
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Faculty Publications Computer Science and Engineering, Department
of

1997

Mobile Agents Mobile Agents

Michael N. Huhns
University of South Carolina - Columbia, huhns@sc.edu

Munindar P. Singh

Follow this and additional works at: https://scholarcommons.sc.edu/csce_facpub

 Part of the Computer Engineering Commons

Publication Info Publication Info
Published in IEEE Internet Computing, Volume 1, Issue 3, 1997, pages 80-82.

This Article is brought to you by the Computer Science and Engineering, Department of at Scholar Commons. It has
been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more
information, please contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/csce_facpub
https://scholarcommons.sc.edu/csce
https://scholarcommons.sc.edu/csce
https://scholarcommons.sc.edu/csce_facpub?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

80

MAY • JUNE 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

MOBILE AGENTS
A lot of agents are executing on the Web, and

some of them are starting to move around.

While most agents are static (existing as a sin-

gle process or thread on one host), others can

pick up and move their code and data to a

new host where they resume executing.

“BEAM ME UP, SCOTTY!”
Are these agents mobile, itinerant, dynamic, wandering,
roaming, or migrant? And are they sent, beamed, tele-
ported, transported, moved, relocated, or RPC’d? These
are some of the questions swirling around Web discus-
sion groups these days. However, since anything that
can be done with mobile agents can also be done with
conventional software techniques, the key questions are
really the following:

■ Are mobile agents a useful part of a distributed com-
puting system?

■ Are there applications that are easier to develop using
mobile agents?

■ Under what circumstances is it useful for an agent to
be mobile?

Only rarely do circumstances call for an agent to be
mobile, in spite of all the effort being spent on develop-
ing techniques for mobility. There is a fundamental rea-
son for this, historically called the procedural-declarative
controversy (see sidebar).

Nevertheless, there are several appropriate uses for
mobile agents.

APPROPRIATE APPLICATIONS
In general, the best applications for mobility might be
those that involve the dynamic installation of code to
extend the functionality of an existing system. This

would address a potential limitation of current static sys-
tems, which are not easily enhanced.

However, you can install new functionality without
employing a full-blown mobile agent. All you need is a
standard message type: “install(function_name, version,
argument_types, code).” The receiving agent can autono-
mously decide—based among other things on its level of
trust in the sender—whether to install the corresponding
code. If it does install the code, new functionality
becomes available—without your having to ship state
information around.

Disconnected Operations
A major consideration for personal digital assistants
(PDAs) is battery capacity and therefore connect time.
Thus, PDAs must spend most of their existence offline.

Now, suppose you have constructed an agent that knows
your preferences and interests, and can filter information
sent to you from multiple sources. Further, suppose your
agent can provide real-time feedback to those sources,
helping them improve the precision of their information.
This agent can run on your PDA, where you can interact
with it and instruct it. However, you do not want your
agent to stop functioning when you turn off your PDA—
when you turn it off, your agent should move to a host
that is online.

Testing Distributed Network Hardware
(A Multihop Application)
Graham Glass of ObjectSpace✷ has suggested an appli-
cation for mobile agents. A distributed telecommunica-
tion switch consists of thousands of different cards, each
containing different hardware. The rules for testing this
hardware vary from board to board. There are routines
for testing an individual board, groups of boards, and
entire systems. The code for thorough testing can be
quite large, and can improve over time. Since the band-
width required for performing system tests can also be
quite large, the tests are often performed offline.

A traditional approach to network diagnostics is to load
the board-level testing code directly into the boards and
have these boards self-test periodically, sending their
results to a main testing controller. Because the system-
level tests do not fit into the boards and consume too
much network bandwidth, they are loaded remotely
when the system is inactive.

AGENTS ON THE WEBAGENTS ON THE WEB

C O L U M N

Michael N. Huhns • University of South Carolina • huhns@sc.edu
Munindar P. Singh • North Carolina State University • singh@ncsu.edu

.

