, B”. 

GWLR,) = (i,j)) 
+ B’.actions = Send(B’, B”, red-locution, (i, j)) 

Reasoning-ability-mount-search: the ability to compute 
optimal moves in order to have all agents search for 
Red, if his location is not known. This can be specified in 
greater detail following the specifications for Reasoning- 
ability-start-patrolling, Reasoning-ability-scan-outwards, 
and Reasoning-ability-scan-inwards. 

G(lB’.found A optimal-3 ((mover, B’), (movea, Bkz), 

(movea, Bk3), (moveq, B”“)) 

+ B’.actions = (mover, 
Send( B’, Bk2, basic-commands, moves), 
Send( B’, B”” , basic-commands, movea), 
Send( B’, B”” , basic-commands, moved))) 

6) Reasoning-ability-close-in-on-red: the ability to compute 
optimal moves to have all agents close in on Red. This 
can be specified in greater detail using the specification 
for Reasoning-ability-approach-red as a guide. 

G(optima14 ((mover, B’), (movea, Bk2), 

(movea, Bk3), (moved, B”“)) 

--+ B’.actions =(mover, 

Send( B’, Bk2, basic-commands, moves), 
Send( B’, Bk3, basic-commands, movea), 
‘Send( B’, Bk4, basic-commands, move4))) 

7) Reasoning-ability-start-patrolling: the ability to patrol 
a quadrant about vertex (i, j). Here only the case of 
quadrant qr is given. Note that here and in the sequel, 
current-tasks just denotes a set of tasks. 

G(B’.current-tasks = (patrol-region(i,j, qr)} A 
TB’.found -+ [[(Bk, Bk) = (i+ l,j)] -+ [[B’.actions = 
move-down]A[B’.current-tasks = (patrol-region(i, j, qr), 

9) 

B’.out-scan(i,j,q~)}]]] A[[(BL,Bb) # (i + l,j)] -+ 
[[B’.actions = move-down] A [B/current-tasks = 
(patrol-region(i, j, qr), B’.in-scan(i, j, qr)}]]]) 
Reasoning-ability-scan-outwards: the ability to scan a 
quadrant outwards from vertex (i, j). Only the case of 
quadrant qr is given here. Note that B’.found E (3i, j : 
(B’.R,,B’.R,) = (i,j)), and is made true due to the 
agent’s perceiving abilities. Fig. 2 shows the patrolling 
path taken by B’ when using this reasoning ability. 

G(B’.out-scun(i, j, qr) E B’.current-tasksAlB’.found 
Aodd(BL -i) + [[(J’ - Bk) < (Bk -i) --+ B’.actions = 
move-down] A [(j - Bh) = (BL - i) A (BL < 30) -+ 
B’.actions = move-right]A [(j - Bb) = (BL -i) A(BL = 
30) --+ B’.current-tasks = (patrol-region(i, j, qr), 
B’.in-scan(i,j, qT)]}])A G(B’.out-scun(i, j, qr) E B’. 
current-tasks A lB’.found A Todd(Bj, - i) + [[(BL - 
i) > (Bh - j) + B’.actions = move-up]A 
[(B; - j - 1) = (B; - i) A (B; < 30) -+ 
B’.actions = move-right] A [( Bh - j - 1) = 
(BL - i) A (Bk = 30) -+ B’.current-tasks = 
(patrol-region(i, j, qr), B’.in-scan(i, j, qr)]}]) 
Reasoning-ability-scan-inwards: the ability to scan a 
quadrant inwards from vertex (i, j). Only the case of 
quadrant qr is given here. 

G(B’.in-scan(i, j, qr) E B’.current-tasksA TB’.found 
A Todd(B; - i) + [[(j - Bh) < (Bk - i - 

1) + B’.actions = move-down]A [(j - Bb) = 
(Bk - i - 1) + B’.actions = move-lefr]])A 
G(B’.in-scun(i, j, qr) E B’.current-tasks A lB’.found A 
odd(B; - i) + [[(B; - i) > (B; - j - 2) A 

((Bh,Bh) # (i + L.d) + B’.actions = move-up]/\ 
[(BL - i) > (Bh - j - 2) A ((Bh,Bb) = (i + 
1, j)) --t B’.actions = move-down A B’.current-tasks = 
(patrol-region(i,j, qr), B’ .out-scan(i,j, qT)}]A [(Bk - 
j) = (Bk - i - 2) ---t B’.actions = move-left]]) 

10) Reasoning-ability-approach-red: the ability to approach 
Red; i.e., to follow Red if he moves, and to get closer, 
if he does not. 

G(B’.current-tasks = {approach-red} -+ [(R,, R,) 
= (i,j)] A [X((R,, RY) = (i,j + l))] + [B’.actions = 
move-q@ [(R,,R,) = (i,.i)]A[X((&,R,) = (i,j- 
l>)l + [B’.actions = move-down]A [(R,, RY) = 
(i,j)] A [X((R,, RY) = (i + l,j))] -+ [B’.actions = 
move-right]A [(R2, RY) = (i,j)] A [X((R,,&) = 
(i - l,j))] + [B’.actions = move-left]1 [(R,, RY) = 
(i,dl A W((LR,) = (i,d>l --+ I(% > 
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Fig. 2. Path Taken when Scanning Outwards. 

