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Estimation of the Diffusion Coefficient and Solubility for a
Gas Diffusing Through a Membrane

Michael C. Kimble* and Ralph E. White**
Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122

Yu-Min Tsou and R. Neal Beaver**

Dow Chemical USA, Texas Applied Science and Technology Laboratories, Freeport, Texas 77541

ABSTRACT

Analysis of the data obtained by the electrochemical monitoring technique for diffusion of a gas through a membrane
is considered. It is shown that combining a numerical method with a nonlinear parameter estimation technique provides a
means to determine values for the diffusion coefficient and the solubility of the diffusing gas. It is shown that better ac-
curacy can be obtained for the diffusion coefficient and solubility of this gas by using the method presented and all experi-
mental data rather than only part of the data, as has often been done in the past.

The electrochemical monitoring technique developed
by Devanathan and Stachurski (1) has been routinely ap-
plied to determine diffusion coefficients and solubilities
for gases which diffuse through membranes. This tech-
nique has been described elsewhere (2, 3) but basically
consists of first applying a platinum coating to one side of
the membrane and then exposing this side of the mem-
brane to the electrolyte and the other side of the mem-
brane to a diffusant gas. A schematic of the overall experi-
mental apparatus is shown in Fig. 1 and a detailed
schematic of the permeation test cell is shown in Fig. 2.
During the experiment, the gas (e.g., Hy) diffuses through
the membrane and is oxidized electrochemically on the
platinum coating. To analyze such a system, a one-dimen-
sional form of Fick’s second law of diffusion is used

ac(x, t Pelx, t
( )=D (x, 1)

(1]
at dx?

where the diffusion coefficient, D, is assumed to be con-

stant and c(x, t) represents the concentration of the diffu-

sant gas (e.g., H,). Initially, an inert gas such as N, is passed

over the membrane which gives

clx,t)=0.0 for O0=<x=<L for t<0 [2]

The diffusant gas is assumed to saturate the surface of the
membrane which faces the gas chamber upon introduc-
tion of the gas to the membrane

clx,t)y=C, at x=0 for t=0 [3]

At the other side of the membrane, it is assumed that the
concentration of H; is forced to zero by oxidizing all of the
H, gas under mass-transfer limited conditions

clx,t)=00 at x=L for t=0 [4]

The current as a function of time needed to oxidize the hy-
drogen gas is given by

. dex, t)
i(t) = ~n JFAD (5]
ox x=L
where at steady state the limiting current is
nJFADC
fa=——— [6]
L

Various analytical methods have been used to approxi-
mate the solution of Eq. [1]{4] in terms of current ratios by
using Eq. [5] and [6] as demonstrated by McBreen et al. (4)
for the Laplace method
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and Fourier’s method (4)

1)

—=1-2exp (—7k) [8]
T
where
Dt
G {9]

A third analytical solution was presented recently by Yen
and Shih (5)

1)
—=1-exp(—67) [10]
[

Unfortunately, Eq. [7], [8], and [10] are not correct over the
entire range of 7 despite being derived from well-known
analytical methods. This can be seen easily, for example,
by inspection of Eq. [7]. The right-hand side of Eq. [7] goes
to zero for large values of r instead of going to one, as re-
quired. Since the right-hand side of Eq. [7] is the first term
only in an infinite series given by (4)

8

1)

T

{11]

2 1 @n + 1)
_,n.l/z 72 4 -

_111
-1y exp[ -

pu!

0

one might expect that adding additional terms would im-
prove the accuracy of Eq. {7]. Unfortunately, adding a large
(e.g., 105 number of terms does not improve the solution at
all. This is true because 72 appears in the denominator for
each term, as shown in Eq. [11]. Equation {8] is wrong be-
cause the right-hand side does not go to zero for small
values of 1, as required. Equation [10] is wrong because,
even though it is correct for large and small values of 7, it
does not agree with the numerical solution of Eq. [1]{4] ex-
cept at one intermediate value of 1, as shown in Fig. 3.
The numerical solution to Fick’s second law, shown in
Fig. 3, was calculated by expressing Eq.[1] in a finite dif-
ference form (Crank-Nicolson) and solving for the concen-
tration as a function of time at each nodal point subject to
the boundary and initial conditions given by Eq.[2]]4].
The current ratio was then predicted, as a function of time,
by using Eq. [5] and [6]. The correct dependence of /i, on v
should follow that given by the numerical solution. As can
be seen in Fig. 3, the prediction based on the Laplace
method (Eq. [7]) deviates from the numerical solution for
values of 7 greater than about 0.40. The prediction based on
Fourier’s method (Eq.[8]) gives a valid response for =
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Fig. 2. Schematic of the permeation test cell

greater than about 0.12, and the prediction according to
Eqg.[10] deviates from the numerical solution for most of
the values of . Hence, the numerical method is the only ac-
curate solution to Eq. [1]{4] over the entire range of .