In a mobile agent approach, testing agents are launched
into the active network. These agents roam between
boards, performing tests in a stochastic way. Larger sys-
tem-level testing agents can displace smaller board-level
tests when necessary. This allows boards to accommo-
date many testing strategies with less memory, since the
agents can come and go over time.

Testing agents carry with them both their testing history
and the means to perform the test, a natural set of asso-
ciated items. Testing agents can make local decisions,
allowing them to repeat tests as necessary or test boards
around them without having to report back to a central
controller, consuming precious bandwidth.

Customized Searches on Servers
The most frequently proposed use for mobile agents is
to send them to execute on servers, particularly when
the servers have more information than they can reason-
ably communicate to a client for processing and also
lack the necessary procedures to perform the desired
processing themselves.

But this special set of circumstances rarely holds. Even
when it does, using mobile agents might not be as effec-
tive as using a declarative approach and implementing
a protocol of search primitives. The protocol could then
be invoked via messages between a user agent and the
server agent. This approach would mitigate the security

The mobility of agents is primarily an issue of infra-
structure—a matter of how we might realize agent
functionality. A client seeking information from a
server can either send a procedure to execute on the
server and find the desired information, or send a
message asking the server to find the information
using its own procedure.

Our objection to the usefulness of mobile agents lies
in their being a low-level procedural means to
achieve what communication techniques can support
at a higher declarative level. Similar objections have
arisen time and again throughout the history of com-
puting. Examples include high-level programming
languages vs. assembly languages, SQL vs. naviga-
tional queries, conceptual vs. physical data models,
and formal grammars and compiler generators vs.
hard-coded compilers. In each situation, the higher
level technique won.

Some of the trade-offs were debated in 1975 during
what was called the “procedural-declarative contro-
versy.”1 In this controversy, which was focused on
artificial intelligence (AI) knowledge representation,
declarative approaches were said to describe what,
while procedural approaches describe how.

In a narrow sense, procedural approaches can be
more efficient. However, when the flexibility of solu-
tions and the productivity of programmers are taken
into consideration, declarative approaches usually pay
off. Declarative approaches offer several advantages:

■ Modularity. Requirements can be captured inde-
pendently from each other.

■ Incremental change. It is much easier to add or
remove components from a declarative specifica-
tion than to rewrite procedural programs.

■ Semantics. Declarative notations can be given a
formal semantics directly, whereas procedural
languages must first be mapped to declarative
structures. Formal semantics is crucial for validat-
ing tools that build agents and their interaction
protocols. It ensures predictable behavior, and

enables efficiencies in implementation without
jeopardizing soundness.

■ User interfaces. Declarative specifications are
easier to generate than procedural code, leading
to greater productivity for interface developers
and, coupled with clean semantics, greater pre-
dictability for users.

■ Inspectability. Being explicit, declarative specifi-
cations can be examined to determine: (a) the
current constraints on an agent and its interac-
tions, (b) how far the constraints have been satis-
fied, and (c) the rationales for different actions.

■ Adaptability. Declarative specifications are easier
to learn, enabling an agent to discover how other
agents behave and how to participate in an ongo-
ing “discussion” among agents.

Mobility includes procedural encodings in two dis-
tinct respects. One, the behavior of a mobile agent is
procedurally coded. This might be reasonable for
some static agents as well. Two, the interactions of a
mobile agent are implicit in the code that constitutes
it. This is unnecessary when the agent is static. A sta-
tic agent’s interactions can be explicitly specified in
terms of protocols involving its communications (see
our last column “Conversational Agents,” Vol. 1, No. 2,
pp. 73–75). Static agents can then be supplied by dif-
ferent vendors and programmed in different lan-
guages as long as they communicate properly with
each other.

Ultimately, there is no difference between a very
complex request language and a very simple pro-
gramming language. We are, in fact, really talking
about a continuum of approaches.