Rz) --+ [B’.actions = move-left]1 (BL < RI) + 
[B’.actions = move-right]A ((Bk = R,) A (Bj > 
44)) + [B’.actions = move-down]A ((BL = 
Rz) A (B; < 4)) + [B’.actions = move-up]]) 
The correctness of this can be seen from the 
fact that approach-red is really an abbreviation for 
Muintuin((lB~ - R,I + IB; - R,j = m) + X(IB; - 
R,I + IB; -R,I I m) A(IB: - R,I + IB; -R,I = 
m)A(m >l)+ F(IB; - R,l+lB; -R,I <m)) 

11) Reasoning-ability-optimal-resource-abstract-moves-for- 
self: the ability to compute optimal moves, given a 
resource-assignment, and to decide to do only ones own 
action according to those moves. 

G(optimal-2 (B’.resource-assignment, 

(taskl, B’), (taskz, Bk2), 

(tasks, Bk3), (task*, Bk4)) 

4 B’.current-tasks = (taskl)) 

12) Reasoning-ability-send-cost-estimate: 

G((cost = c + 

B’.actions = Send(B’, B”, cost-estimate-protocol, c))) 

the ability to make and send the optimal cost estimate 
to the controller, B”. 

13) Reasoning-ability-abstract-resource-commands: the ab- 
ility to give abstract commands to subordinates. 

G(optimal-5 (B’.resource-assignment, 

CabsI, B’), (ah Bk2), 

(abss, Bk3), (absd, B”“)) 

+ B’.actions 

= (absl, 

Send(B’, B”’ , abstract-commands, absz), 

Send(B’, Bk3 , abstract-commands, absa), 

Send(B’, Bk4, abstract-commands, absa))) 

14) Reasoning-ability-achieve-anything: the ability to do an 
Achieve task optimally. In general, this is too powerful 
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a requirement for real-life agents. 

G(B’.current-tasks ={Achieve(t)}A 

optimal-4(Achieve(t), move) 

+ B’.actions = move). 

5.4. Communicating Abilities 
The communicating abilities of an agent tell us what kinds 

of messages he can send, to which kinds of agents, over 
what distances, and in what circumstances. These abilities 
fix the physical restrictions under which one agent is able 
to communicate with another. We specify communicating 
abilities in two ways: 1) as conditions on when certain 
agents can send or receive messages on different protocols, 
and 2) as conditions on the operations of those protocols 
themselves. The latter are considered in Section VI along with 
other conditions on protocols. Communicating abilities are 
specified in the first way by “G(condition1 --+ conditionz).” 
“Conditionl” may involve conditions about the real world 
and the agent’s internal state, as well as the state of the 
agent with whom he is to communicate. “Conditionz” must 
be of the form Can-send or Can-receive applied to arguments 
specifying the protocol and both of the agents involved. An 
example specification expressing “if B’ is within 5 steps of 
B”, then B’ and B” can communicate using the protocol for 
basic-commands” is 

G((IB; -B;I < 5)+ 
(Can-send(B’, B”, basic-commands))) 

G((IB; -B;I < 5)--+ 
(Can-receive( B”, B’, basic-commands))). 

This specification language can also express the reliability 
of a communication channel. However, the security of a 
communication channel cannot be expressed by this language, 
since that depends on the knowledge and perceiving and 
reasoning abilities of other agents (a communication channel is 
secure if no other agent than the intended receiver can monitor 
it). 

VI. COMMUNICATION PROTOCOLS 

Protocols determine how agents communicate. To a large 
extent, they determine the organization that exists among the 
agents, and the nature and extent of the interactions allowed 
among them. Since agents can command, permit, inform, give 
explanations to, and request other agents, they can participate 
in the protocols that correspond to these activities. It is 
sometimes convenient to talk of a “protocol” with the sender 
and receiver abstracted out, i.e., to have the same protocol 
exist between different pairs of agents. 

We consider synchronous and perfectly reliable protocols 
only, and focus on their logical aspects, which are the most 
important for our purposes here-their physical aspects are 
relatively unimportant since we are not considering perfor- 
mance issues. Some protocols, such as elections, can involve 
many agents, but we assume in the following that all protocols 
involve only two agents. A message to be broadcast will thus 
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have to be transmitted to each agent in turn, and knowledge 
about synchronization will not be available, even tacitly, to 
the agents. The following aspects of protocols are relevant. 

l The sender: the agent who sends communications under 
this protocol. 

l The receiver: the agent who receives communications sent 
under the protocol. 

l The languages used in the protocol by the senders and 
the responders. respectively. These languages determine 
what may be communicated using the protocol. 

l The functions that are used first to encode the message 
of the sender, and second (on its arrival at the receiver’s 
site) to decode the message into a form acceptable to the 
receiver. 

l The actions to be taken by the receiver of the protocol 
when a message is actually received, so as to incorporate 
the contents of the message into its local data structures 
for further processing. 

Protocols are specified simply in terms of the language of 
communication that they allow and the pairs of agents who 
use them to communicate. However, the more interesting part 
of their specification concerns their other properties. These 
include the specification of when they are effective, how much 
time-delay they introduce in the transmission of particular 
messages, and what kinds of errors they may introduce in 
the transmitted message. These properties and the information 
that is communicated by the use of a protocol between two 
agents are specified by the use of the predicates Sends and 
Recei\,es corresponding to the occurrence of the actions Send 
and Recei\,e. respectively. Sends( B’. B”. P. n/r) evaluated at t 
means that message -11 is sent by agent B’ at time t according 
to protocol P: if agent B” can understand protocol P, then B” 
receives JI’ at t’. .U’ is the message received after the noise 
of the channel is factored in and (t’ - t) is the communication 
delay. Note that the above specification applies only to B’. 
An example specification is 

G( ( I BI - I3: 1 < 5) - (Sends( I?‘. B”. basic-commands, M) 
- SS(Receives(I3”. D’, basic-commands. M’)))). 

