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We present a study on the time evolution of the electroluminescence~EL! spectra of AlGaN-based
deep ultraviolet light-emitting diodes~LEDs! under pulsed current pumping. The EL spectra peaks
at 285 nm and 330 nm are found to result from recombination involving band-to-band and free
carriers to deep acceptor level transitions. The 330 nm long-wavelength transitions to deep acceptor
levels in thep-AlGaN layer as well as the nonradiative processes significantly influence the LED
internal quantum efficiency. ©2003 American Institute of Physics.@DOI: 10.1063/1.1536729#

We have recently reported on nitride-based deep ultra-
violet ~UV! light-emitting diodes~LEDs! with peak emission
at 285 nm.1,2 Our results showed the internal quantum effi-
ciency of these devices to be mostly limited by the defects
originating from the high Al-mole fraction AlGaN buffer lay-
ers, which control the nonradiative recombination, and by
the deep level assisted radiative recombination, which sig-
nificantly reduces the carrier injection into the quantum well
~QW!.3 For our reported device design, the introduction of
AlN/AlGaN superlattice strain relief buffer layers and
p-AlGaN/p-GaN hole accumulation layers resulted in a sig-
nificant reduction of the nonradiative recombination and in a
more efficient hole injection.1–5 The LED spectra comprised
of a band-to-band emission peak at 285 nm and a long wave-
length emission band at 330 nm. This deep level assisted
radiative recombination at 330 nm was found to be espe-
cially significant at low pump currents. For the 285 nm
LEDs, we now report on a detailed study of the steady-state
and the time-resolved electroluminescence~EL! spectra to
determine the origin and the transient behavior of the spec-
tral emission at 330 nm. Suppression of this deep level re-
lated recombination is expected to improve the quantum ef-
ficiency of the desired 285 nm emission.

A schematic of the epilayer structure for the 285 nm
LED is shown in Fig. 1. The structure consisted of a 0.2mm
thick Al0.4Ga0.6N layer that is deposited over basal plane
sapphire using conventional low-pressure metalorganic
chemical vapor deposition.1 This was followed by a ten pe-
riod Aln (20Å)/Al 0.4Ga0.6N (300 Å) superlattice for strain
relief and dislocation filtering and a 1.8mm thick Si-doped
n1-Al0.4Ga0.6N buffer layer. This superlattice insertion ap-
proach reduces the threading dislocation density by a factor
of 5 and thus enables the deposition of the 1.8mm thick
n1-A0.4Ga0.6N buffer layers without cracking.1,4 The device

active region consisted of an Al0.36Ga0.64N (100 Å)/
Al0.32Ga0.68N (30 Å)/Al0.36Ga0.64N (100 Å) single quantum
well, which was capped with a Mg-doped
p-Al0.4Ga0.8N (200 Å) and ap1-GaN (500 Å) layer. All
layers of the structure were deposited at 1050 °C and 76 Torr.

Square-geometryp–n junction devices were then fabri-
cated using a reactive ion etched mesa to access the bottom
n1-Al0.4Ga0.8N layer. As before, Ti~20 Å!/Al ~100 Å!/Ti~200
Å!/Au~2000 Å! and Ni~20 Å!/Au~200 Å! were used for the
n- andp-contact metals and the contact annealing procedures
were identical to our earlier reports.1 A single-pass spectrom-
eter TRIAX-550 with an UV-enhanced cooled charge
coupled device~CCD! detector was used for the measure-
ments of the quasisteady-state EL spectra. An intensified
CCD with a digitally controlled variable-delay electro-
optical ~EO! shuttering was utilized to perform measure-

a!Electronic mail: asif@engr.sc.edu
b!Also at: IMSAR, Vilnius University, Vilnius, Lithuania.

FIG. 1. The schematic LED band diagram and recombination paths corre-
sponding to 285 nm and 330 nm EL peaks.
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ments of the time-resolved EL spectra with a 5 nstime reso-
lution.

The EL spectra of the 285 nm LED as a function of the
pulsed pump currents are presented in Fig. 2. For these mea-
surements, 500 ns long electrical pulses at 10 kHz repetition
rate were used to provide quasisteady-state pumping condi-
tions and avoid heating. As seen, the main peak at 285 nm
corresponding to the band-to-band emission in the QW
gradually increases with current. However, the long wave-
length peak centered at 330 nm dominates at low currents
and then it saturates at high bias currents. Similar long-
wavelength peaks in EL spectra were also observed in pre-
vious reports of AlGaN-based deep UV LEDs emitting at
325 nm and 340 nm.6–8 These long-wavelength peaks arise
from the radiative recombination involving deep levels. To
determine their origin, we studied the transient behavior of
both the 285 nm and the 330 nm EL peaks.

