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Dynamic s of formatio n of solito n conductivit y in a 2D-array of linear chains containing
commensurat e charg e densit y waves near the contac t wit h a norma l metal

Yurij V. Pershin and Alexander S. Rozhavsky

B. Verkin Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue, 310164, Kharkov,
Ukraine*
~Submitted January 18, 1999; revised February 4, 1999!
Fiz. Nizk. Temp. 25, 609–615 ~June 1999!

We make anumerical study of the conversion of conduction electrons into charge density wave
~CDW! topological solitons at the interface between a normal metal and a 2D-array of the
CDW-carrying linear chains. The interplay of commensurability potential, interchain interaction,
and electric field on the dynamics of soliton formation is studied. When the interchain
interaction exceeds the commensurability energy, the dynamic mechanism of creation of
fractionally charged solitons near the contact is suppressed and specific contact nonlinearity in
transport current is not observed. © 1999 American Institute of Physics.
@S1063-777X~99!01106-8#

INTRODUCTION

Some quasi-one-dimensional metallic alloys undergo
phase transition to the Peierls dielectric ~PD! state at low
temperatures ~see, e.g.,1–3!. PD is characterized by a com-
plex order parameter D exp(iw), where D is the gap in a
single-electron spectrum and phase gradients define the col-
lective charge transfer: CDW conductivity. Topologically
stable nonlinear phase excitations, in particular, solitons and
antisolitons, serve as the elementary CDW charge carriers.
The soliton description is more or less successful in expla-
nation of the nonlinear bulk transport ~see, e.g., the Reviews
1 and 2!. However, one principal aspect of CDW-physics,
viz, the problem of interaction of the current-carrying CDW-
phase deformations with conduction electrons, in particular,
the nature of CDW/metal electrode interface phenomena, is
not yet entirely understood and controversial explanations
still arises.

To describe the process of charge transformation at the
CDW/normal metal interface, the ideology of phase slip cen-
ters ~PCS! which exploits the analogy between the PSC and
dislocations had been put forward ~see, e.g., Refs. 4–7!. The
physics behind the PSC is the strongly pronounced polaron
effect:3 i.e., conduction electrons imbedded in the conduction
band of a quasi-one-dimensional semi-conductor are un-
stable against self-trapping and subsequent absorption by the
valence band where they are finally converted into CDW
phase solitons.9 Interchain interaction provides aggregation
of solitons into dislocation-like loops: PSCs. Charge trans-
formation takes place near the contact with a normal metal.
In the cited publications4–7 ~see also references therein!, the
PSCs were treated as the static objects.

Dynamics of conversion was studied in a series of pio-
neer papers.8–10 It was shown that prior to formation of PSC
conduction solitons manifest highly nontrivial individual be-
havior, and the proper hierarchy of time scales which gov-
erns the charge transformation was established. Self-trapping
is connected with local gap deformations in conducting

chains. The potential barrier for the self-trapping is ;D, and
during the time ;\/D the quasiparticles spectrum is matched
to alocal value D(r ,t); the time of the gap deformation is of
order of v̄21 ~v̄ is the frequency of the Peierls phonons
which is of the order of the Debye frequency2,3!, the inter-
chain interaction being of order Tc ~Tc is the temperature of
the Peierls transition!, it defines the time \/Tc of the inter-
chain phase coherence onset. In a weakly coupled array of
highly conducting chains, when Tc!\v̄!D, the self-
trapping of electrons occurs in individual chains
independently3,4 and the charge transformations proceeds in
two steps, each characterized by its own time: transfer of
conduction electrons into the valence band in a single chain
at tD;v̄21, and formation of a collective charge carrier in
this chain at tw@tD . The time tw is the intrinsic scale of the
CDW-phase Hamiltonian,2–4 at t,tw individual charge car-
riers obey the Lagrange equations supplemented by the
boundary conditions. The latters are formed during the time
t,tD ;7 the initial phase perturbation is localized near the
interface over the distance of the order of VFtD;j0

5\VF /D; where j0 is the amplitude coherence length in
PD. The jump dw of the initial phase profilew(t50) is de-
fined by the charge conservation law in the process of self-
trapping. Indeed, the collective CDW charge densityr in a
single chain is related to phase gradient via the Fröhlich re-
lation:

r5
e

p

]w

]x
. ~1!

When q electrons are converted into the CDW-
condensate, the phase acquires a local deformation with the
net phase shift:

dw5w~x5`!2w~x52`!5qp. ~2!

It was shown in9 that during the elementary act of self-
trapping at the metal/PD interface the charge 2e is trans-
formed into a CDW in a single chain, i.e. two electrons with
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opposite spins are self localized during the time v̄21. This
process resembles the Andreev reflection in superconductors.
Thus, the initial condition to the phase equations of motion
leads to q522 in Eq. ~2!. As the scalej0 is much less than
any intrinsic length in the phase Hamiltonian,2–4 we can for-
mulate the initial condition as apoint-like step function with
the height equal to 22p.7

In our previous publications8,10 we have studied the evo-
lution of the initial CDW profile both analytically and nu-
merically in two models, when self-trapping occurs:

1! in a central chain which belongs to a cluster of nearest
chains containing an incommensurate CDW. The electric
field was not taken into account;8

2! in an isolated chain containing commensurate CDW
in the presence of a dc-electric field.10

It was shown that the initial condition always transforms
into stable topological Sine-Gordon ~SG! solitons. In the
model of nearest chains cluster each soliton has charge 2e,
and the role of the bulk term in the SG equation plays the
role of interaction between chains of the type sin(w02w1),
wherew0 and w1 are the phases in the central and nearest
chains. In a commensurate CDW we have observed the ef-
fect of a charge fractionalization ~see, e.g., Refs. 1 and 2!
when the initial profile decays into M fractionally charged
solitons ~an integer M.2 is an index of commensurability!
each carrying charge:

qs52e/M . ~3!