The above are more or less the physical properties of 
protocols. We would like to clarify that we have not addressed 
the problem of what agents or systems ought to do to transmit 
messages successfully or to recover from failure: the first is 
a problem in networks and distributed computing; the second 
concerns domain-dependent heuristics. Each is an important 
research problem that we are abstracting out. We indicated 
above that different types of protocols correspond to different 
types of illocutionary force. We now give the illocutionary 
force semantics of protocols. 

6. I. Information Protocols 

Information protocols provide the languages for commu- 
nicating factual knowledge. The messages received on these 
protocols are interpreted as information about a particular 
part of the world. However, they are best treated uniformly 
as information about the sender’s internal state, and then 
processed (depending on how the sender and receiver are 

related) to cause changes in the receiver’s internal state about 
the world. There is no monotonic theory possible for how the 
internal states of agents should be updated after the receipt of 
information from other agents [21], so we rely on a processing 
function associated with the protocol to provide the operational 
semantics of the computation required. If P is an information 
protocol, then 

G(Receive(B’, B”, P, message) 
+ X( [P.function-to-apply] 

(message, B’local-state, P.slot-affected))) 

P.slot-affected is the slot whose value is affected 
by the information received on protocol P. Note that 
P.function-to-apply is treated like a predicate, and is applied 
to its arguments at the next time index. In practice, 
P.function-to-apply would be a function used to compute the 
value of B’.P.slot-affected at the next time index. For exam- 
ple, let P be a protocol instance of blue-location using which 
an agent B2 sends its location, (i, j), to controller B1. Then 
P.function-to-apply((i, j), B’.local-state, B1 .B2-location) is 
true at the next time index. 

6.2. Command Protocols 
The messages transmitted on command protocols are action 

descriptions, interpreted as commands from the sender to the 
receiver. These protocols specify the receiving agent’s acting 
abilities as they can be directly used by the sender. The 
receiver might be able to perform other actions, but may 
not accept those as commands under the given protocol. This 
could occur if the sender does not know of those abilities at 
all, or can get them done, not as a matter of right, but only 
by making proper requests. Even legitimate commands are 
accepted only conditionally, i.e., the receiver would accept 
and work on only those commands that do not violate any 
of several kinds of constraints. As an example of a physical 
constraint, a Blue agent cannot move off the grid or move 
into a location occupied by Red. Furthermore, a command 
may be executed only if some local interrupt (e.g., a fire) does 
not change the receiver’s immediate priorities or render him 
unable to execute it. Even “social” constraints might come 
into play, e.g., a subordinate may refuse to follow an order if 
he believes that doing so would be unethical. As a specific 
example of using this protocol, if P is a basic command 
protocol, then 

G(Receives(B’, P, B”, message) + 
X(message E B’.actions)). 

For abstract command protocols, the slot affected is “current- 
tasks.” 

6.3. Request Protocols 
A sending agent uses a request protocol to ask a receiving 

agent to grant a permission, or provide information, or perform 
an action that he desires. Request protocols are somewhat 
harder to specify than command protocols, since action de- 
scriptions sent over them are not necessarily accepted for 
doing by the receiver. Even if the receiver initially agrees 
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to do the requested action, there is no guarantee that it will (and not another). Accordingly, they directly affect just the 
be done-rdinarily, actions that are done in order to satisfy receiver’s view of the sender’s internal state. The justifications 
requests are of a lower priority than actions that are done to or explanations received may also be accepted by the receiver, 
satisfy commands or the agent’s own plans. Even if priorities in which case they may affect his own representations about 
are ignored, the semantics of a request protocol cannot be the world; however, we treat this process as a part of the 
determined statically, because it depends on the situations receiver applying his reasoning abilities on his own internal 
under which the protocol is used and on the state of the state. There is no easy specification for this. We use the 
receiving agent at that point. following (with P an explanation protocol): 

But as in the specification for information protocols, we 
may use the function associated with the protocol to decide 
how a given message affects the receiver’s agenda. If P is a 
request protocol, then 

G(Receives(B’, P, B”, message) 
-+ X ([P.function-to-apply] ( message, B’.B”.local-state))). 

G(Receives(B’, P, B”, message) 
+ X( [P.function-to-apply] 

(message! B’.local-state, B’.agenda))). 

VII. SPECIFICATIONS OF EXAMPLE SYSTEMS 

This section contains specifications in our formal language 
for several variations of the pursuit problem. The centrally 
controlled systems involve a master and some slaves, so 
both kinds of agents must be specified; only one kind of 
agent is needed for distributively controlled systems. The 
resource assignments and actions given below are meant only 
as examples; the actual values would vary with time. The other 
slot values are defined in Section V. For brevity, the empty 
slots are not displayed. 