The time-resolved EL spectra were measured using a 1
ms long 70 mA pump current pulse with a rise and decay
time of less than 10 ns. Using the intensified CCD and the
EO shutter, the spectra were measured every 10 ns after the
start of the pump current pulse. For clarity, in Fig. 3, we only
plot the spectra corresponding to times of 0 ns, 10 ns, 100 ns,
300 ns, and 600 ns after the application of the pump current
pulse. Note that time duration for the capture of each spec-

trum was 10 ns. As seen, the luminescence peak at 285 nm
builds up rapidly with a time scale shorter than the minimum
delay step of our study~10 ns!. Meanwhile, the build up of
the long-wavelength band proceeds considerably slower, and
the steady state of this peak is reached within approximately
300 ns after the start of the current pulse. Thus, for the first
several tens of nanoseconds after the start of the current in-
jection the spectrum is dominated by emission at 285 nm,
while the broad 300 nm long-wavelength band prevails at
delays longer then 200 ns.

The time evolution of the EL is revealed in more detail
in Fig. 4, where the spectrally integrated intensity of both
bands is depicted as a function of time. Note that after reach-
ing its peak value, the intensity of the 285 nm band decays
within the first 100 ns after the current pulse is applied@see
Fig. 4~a!#. This intensity reduction can be fitted by an expo-
nential function:

I ~ t !5I 01DI exp~2t/t! ~1!

with a characteristic time constant of about 25 ns. The rise of
the 330 nm long-wavelength peak also proceeds exponen-
tially as

I 8~ t !5I 082DI 8 exp~2t/t8!, ~2!

however, with a different characteristic time of 75 ns@see
Fig. 4~b!#. This difference in the time constants of the two
processes indicates that different injection or/and recombina-
tion mechanisms are responsible for the 285 nm and 330 nm
bands. Note that when the pump current is switched off, the

FIG. 2. 285 nm LED EL spectra as a function of pulsed current.

FIG. 3. Time resolved LED EL spectra under 1ms long current pulse of 70
mA.

FIG. 4. Spectrally integrated intensity of the main 285 nm band~a! and the
long-wavelength band~b! as a function of time when 1ms long current pulse
of 70 mA is applied.
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fall time for both 285 nm and long-wavelength peaks is fast
and within the time resolution limit of our experiment~10
ns!.

All the features in the EL time evolution are consistent
with a simple model involving two radiative recombination
channels. These channels are schematically shown in Fig. 1.
The first channel, a band-to-band recombination results in
the narrow band at 285 nm. The peak position of the long-
wavelength band~at 330 nm! indicates transitions involving
deep levels. The emission wavelengths for localized excitons
or carriers typically observed in blue LEDs with an InGaN
active region and in GaN homojunction LEDs are closer to
the band gap and they usually have decay times in excess of
100 ns.9–11Also, the donor–acceptor emission is usually red-
shifted during the decay due to a higher probability of re-
combination of the closest pairs. The short decay time of our
330 nm long-wavelength emission peak~about 10 ns! and an
absence of the redshift during the decay exclude the donor–
acceptor recombination as a possible mechanism responsible
for the 330 nm band. Our data, therefore, suggest that the
330 nm long-wavelength band to be caused by the recombi-
nation of the free carriers through deep levels. This conclu-
sion is also supported by our results of the low-temperature
EL of these LEDs, where the intensity of the 330 nm peak
reduced without spectral shift when the temperature was
lowered.3

The energy position of the deep level responsible for the
330 nm EL peak should be 0.6 eV to 0.85 eV from the band
edge. Forp GaN, the Mg-related deep acceptor states are
about 0.55 eV above the valence band.11 Recently, the pho-
toluminescence study of Mg-doped AlGaN layer showed
similar peaks due to the recombination of free electrons with
neutral Mg acceptors.12 For thesep-AlGaN layers, the en-
ergy position of the neutral Mg-acceptor levels scales with
the band gap and, hence, with the Al-mole fraction. We,
therefore, conclude that the 330 nm long-wavelength peak in
our EL spectra arises from the recombination of the conduc-
tion band electrons and the holes populating the Mg-related
deep acceptor levels. These are neutral acceptors located on
the p side of the QW in thep-AlGaN barrier and blocking
layers of our device design~see Fig. 1!.