Equations [6] and [9] and one of the Eq. [7], [8], or [10] are
often used to determine the diffusion coefficient, D, and
the solubility, C,, of the diffusing gas. The classical
method typically consists of setting i(1)/i. in one of Eq. [7],
[8], or [10] to a set fraction (e.g., 0.5) and solving for the di-
mensionless time, 7. Then the actual time, t, to reach this
fraction of the limiting current is measured from an exper-
imental current transient. The dimensionless time, 7, and
the actual time, t, are then used in Eq.[9] with a known
thickness, L, to calculate D. The gas solubility, C,, is then
calculated from Eq.[6] using the experimentally deter-
mined value of .. This procedure used with Eq. [10] would
lead to significant errors in D and C, if the selected current
ratio, i(1)/i., was not about 0.65, as indicated in Fig. 3. This
classical procedure is often hard to use because it is diffi-
cult to obtain reproducibly flat limiting current curves.
Also, one would like to have confidence intervals for D and
C, which cannot be obtained when only two values of the
experimentally measured current vs. time data are used.

The entire data set from an experimentally measured
current transient can be used to determine values for D
and C, and their confidence intervals by using a numerical
solution technique to predict the current, i, and the non-
linear parameter estimation procedure to determine D and
C, by comparison of the experimental values of i to those
predicted by the model (Eq. [1]{4]). Since the data set con-
sists of n current values and m unknown parameters
(D and C,), n functions can be defined

=il -iG) i=12,...,n [i2]

where ij) represents the j experimental value for the
current. Here the n current values are obtained at regular
intervals from the data set for simplicity.

The theory of least squares fitting can be used to deter-
mine D and C,. The difference between the experimental
values and the predicted values of the current for each
data point can be used to determine the two parameters by
minimizing the value of R when R is defined as

R=3 ) [13]
=1

The IMSL (6) subroutine BCLSF was used in this work to
estimate D and C,. This routine solves nonlinear least
squares problems by wusing a modified Levenberg-
Marquardt algorithm. Since i(j) depends on the diffusion
coefficient and the solubility, Eq. [1], subject to Eq. [2]{4],
must be solved numerically for each iteration in the esti-
mation of D and C,. Fortunately, this does not require
much computer time because of the high speed of modern
computers.

In addition to estimating the parameters, it is equally im-
portant to determine confidence intervals for the parame-
ters. Assuming a normal distribution, the confidence inter-
vals can be approximated by [(7), p. 197]

Py=By x4 vzasp, VG k=1,m [14]

where Py is the estimate of the parameter P, and ty_y.ar 1S
the value of the t-distribution at the (1 — v/2) x 100% con-
fidence interval with n — m degrees of freedom (df). A
value for the variance, sp , can be obtained from

S,
sp” = = [15]
n—m

and a value for Cy, can be obtained from the inverse of the
approximate Hessian matrix, N, where the elements of the
Hessian matrix are given by

R n 9215
H‘! = = -2 )
* aP,aP, ,Zlm aP,aP,
n 3i(j) 31(7)
,B=1m 16
t22%p. o, P (161

and the elements of the approximate Hessian matrix are

i) 6@(7)
aP, aP,

n
2> {17]
i=1

The approximate Hessian matrix is a good approximation
to the Hessian matrix because as the parameters, Py, ap-
proach their final values, the second derivative terms in

Eq.[16] tend toward zero. For the two unknown parame-
ters of interest here, D and C,, the matrix N is given by

g = 3 9iG)
3=1 8PD BPD

g = 910 %G)
=1 6PD 8PCD
5 = 10) 8iG)

9% i) 9i()
i=1 3Pc0 aPD

=1 aPCO aPCO

(18]

Inverting Eq. [18] and taking the diagonal elements gives
the needed values for Cy in Eq. [14].