6.4. Permission Protocols 
A permission protocol is used by a sender to grant permis- 

sions to a receiver. These permissions might not have been 
solicited by the receiver, and could be given just to allow 
cenain options that are not available by default, e.g., the 
sender may allow the receiver to enter a certain region should 
the latter ever need to. We analyze permission protocols in 
terms of the actions they make available to the receiver. This 
presumes that the sender has the requisite authority to issue 
such permissions. In many cases, we would want that once 
an agent is assigned some acting-abilities, it continues to have 

7.1. Omniscient Central Controller 

1) The problem: as given above 
2) The agents: master B1, and slaves B*, B3, B4 

a. master: 

acting abilities: move-le f &move-right, 
move-down,moue-up,no-op. 
perceiving abilities: G(B’.A, = A,), and 
G(B’.Ay = Ay), where A may be Red, or 
any Blue agent 
communicating abilities: G(Can-send(B’, B”, 
basic-commands)), where B” is any slave 
reasoning abilities: Reasoning-ability-quadrant- 
assignment, Reasoning-ability-optimal-resource- 
moves-for-all 

them for some unspecified period, perhaps until it is issued 
a counteracting prohibition. How an agent’s abilities ought to 
persist in the face of sequences of permissions and prohibitions 
is an issue that we leave to future research (see Section IX). 
For permission protocol P, 

G(Receives(B’, P: B”, message) + 
S (message E B’.acting-abilities)) . . 

6.5. Prohibition Protocols 

Prohibition protocols are used by a sending agent to limit the 
choices that are available to the receiver. Prohibitions might 
explicitly rule out certain actions, or introduce new conditions 
that the receiver must not allow to be violated. We analyze 
prohibition protocols in terms of the actions they disallow the 
receiver that he was allowed before. This presumes that the 
sender has the requisite authority. For prohibition protocol P, 

G(Receives( B’. P. B”. message) + 
S(message @ B’.acting-abilities)). 

6.6. Explanation Protocols 

Explanation protocols are like information protocols, but 
more explicitly involve an agent transmitting justifications (or, 
at least, potential or putative justifications). Such knowledge 
is useful when an agent who received some information 
must try to estimate its reliability, or predict the effects of 
some action he is considering performing. These protocols 
concern the internal state of the receiver being a particular way 

problem state: ((R,, Ry), (Bi, Bi), (Bz, B$), 
(B,3, B;), (B:, B,4)) 
method: Achieve(Lieb), Achieve(Win) 
current tasks: tql, tq,, tqd, tq, 
resources: B”, k E [l . . .4] 

. augmented access protocol: basic- 
commands 

. cost metric: time 

. constraints: G( 1 5 B$ B/J < 30) and 
G((B:. B;) # (fL> 4,)) 

. state vector: B!j, B$ 

resource assignment: (tqt, B1), (tqr, B’), 
@a, B3), (bu, B4) 
actions: move-left, Send(B’, B2, 
basic-commands, move-right), . 



. acting abilities: move-left, move-right, move- 
down, move-up, no-op 

. communicating abilities: G(Can-receive(B’, 
B1 ? basic-commands)) 

. actions: Receive( B’. B1 . basic-commands, 
message) 

7.2. Central Controller, Agents Perceive Own Location 

1) The problem: as given above 
2) The agents: master B’, and slaves B2, B3, B4 

a. master: 

acting abilities: move-lefr, move-right, 
move-down, move-up, no-op 
perceiving abilities: G(B’.R, = R,), 
G(B’.R, = Ry), G(B’.BL = BL), and 
G(B’.BS, = B;) 
communicating abilities: 
G(Can-send(B’, B”,basic-commands)) 
G(Can-receive(B’, B”,blue-location)), where 
B” is any slave 

. reasoning abilities: Reasoning-ability-quadrant- 
assignment, Reasoning-ability-optimal-resource- 
moves-for-all 

. problem state: ((R,, Ry): (Bi, Bi), (Bz, Bi), 
(% %I. (B,4, B,4)) 

. method: Achieve(iieb), Achieve(Win) 

. current tasks: tql, tq,, tqd, tq, 

. resources: B”, k E [l . . .4] 

. augmented access protocol: basic-com- 
mands 

. cost metric: time 

. constraints: G( 1 5 Bi, Bi 2 30) and 
GW:> B;) # (Rx, 4,)) 

. state vector: B$ Bi 

. resource assignment: (tql, B’), (tqT, B2), 
(hd, B3L (~qu, B4) 

. actions: move-left, Send( B’, B2, basic-com- 
mands move-right), . . . 

b. slave: 

. acting abilities: move-lefr, move-right, move- 
down, move-up, no-op 

. perceiving abilities: G(B’.BL = Bk), and 
G(B’.B:, = B;) 

. communicating abilities: G(Can-receive(B’, 
B1, basic-commands)), G(Can-send( B’, I?‘, 
blue-location)) 

. reasoning abilities: 
own-location 

Reasoning-ability-send- 

1) The problem: as given above 
2) The agents: master B’, and slaves B2, B3, B4 

a. master: 
acting abilities: move-left, move-right,move- 
down, move-up, no-op 
perceiving abilities: G( IBL - R, 1 + 1 Bb - 
R,I 5 2) -+ (B’.R, = R,)r\(B’.R, = Ry), 
G(B’.Bk = Bk), and G(B’.Bh = Bh) 
communicating abilities: G(Can-send(B’, B”, 
basic-commands)),G(Can-receive(B’, B”, 
blue-location)), and G(Can-receive(B’, B”, 
red-location)), where B” is any slave 
reasoning abilities: Reasoning-ability-quadrant- 
assignment, Reasoning-ability-optimal-resource- 
moves-for-all, Reasoning-ability-mount-search, 
Reasoning-ability-close-in-on-red 
problem state: ((R,, Ry), (Bi, Bi), (B$ Bt), 
(B,3, B;), (B,4, B,4)) 
method: Achieve (B’.found), Achieve(Lieb), 
Achieve(Win) 
current tasks: tql, tq,, tqd, tq, resources: 
B”,k E [1...4] 