The slow rise time of the long-wavelength emission peak
can also be easily understood in terms of this recombination
model. At zero bias, the built-in field can ionize the deep
acceptor levels in thep AlGaN, and thus no radiative transi-
tions can occur. Under the forward bias, some of these levels
become neutral, thereby allowing for the 330 nm radiative
transitions. Thus, the 75 ns rise time of the 330 nm long-
wavelength peak is primarily limited by the deep acceptor
deionization time. As most of these levels become neutral,
the intensity of the long-wavelength band reaches its satu-
rated steady state. This process also results in the partial
intensity reduction of the main band-to-band recombination,
since the carrier injection in the QW should decrease. Note

that at low current pumping in steady state, the spectrally
integrated intensity of the long-wavelength band is about ten
times higher than that of the main 285 nm emission. This is
an indication of a pronounced recombination through the
deep acceptor states induced by Mg doping. Therefore, in
principle, it should be possible to increase the carrier injec-
tion into the QW by a factor of 10 by reducing the 330 nm
deep level recombination. Thus, the 285 nm emission powers
~0.25 mW at 650 mA! can also be increased significantly due
to enhanced carrier injection.2

In summary, we report on the study of the time-resolved
EL spectra of deep UV LEDs emitting at 285 nm. The emis-
sion peak located at 285 nm arises due to the band edge
emission from the QW. The long-wavelength emission band
centered at 330 nm is caused by the carrier recombination
from the conduction band to the deep acceptor levels in the
p-AlGaN layer at room temperature. Time-resolved EL mea-
surements yield the rise time of the 330 nm EL peak to be 75
ns. This time is attributed to the hole capture by the deep
acceptor levels in thep-AlGaN layers. Our data also show
that the quantum efficiency of the 285 nm LED emission can
be increased at least by a factor of 10 by reducing the density
of the defects, which act as radiative and nonradiative recom-
bination centers. Hence, our results indicate that using the
III–N material system milliwatt power LEDs at 280 nm
wavelength are viable.

The work at USC was supported by Army SMDC Con-
tract No. DASG60-00-10003, monitored by Terry Bauer. The
work at SET, Inc. was supported by the Office of Naval
Research, monitored by Dr. Y. S. Park.

1V. Adivarahan, J. P. Zhang, A. Chitnis, W. Shuai, J. Sun, R. Pachipulusu,
M. Shatalov, and M. A. Khan, Jpn. J. Appl. Phys., Part 241, L435 ~2002!.

2V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M.
Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz,
M. S. Shur, and R. Gaska, Appl. Phys. Lett.81, 3666~2002!.

3A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, E. Kuokstis, J. P.
Zhang, V. Adivarahan, S. Wu, G. Simin, and M. Asif Khan, Appl. Phys.
Lett. 81, 2938~2002!.

4J. P. Zhang, H. M. Wang, M. E. Gaevski, C. Q. Chen, Q. Fareed, J. W.
Yang, G. Simin, and M. A. Khan, Appl. Phys. Lett.80, 3542~2002!.

5M. Shatalov, G. Simin, J. Zhang, V. Adivarahan, A. Koudymov, R. Pa-
chipulusu, and M. A. Khan, IEEE Electron Device Lett.23, 452 ~2002!.

6A. Chitnis, J. P. Zhang, V. Adivarahan, W. Shuai, J. Sun, M. Shatalov, J.
W. Yang, G. Simin, and M. A. Khan, Jpn. J. Appl. Phys., Part 241, L450
~2002!.

7V. Adivarahan, A. Chitnis, J. P. Zhang, M. Shatalov, J. W. Yang, G. Simin,
M. A. Khan, R. Gaska, and M. S. Shur, Appl. Phys. Lett.79, 4240~2001!.

8T. Nishida, H. Saito, and N. Kobayashi, Appl. Phys. Lett.78, 399 ~2001!.
9F. S. Choa, J. Y. Fan, P. L. Liu, J. Sipior, G. Rao, G. M. Carter, and Y. J.
Chen, Appl. Phys. Lett.69, 3668~1996!.

10J. P. Basrur, F. S. Choa, P. L. Liu, J. Sipior, G. Rao, G. M. Carter, and Y.
J. Chen, Appl. Phys. Lett.71, 1385~1997!.

11F. Calle, E. Monroy, F. J. Sanchez, E. Munoz, B. Beaumont, S. Haffouz,
M. Lerouz, and P. Gibart, MRS Internet J. Nitride Semicond. Res.3, 24
~1998!.

12J. Li, T. N. Oder, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys.
Lett. 80, 1210~2002!.

169Appl. Phys. Lett., Vol. 82, No. 2, 13 January 2003 Shatalov et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.252.69.176 On: Fri, 23 Jan 2015 17:33:31


	Time-Resolved Electroluminescence of AlGaN-Based Light-Emitting Diodes with Emission at 285 nm
	Publication Info
	Author(s)

	tmp.1422034424.pdf.TDRs5