Discussion

To illustrate this procedure for determining estimates
and confidence intervals for D and C,, the parameters in
Table I were used to create a simulated base data set of
evenly spaced points of current vs. time. Using simulated
data allows the diffusion coefficient and solubility to be set
a priort and then calculated by the four methods pre-
sented here. The Crank-Nicolson method was used to
solve the model Eq. [1}{4], with Ax = 1.0 x 10~ (101 node
points) and At = 7.5 x 107* (1001 time steps). From this
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large set of values for c(x, t), values for i(t) were calculated
according to Eqg. [5] for one thousand evenly spaced points
in time over the 30s time period of the simulated experi-
ment. Since most actual measurements of current transi-
ents involve sampling noise, a normal (gaussian) random
number generator (subroutine RNNOR of IMSL) was used
to alter these eurrents by +0.5 pA as shown in Fig. 4. A ran-
dom deviation of +0.5 pA provides a reasonable amount of
induced noise in the current transient resembling a worst
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Table I. Parameters for the computer generated simuiated data®

A =0.125 cm?
D =25 x 107%cm¥s
C, = 1.5 x 1078 moVem?®
L =00lcm
Ne = 2

2 Selected arbitrarily.

Table I1. Calculated parameters and confidence intervals® using
Eq. [19] and [20] for 100 sets of simulated data as o function
of the number of data points used in the estimation

1 L L 1 1 1 1 ] 1
0.0 5.0 10.0 150 20.0 25.0 30.0 350 40.0
Time (sec)

Fig. 4. Computer-generated currents based on the numerical solution
of Eq. [1]-{4] with randomized induced noise of =0.5 nA (500 evenly
spaced points).

Diffusion coefficient (x10%) Solubility (x10%)
Data points (cm?s) mol/cm
50 2.4967 + 0.006477 1.5036 = 0.004893
100 2.5012 + 0.004013 1.5000 + 0.002991
150 2.5022 = 0.003117 1.4986 = 0.002395
200 2.5006 = 0.002768 1.4993 + 0.001847
250 2.4994 + 0.002394 1.5010 + 0.001717
300 2.5000 = 0.002214 1.4992 + 0.001577
350 2.5007 = 0.001845 1.4998 + 0.001396
400 2.5010 = 0.001618 1.4991 + 0.001308
450 2.4998 + 0.001588 1.5001 + 0.001222
500 2.4992 + 0.001473 1.5005 + 0.001070
295% confidence interval.

case data set. Since random deviates were added to the
base data set, a Monte Carlo simulation [(8) p. 46] is needed
to illustrate adequately the numerical method and parame-
ter estimation technique.

The Monte Carlo simulation consists of numerous repe-
titions of generating and analyzing simulated data sets.
That is, numerous simulated data sets are created by first
calculating a (smooth) current transient as described
above and, second, by randomly altering this current
transient numerous times (r repetitions) resulting in many
simulated data sets similar to Fig. 4. Once these simulated
data sets are created, the numerical method, Eq. [1]{4],and
parameter estimation technique is used to analyze individ-
ually each data set. Each repetition is used to estimate a
diffusion coefficient, D), and a solubility parameter, C,.
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Fig. 5. Variation of the percent error in estimating the diffusion coef-
ficient with the number of evenly spaced data points used in the param-
eter estimation within 95% confidence.
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For the Monte Carlo simulation, the parameters and their
confidence intervals are determined from all r repetitions
of the simulation [(9) p. 226]

— Sk
Py=Py = tiypar——

\/;

where P, and P, are the average values for D, and C,, re-
spectively, over all r repetitions, df = r — 1, and s, is the
sample standard deviation of parameter k given by

r (P, — P)2]12
sk=[2——————————( a “)] k=1m [20]

i=1 r—1

k=1,m [19]

Note that Eq. [19] and [20] and the Monte Carlo simulation
are only needed to analyze the computer generated data
(Fig. 4). If real data is being analyzed, Eq. [14] is used to es-
timate the confidence intervals.