. augmented access protocol: basic-com- 
mands 

. cost metric: time 

. constraints: G( 1 2 Bi, Bi 5 30) and 
G((Bi, B;) # (Rx, Ry)) 

. state vector: BE, BY” 

resource assignment: (tql, B1), (tqT, B2), 
(tqd, B3Mbu, B4) 
actions: move-left, Send(B’, B2, 
basic-commands,move-right), . . . 

b. slave: 
. acting abilities: move-leji, move-right, 

move-down, move-up, no-op, as specified 
previously 

. perceiving abilities: G( 1 BL - R, 1 + 1 Bh - 
R,I 5 2) + (B’.R, = R,)r\(B’.R, = Ry), 
G(B’.BL = BL), and G(B’.Bh = Bk) 

. communicating abilities: G( Can-receive 
(B’, B1, basic-commands)),G(Can-send 
(B’, B1 ,blue-location)), and G(Can-send 
(B’, B1, red-location)) 

. reasoning abilities: Reasoning-ability- 
send-own-location, Reasoning-ability-send- 
red-location 

. actions: Receive(B’, B1, basic-commands, 
message) 
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2) The agents: master B1, and slaves B2, B3, B4 

a. master: a. 
. acting abilities: move-left, move-right, 

move-down, move-up, no-op b. 
. perceiving abilities: G( IBk - R, I + IBh - 

R,I 5 2) --+ (B’.R, = R,)r\(B’.R, = Ry), 
G(B’.Bk = BL), and G(B’.Bb = Bh) C. 

. communicating abilities: G(Can-send(B’, B”, 
abstract-commands)),G(Can-receive(B’, B”, 
blue-location)), and G(Can-receive(B’, B”, 
red-location)), where B” is any slave 

. reasoning abilities: Reasoning-ability-quadrant- d. 
assignment, Reasoning-ability-start-patrolling, 
Reasoning-ability-scan-outwards, Reasoning- 
ability-scan-inwards, Reasoning-ability- 
approach-red, Reasoning-ability-abstract- 
resource-commands 

l problem state: ((R,, Ry), (Bk, Bt), (B$ B,2), e. 

(B%% (B,4, B:>) 
. method: Achieve “(B’.found), Achieve(Lieb), f. 

Achieve(Win) 
. current tasks: tqt, tq,, tqd, tq, resources: g. 

B”,k E [1...4] 
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2) The agents: B1, B2, B3, and B4 

acting abilities: move-left, move-right, move-down, 
move-up, no-op 
perceiving abilities: G( IBk - R,I + IBh - R, 1 5 
2) -+ (B’.R, = R,) A (B’.R, = Ry), 
G(B’.Bk = Bk), and G(B’.Bh = Bh) 
communicating abilities: G(Can-receive(B’, B”, 
blue-location)),G(Can-receive(B’, B”, 
red-location)), G(Can-send(B’, B”, 
blue-location)), and G(Can-send(B’, B”, 
red-location)), where B” is any other blue agent 
reasoning abilities: Reasoning-ability-quadrant- 
assignment, Reasoning-ability-start-patrolling, 
Reasoning-ability-scan-outwards, Reasoning- 
ability-scan-inwards, Reasoning-ability-approach- 
red, Reasoning-ability-optimal-resource-abstract- 
moves-for-self 
problem state: ((R,, Ry), (Bk, Bt), (Bz, Bi), 
(Bit, B;), (B$,B,4)) 

method: Achieve ( B1 .found A B2 .found A B3. 
found A B4.found), Achieve(Lieb), Achieve(Win) 
current tasks: tqt, tqr, tq& tq, resources: Bk, k E 
[l . . .4] 

augmented access protocol: 
abstract-commands 

. cost metric: time 

. constraints: G( 1 5 Bk, BY” < 30) and 
GUB:, B;) # (Rm 4,)) 

. state vector: B:, Bi h. 
. resource assignment: (tql, B1), (tqr, B2), 

(tar B3), (bu, B4) 
i. 

. actions: move-left, Send(B’, B2, 
abstract-commands, abss), . . . 7.6. Control Distributed among Self-Interested Agents 

. augmented access protocol: basic-commands 

. cost metric: time 

. constraints: G( 1 5 Bt , Bi 5 30) and 
G((%B;) # (Rm 4,)) 

. state vector: B$ Bi 

resource assignment: (tqt , B1), (tq,, B2), 
(t&i, B3), (ho B4) 

actions: if assignment-to-self(tq) then tq 

b. slave: 
. acting abilities: move-left, move-right, 

move-down, move-up, no-op, as specified 
previously 

. perceiving abilities: G( IBh - R,I + IBh - 
R,I < 2) + (B’.R, = R,)r\(B’.R, = Ely), 
G(B’.Bk = BL), and G(B’.Bb = Bh) 

. communicating abilities: G(Can-receive(B’, 
Bl,abstract-commands)), G(B’, B1, Can-send 
(blue-location)), and G(Can-send(red-loca- 
tion)) 

. reasoning abilities: Reasoning-ability-send- 
own-location, Reasoning-ability-start-patrol- 
ling, Reasoning-ability-scan-outwards, Reason- 
ing-ability-scan-inwards, Reasoning-ability- 
approach-red 

. actions: Receive(B’, B1, abstract- 
command, message) 

7.5. Control Distributed among Altruistic Peers 
1) The problem: as given above 

1) The problem: as given above 
2) The agents: B1, B2, B3, and B4 

a. 

b. 