REFERENCE
1.T.Winograd, “Frame Representations and the Declarative/

Procedural Controversy,” in Representation and Under-
standing, D. Bobrow and A. Collins, eds., Academic Press,
New York, 1975. Reprinted in Readings in Knowledge
Representation, R. Brachman and H. Levesque, eds., Chap.
20, pp. 358–370. Morgan Kaufmann, San Francisco, 1985.

The Procedural-Declarative Controversy

M O B I L E A G E N T S

81

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ MAY • JUNE 1997

.

worries that the mobile agent would
run amok, intentionally or otherwise.

It would also offer efficiency advantages.
When a mobile agent runs remotely, the
server surrenders control of disk, memo-
ry, and processor resources to the agent.
If, however, the server accepted a
sequence of declarative search primi-
tives, it could schedule and carry them
out in a manner optimized to its cur-
rent state. For example, a modern data-
base management system could use its
own optimized techniques to compute
a join much more efficiently than a
remote user could program an agent to
do so.

Information Commerce
At times an information consumer may want to apply
proprietary algorithms from one company to proprietary
data from another company. To do so, the consumer
will want to find a trusted third party to whom both the
data and the algorithms, encoded in a mobile agent,
could be sent.

MOBILE AGENT FRAMEWORKS
Several efforts are under way to develop systems, proto-
cols, and frameworks for both the construction and use
of mobile agents. Most of the frameworks included here
allow agents to be started, stopped, and moved, and a
few allow them to be monitored. The following frame-
works use agents programmed in Java:

■ Odyssey✷ (ODY) from General Magic
■ Concordia✷ (CON) from Mitsubishi
■ Aglets✷ from IBM

Other frameworks use different languages and processes
in the construction of their agents:

■ Agent Tcl✷ (ATC) from Dartmouth uses transportable
agents programmed in Tcl.

■ Agents for Remote Action✷ (ARA), from the University
of Kaiserslautern, uses agents programmed in Tcl,
C/C++, or Java.

■ Mobile Objects and Agents,✷ (MOA) from The Open
Group, uses OS process migration technology.

■ TKQML, from the University of Maryland, Baltimore
County, uses migrating agents programmed in Tcl and
communicates in KQML.

The Object Management Group is working to establish
industry standards for mobile agent technology and
interoperability among agent systems, such as Odyssey,
Aglets, and MOA. The OMG intends to define a Mobile
Agent Facility (MAF) for CORBA. A draft of the MAF
specification is available from General Magic.✷ ■

A G E N T S O N T H E W E B

82

MAY • JUNE 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

URLs FOR THIS COLUMN

Agent Support for Tcl • www.cs.umbc.edu/
agents/kqml/papers/tkqml.ps

Aglets • www.trl.ibm.co.jp/aglets
ARA • www.uni-kl.de/AG-Nehmer/Ara/
ATC • www.cs.dartmouth.edu/~agent/
CON • www.meitca.com/HSL/Projects/Concordia/Mobile
Graham Glass, Object Space • gglass@objectspace.com
MAF • www.genmagic.com/
MOA • www.opengroup.org/RI/java/moa/
ODY V. 1.0 Beta release • www.genmagic.com/agents.html

For subscription information
Call +1-800-CS-BOOKS

http://computer.org/internet/

COMING IN THE JULY/AUGUST ISSUE
AgentsAgents

INTERVIEW:
• Pattie Maes, associate professor at

MIT’s Media Lab, where she founded
and directs the Software Agents Group.

PLUS:
• Multiagent systems
• A security model for aglets
• What makes mobile agents intelligent
• And more . . .

®

THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

CALL FOR REFEREES

Internet Computing seeks referees to review
articles addressing Internet-based applications
and enabling technologies. Send curriculum vita
and keywords indicating areas of expertise to:

Steve Woods, Manuscript Assistant
IEEE Internet Computing, swoods@computer.org

.

	Mobile Agents
	Publication Info

	tmp.1291218826.pdf.5UATK