One hundred data sets like the one shown in Fig. 4 were
generated with 500 data points and analyzed by the numer-
ical method and parameter estimation technique. The re-
sulting 100 values for the diffusion coefficient and solubil-
ity were used in Eq. [19] and [20] to obtain the parameter
estimates and their confidence intervals. The results for
this case together with other cases with fewer data points
but with 100 repetitions for each are shown in Table II. Fig-
ures 5 and 6 show the percent errors for the diffusion coef-
ficient and solubility, respectively. These results show that
the confidence interval for the parameter estimates be-
come smaller as more simulated data points are used. This
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Fig. 7. Experimentally measured and predicted values of current as a
function of time for hydrogen gas diffusing through a proprietary ion-
exchange membrane (82 evenly spaced in time data points).

observation is expected since as the number of data points
increases, the parameter estimates will approach their true
values and the confidence intervals will tend toward zero.
Also shown in Fig.5 and 6 are percent errors in the
values for D and C, obtained by applying the three approx-
imate solutions, Eq.[7], [8], and [10], with the classical
method described above to the simulated data in Fig. 4.
Setting i(7)/i. to 0.5 in Eq. [7] and [8] and solving for 7 gives
TLaplace = 0.1388 and tpouer = 0.1405. Equation [10] provides
the correct value for = at i(7)/i. equal to 0.65 as shown in
Fig. 3. Using this value in Eq. [10] gives Tyen ana shin = 0.1750.
The limiting current, as approximated from Fig. 4 by using
aruler is 9 pA. The time, t, to reach one-half of the limiting
current is 5.5s and to obtain 0.65 of the limiting current is
6.9s. The diffusion coefficients for the Laplace and Fourier
equations are obtained from Eq. [9] using t = 5.5s and the
respective values for r above. Similarly, the diffusion coef-
ficient for the Yen and Shih equation is calculated by
using t = 6.9s and the above corresponding value of 7. The
solubility can then be calculated for each approximate
method by using the calculated diffusion coefficients and
approximated limiting current in Eq. [6]. Table III presents
a comparison of these results to the numerical method. It
is probably not necessary to analyze graphically each of
the 100 data sets since the only difference between each
data set is the amount of randomly induced noise. As
shown in Table III and Fig. 5 and 6, the numerical method
gives a more accurate estimate of the diffusion coefficient
and solubility than the approximate methods. It should be

Table I1l. Comparison of values obtained for D and C, by different methods for simulated data

D (x109 % Error® C,(x 1063) % Error®
Method (cm?s) inD (mol/cm®) inC,
Numerical® 2.4967 + 0.006477 -0.132 1.5036 = 0.004893 . 0.240
Laplace 2.524 0.960 1.478 -1.47
Fourier 2.555 2.20 1.460 —-2.67
Yen 2.536 1.44 1471 -1.93

2 Relative to the set value of 2.5 X 107% em?¥s.
® Relative to the set value of 1.5 x 10~® mol/cm3.
¢ Obtained with 50 evenly spaced data points.
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Table 1V. Comparison of values obtained for D and C, by different methods for experimental data

D (x10% % Error? C, (X 1063) % Error?
Method (cm?/s) inD (mol/cm?®) inC,
Numerical 2.0244 + 0.020581 2.2487 + 0.027021
Laplace 1.966 —2.885 2.375 5.617
Fourier 1.990 —1.699 2.347 4.371
Yen 1.866 -7.825 2.503 11.309

2 Relative to the numerical method.

mentioned that more than one data point from the current
transient could be used to perform the estimation for the
approximate methods. However, this would lessen the ap-
peal of the approximate methods and may be more diffi-
cult than using the numerical method.

To further illustrate the numerical method technique for
estimating diffusion coefficients and solubilities, actual
experimental data was analyzed by the four methods de-
scribed above. The permeation rate of hydrogen gas
through a proprietary membrane was measured by the
electrochemical monitoring technique as described ear-

Texas Advanced Technology and Research Program. Also,
the authors would like to thank Dr. A. T. Watson of the De-
partment of Chemical Engineering, Texas A&M Univer-
sity, for his helpful suggestions throughout this work.

Manuscript submitted Oct. 12, 1989; revised manuscript
received ca. Feb. 26, 1990.

Texas A&M University assisted in meeting the publica-
tion costs of this article.
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consisted of a 0.5M Nay;SO, electrolyte and a 11.13 mil thick A cross-sectional area of membrane and electrode,
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From the resulting current transient, 82 evenly spaced in ¢ concentration of gas in the mgnbrane, mol/cm?
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though the experimental current transient in Fig. 7 ap- Cz, diffusing gas solubility of repetition I, mol/em®
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