C. 

d. 

e. 

acting abilities: move-left, move-right, move-down, 
move-up, no-op, as specified previously 
perceiving abilities: G( ] BL - R, I + I Bk - R, I 5 
2) + (B’.R, = R,) A (B’.Ry = Ry), 
G(B’.BL = BL), and G(B’.Bk = Bb) 
communicating abilities: G(Can-receive(B’, B”, 
red-location)), G(Can-send (B’, B”,red-location, 
G(Can-receive(B’, B”, cost-estimate)), and G 
(Can-send(B’, B”, cost-estimate)) 
reasoning abilities: Reasoning-ability-quadrant- 
assignment, Reasoning-ability-start-patrolling, 
Reasoning-ability-scan-outwards, Reasoning- 
ability-scan-inwards, Reasoning-ability-approach- 
red, Reasoning-ability-optimal-resource-abstract- 
moves-for-self, Reasoning-ability-send-cost-est- 
imate, Reasoning-ability-abstract-resource-com- 
mands 
problem state: ((R,, Ry), (BA, B:), (Bz, 
B;), (B:, B,3), (B:, B,4)) 



f. method:Achieve (B’.foundr\B’.foundAB”.found 
Ah” .found), Achieve(Lieb), Achie\,e( Win) 

g. current tasks: tql, tq,., tqd, tqu resources: B”. k E 
[l.. .4] 
. augmented access protocol: basic-commands 
. cost metric: time 
. constraints: G(l 5 0:. BfJ < 30) and 

G((B:. 0;) # (&.R,)) 
. state vector: B$. By” 

h. resource assignment: (tqr. B’). (tqr, B’). 
(tqd. B3). (tqu. D4) 

1. actions: if assignment-to-self(tq) then tq 

VIII. THE IMPLEMENTATION 

The representation scheme developed in this paper has 
been implemented in a small system built on top of the 
CYC knowledge base [18]. The implementation uses a set 
of frames (called “units” in CYC terminology) to define the 
attributes of different parts of the system. We describe only 
the important slots of some important units to give the reader 
a feel for the implementation. The core of the implementation 
is an interpreter that ensures that the appropriate semantics is 
operationally assigned to the different frames. Thus, when a 
frame contains, say. “condl” and “cond2,” it may actually 
stand for a temporal condition of the form: “G(cond1 --+ 
X(cond2)).” 

The problem-solving system on which the interpreter is 
to be executed is defined by defining the environment, the 
agent organization. and the win and lose conditions for the 
system. The environment is specified by giving a function 
that returns its initial state and a bunch of functions that 
generate its successive states. The win and lose conditions are 
simple functions on the state of the environment that return 
T under the appropriate conditions. The agent organization 
is the most complex part of the specification. It is given by 
listing the agents who participate in it, and the relationships 
they have among themselves. These are given in terms of the 
protocols that are defined between pairs of agents. The agents 
are further specified by giving the different abilities they have, 
each ability corresponding to a function in the implementation. 
The interpreter begins with the initial state of the environment. 
Then it loops as follows. It checks whether the win or the loss 
condition holds in the current state of the environment. If either 
does. it terminate. Otherwise, it invokes the agents’ perceiving 
abilities on the environment. These yield values for some of the 
slots in the agents. The agents’ internal representations are thus 
modified in virtual parallelism. Next, it invokes the agents’ 
reasoning abilities on their internal representations, also in 
virtual parallelism. Since each ability has a precondition, the 
preconditions are tested to see which apply. We assume that 
when more than one ability is applicable, the order of applying 
them is not significant. The reasoning abilities lead to some 
slots of the agents being updated. Some of these slots could 
describe the agent’s actions. The interpreter then looks at these 
slots and incorporates the effects of the physical actions in the 
environment. For actions that involve communication, it uses 

superclasses (ProblemSolvingSystem) 

canHaveSlots (environmentOfSystem 

initdStateORPSS 

usesAgentOrga&ation . ..) 

Fig. 3. ReactiveProblemSolvingSystem Class 

instanceof 

configurationConstraints 

environmentOfSystem 

initialStateOfRPSS 

involvesAgents 

lossCondition 

usesAgentOrgz&zation (BlueOrganization-CC3) 

winCondition (WIN-CONDITION) 

(ReactiveProblemSolvingSystem) 

(BLUENOT-OVER-RED? 

IN-GRID?) 

(PurauitEnvironment-1) 

(INITIAL-STATE) 

(Blue-4 Blue-3 Blue-2 Blue-l) 

(LOSS-CONDITION) 

Fig. 4. CentralController-3. 

the encoding function of the protocol in composing messages 
for transmission to other agents. As these messages arrive, and 
are decoded using the decoding function of the given protocol, 
they may trigger further reasoning by their receivers, leading 
to further actions by them. If a zero delay is assumed, these 
actions too have to be incorporated in the environment. Finally, 
the interpreter incorporates the changes due to events in the 
environment itself, and the loop continues. 

We emphasize that the temporal language described in 
previous sections is merely the specification language: it is not 
interpreted itself. Indeed, as already argued, if we attempted 
to have the specification language itself be interpreted, we 
would quickly run into the problems that plague the situation 
calculus approach. Some of the specifications correspond to 
assertions in the declarative representation; others are just 
specifications of different procedures. The general declarative 
scheme is useful even in those cases, since it “parses” a 
complex distributed system into simple chunks that can be 
coded easily and reliably. Also, the implementation is designed 
as a frame system, so different systems can be easily composed 
by reusing previously defined agents. This makes it easy to 
modify parts of a specification to see what the agents must 
know or be capable of doing in each case. 

The functions named in the slot values have been imple- 
mented in Common Lisp. Some terminology in what follows 
has been modified, and some extraneous slot values have 
been deleted for expository purposes. At the top of the frame 
hierarchy for our implementation is the unit defining the class 
of ReactiveProblemSolvingSystem, displayed in Fig. 3. One of 
the instances of this class is Centralcontroller-3, displayed 
in Fig. 4. This system’s organization is described by the unit 
BlueOrganization-CC3 in Fig. 5. Fig. 6 shows ReactiveProb- 
lemSolvin@gent, the class of agents who participate in the 
reactive problem-solving systems. 

The perceiving ability of some agents to sense their own 
location is given by the unit, SensingSelf, displayed in Fig. 11. 
The slot conditionOfPerception is filled with the condition 
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instanceor (CentrallyContralledAgentOrg) 

usedByRPSS (Ce”tralCo”troller-3) 

controllerAgent (Blue-l) 

slaveAgents (Blue-2 Blue-3 Blue-4) 

slotInfoProtocols (RedLocationInfo-Blue-2-l 

RedLocationInf~Blue-3-1 

FkdLocationInfo-Blue%-1 . ..) 

slotInfoResources (SlaveLocation-2-rean-1 

Slavelocation-Z-reason-2 

Slavelocation-3-rein-1 . ..) 

agents (Blue-2 Blue-3 Blue-4 Blue-l) 

(ReactiveProblemSolvingAgent) 

canHeveSlots (i&laveI”Organizatio”) ! 
Fig. 8. SlarvAgent class. 

under which this ability is operable (in this case it is identically 
T), and the slot whatIsPerceived with what the agent actually 
perceives (in this case, the agent’s own location). 

The physical constraints on the participation by agent Blue- 
1 in different communication protocols are expressed by the 
unit ProtocolForBlue-1 shown in Fig. 12. This communicat- 
ing ability endows this agent with the ability to send basic 
commands to the other three slave agents; i.e., to use the 
appropriate command protocols. 

The unit Locationlnfo-Blue-2-1, shown in Fig. 13, specifies 
the protocol used by agent Blue-2 to send information about 
his own location to agent Blue-l. This protocol is described in 
terms of its encoding and decoding functions, the reasoning 
abilities of the receiver that it influences, and the way in 
which it influences them. The unit SlaveLocation-2-reason- 
I, displayed in Fig. 14, specifies the agent who supplies the 
information carries over the above information protocol as a 
“resource” of the receiving agent. 

The reasoning ability of an agent (in this case Blue-I) to 
compute the moves for all agents to converge on Red is 
specified by the unit Reasoning-Converge-On-Red. This unit, 

Fig. 5. BlueOrganization-CC.~ 

(ControllerAgent SlaveAgent) 

canHaveSlots (IocationOfFkd IocationOfSelf 

Fig. 6. ReactiveProhlemSolvingAgent class. 

(ReactiveProblemSolvingAgent) 

canHaveSlots (ControlsAgentOrganization) 

Fig. 7. ConfrolierAgent class 

instanceOf (ControllerAgent) 

actingAbilities (NoOp MoveDown MoveUp . ..) 

controlsOrganization (BlueOrga”izatio”XC3) 

communicatingAbilities (ProtocolForBluc-1) 

isInAgantOrga&ation (BlueOrganizationXC3) 

isInvolvedInFLPSS (Ce”tralCo”troller-3 .) 

reasoningAbilities (Reasoning-ConvergeOnRed 

Reasoning-OccupyQuadrant 

Reasoning-SearchForRd) 

receivesfiomProtocols (LocationInfc-Blue-2-l 

LocationI”feBlue3-1 

LocstionInfo-Blue-Cl) 

sensingAbilities (SensingRed SensingSelf) 

Fig. 9. Blue-l 

(MoveLeft MoveRight MoveUp . ..) 

i,sInAgentOrganization (BlueOrganizationXC3) 

isInvolvedInRPSS (CentralCo”troller-3) 

isResourceIn (ResourceBlue-2) 

isSlaveInOrganizetion (BlueOrganizatianXC3) 

reasoningAbilities (Reasoning-SlaveSendRedLacation 

Reasoning-SlaveSendSelfLocation) 

rec&esFromProtocols (BwicComm-l-2) 

sensingAbilities (SensingRed SensingSelf) 

Fig. IO. Blue-2. 

shown in Fig. 15, specifies the information protocols this 
ability relies on to supply the required information, the slot 
whose value this ability changes, the values it assigns, and the 
condition under which this ability is effective (in this case, 
always). 

IX. CONCLUSIONS AND FUTURE WORK 

Starting with some obvious intuitions about the knowl- 
edge and capability requirements that even simple distributed 
algorithms impose upon the agents in a system, we have 
devised a simple scheme for declaratively representing such 
problem-solving systems, and the agents who compose them. 
This scheme simplifies the task of the system designer by 
encouraging him to think in terms of what the different agents 

conditio”Ofl’erception (SENSING-CONDITION-l) 

Fig. 11. SensingSelf. 
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instanceOf (Protocol) 

conditionSpzcil%ation (PROTOCOL-CONDITION-l) 

sendsOnProtocols (BaricComm-l-4 

BasicComm-l-3 

BaaicComml-2) 

whoseCommunicatingAbility (Bluel) 

Fig. 12. ProtocolForBlue-I 

instanceof (SMnfoP-b) 

actIox,sToBeTakenByRver (INTRODUCCSLAVvCLOC.4TION-1) 

afktsRwo&gAbi,itkO-vm (Rraswin(-hwg&nR 

Reaso&g-OcapyQuQusant 

RcaacningBlucl 

RusoningBlue-2) 

aKectsIIlfc.Beaource (SlaveLocation-Z-reman-2 

SlaveLocation-Z--n-l) 

lmsDecdingFunetion (DECODESLOT-INFO-l) 

bMEncodingFunction (ENCODESLOT-INFO-l) 

involvesCommunicatingAbilitk (PmtocolSla”eI/xatKvJ-z) 

hSlotlnfoPmtocolOf (BlueOrganization-CC3 . ..) 

qentsfkeivingOnTbisProt.xol (Blue-l) 

uses.SbtsOfSender (lOC&tl.X0fMf 

ICdSrUe) 

Fig. 13. Locationlnfo-Blue-2-I. 

instanceof (InfoRmurce) 

islnfoResourceOf (BlueOrganization-CC3) 

af?ectsReasoningAbilities (ReasoningBlue- 

Reasoning-OccupyQuadrant) 

resourceSuppliedBySlotInfoProtocols (Locationlnf~Bluct-1) 

Fig. 14. SlaveLocation-2.reason-l 

are expected to know and to be able to do, at different stages 
of their problem-solving activity. The structure created by 
this representational scheme partitions the tasks to be done 
by a system designer into simple ones that may be easily 
and correctly done. The formal semantics that we provide 
further crystallizes the intuitions behind this scheme. In this 
way, this scheme may be used in the design of multiagent 
systems. It may also be used to prove certain properties of 
systems that have already been designed, e.g., whether requests 
issued in a certain state would be accepted; whether, given 
certain behavior by the environment, the system would be 
able to succeed; and so on. By partitioning a system into 
simple components, this scheme not only simplifies design, but 
also implementation. This process will be further improved as 
appropriate tools, such as temporal logic proof checkers and 
theorem provers, become available [l], [20]. We leave these 
further technical developments to future research. 

One issue we left unexplored is to relate the scheme 
presented here with some well-known paradigms in DAI, e.g., 
the contract net of Davis and Smith [7]. It would also be 

instanceOf (ReasoningSpecification) 

conditionOfLocalState (REASONING-CONDITION-l) 

resuItantValueOfSlot (STEPS-TO-CONVERGE) 

usesSlotInfoProtocolsForInput (LocationInf+Blue-4-l 

LocationInf*Blue-3-l 

LocationInfwBlucZ-1) 

usesSlotInfoResources (SlaveLocation-Z-reason-2 

SlaveLocation-3-rean-2 

SlaveLocation-4-reason-2) 

valueForAgentSlot (currentActions) 

whoseReasoningAbility (Blue-l) 

Fig. 15. Reasoning-Converge-On-Red. 

useful to consider “metaprotocols” that may be used by agents 
to establish the protocols they would use during a session of 
problem-solving. We believe that the machinery to simulate 
metaprotocols already exists (e.g., by using information, pro- 
hibition, and permission protocols appropriately), but the spirit 
of our work has been to state explicitly and declaratively 
what would otherwise be hidden in hard-coded procedural 
interactions. We have assumed that protocols can be accurately 
specified with constraints. However; in complex systems, 
the kinds of considerations that go into an agent’s decision 
to accept or decline a request would not be monotonically 
specifiable. Also, it would be useful to have some kind of 
a normative theory of communication for agents-research 
into this area has begun only recently [21]; closer connections 
remain to be explored. 

The representational scheme presented here is state-based, 
i.e., it considers the states of the world explicitly and sees 
events as transitions between successive states. This makes 
it simple, but also makes it incapable of representing some 
information about events naturally, e.g., about the manner 
in which they are done, their direct ramifications, and their 
causes. It remains to be seen how advantageous such informa- 
tion would be in DAI domains. Current event-based schemes 
cannot represent all such information easily either [14]. A 
feature of our approach is that it uses linear temporal logic. 
A possible extension of our theory is branching time logic in 
which alternative actions can be expressed easily [ll]. The 
positive consequences of using temporal logic of whatever 
form are that it is simple and well known, and tools for it are 
already under development [l], [20]. A potential weakness of 
temporal logic is that it does not express actions explicitly, 
even though it can be used to prove general properties of 
systems; it is still to be seen how significant this limitation is 
in the context of DAL 

In complex systems, it is important that an agent be able 
to represent other agents, especially regarding whether they 
are cooperative, neutral, or antagonistic to him. In this paper, 
we have referred directly to parts of the agents’ internal rep- 
resentations (e.g., as B’.R,). This is satisfactory for only the 
simplest agents, solving simple problems, as in this paper. In 
more realistic systems, an agent must reason about other agents 
explicitly, but their physical states would be too complex to 
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be reasoned about directly. In such settings, beliefs, know- 
ho\v. and intentions are useful abstractions to use. It would 
be interesting to see how the theory of this paper would be 
extended for such cases. 
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