It was shown in Ref. 10 that soliton-antisoliton pairs with
charges 6qs ~3! are created in a dc-electric field from an
initial CDW profile, thus giving rise to an additional contact
non-linearity in the CDW-conductivity.

It is certainly interesting to study the evolution of initial
CDW profile and interaction of phases in different chains in
a more general 2D model, which takes into account the ef-
fects of commensurability, inter-chain interaction and elec-
tric field. This problem is not integrable; it is solved numeri-
cally in this paper.

MODEL

Consider the 2D-array of the CDW-containing chains
which occupy the semi-axis x>0. The Lagrangian of the
system is ~see, e.g., Ref. 2!:

L5
1

p\VF
(

i
FD2

v̄2 S ]w i

]t D 2

2
\2VF

2

4 S ]w i

]x D 2

1
D2

v̄2

2

M2 v0
2 cosMw i12Tc

2 cos~w i2w i 21!

1
e

p
\VFE~w i2w̃ !G , ~4!

wherew i denotes the phase in the i -th chain,v0 is the com-
mensurability frequency, and w̃ is the phase atx→1`.
Such form of the last term in Eq. ~4! takes into account the
renormalization of the phase in each chain in the presence of
an electric field.

The equation of motion for the Lagrangian ~4! has the
form:

]2x i

]t2 2
]2x i

]y2 1A sinM ~x i1w̃ !1B sin~x i2x i 21!

1B sin~x i2x i 11!5«, ~5!

where

y5
2D

\VFv̄
x, «5

e

2p
\VF

v̄2

D2 E,

A5
v0

2

M
, B5

v̄2

D2 Tc
2, and x i5w i2w̃. ~6!

In a nonzero field E the ground state is:

w̃5arcsin~«!. ~7!

Equation ~7! implies the restriction on the electric field
whereby the stable phase configuration exists:

U«AU,1. ~8!

Only the fields that obey the condition ~8! are considered
further.

Equation ~5! is supplemented by the initial and boundary
conditions which describe conversion of the pair of electrons
into a CDW-profile in a central chain ( i 50) ~see the above
discussion of the hierarchy of times in this problem!:

]x i

]t U
t50

50, ~9a!

x i~ t50!522pu~j̄02y!d i0 , ~9b!

x i~y50!522pd i0 , ~9c!

where d i j 51, i 5 j and d i j 50, iÞ j ; j̄0 is the coherence
length j05\VF /D in units ~6!, j̄0!1; and u(y) is the
Heavyside step function.

In what follows, we solve Eq. ~5! with the conditions ~9!
numerically by means of the method of finite differences.
The difference equation corresponding to Eq. ~5! has the
form

x i ,k11,l1x i ,k21,l22x i ,k,l

~Dt !2 2
x i ,k,l 111x i ,k,l 2122x i ,k,l

~Dy!2

1A sinM ~x i ,k,l1w0!1B sin~x i ,k,l2x i 11,k,l !

1B sin~x i ,k,l2x i 21,k,l !5«, ~10!

where Dt is the time step, Dy is coordinate step, and x i ,k,l

5x i(Dtk,Dyl ). Equation ~10! is solved for different values
of parameters and at different envelope functions in ~9b!.
The results presented are obtained for max(k)51000 ~max(k)
is the number of sites!. It is found in particular that neither
changing the shape of the initial perturbation ~9b! ~rectangu-
lar or triangular step! nor increasing the number of sites pro-
vides any significant effect on the solution of Eq. ~10!.
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CONVERSION IN A SINGLE CHAIN

Dynamics of conversion of conduction electrons into a
one-dimensional CDW was studied in.10 The system is de-
scribed by the reduced equation ~5!:

]2x

]t2 2
]2x

]y2 1A sinM ~x1w̃ !5«. ~11!

In weak decelerating and accelerating fields ( u«/Au
,0.1) the dynamics of phase develops along conventional
lines. In an accelerating field the initial profile propagates
along the chain keeping safe its ‘‘«step-like»’’ form ~9b!
~Fig. 1a!. In a weakly decelerating field ~Fig. 1b!, the initial
profile loses its stability after some time and splits into com-
mensurability solitons ~3!, which reverse their direction of
motion, and eventually collect near x50. The radiation
propagating with the maximum velocity is clearly observed.

The picture changes drastically when u«/Au exceeds a
threshold field «T . In this case the charge creation during the
evolution of the initial profile is observed both in accelerat-
ing ~Fig. 1c! and decelerating fields ~Fig. 1d!. The reversal of
the sign of created charges with the change of the field

direction unambiguously indicates that the mechanism of the
charge formation is the polarization of a CDW vacuum: at
«.0, the soliton ~s! and antisoliton ( s̄) move pro- and contra
the electric field correspondingly; at «,0 soliton and anti-
soliton change their positions. Such a mechanism of the
charge creation is responsible for the specific nonlinearity of
the contact conductivity:10

j ;
EAE2ET

B1AE2ET

. ~12!

Note that the threshold field ET , which defines the onset of
the nonlinear contact conductivity ~12!, is different from the
one normally observed in bulk transport.1,2 The latter is of
electrostatic origin and of course cannot appear in numerical
simulation of Eq. ~11!. The microscopic origin of the thresh-
old ~11! is the concurrence between the energy of soliton-
antisoliton confinement in a moving phase profile and the
electric field, which tends to dissolve the ss̄-bound state.10

FIG. 1. Dynamics of conversion of the electrons to the commensurate one-dimensional CDW. A51: a—accelerating field: «50.05; b—decelerating field:
«520.05; c—accelerating field: «50.2. The mechanism of the pair creation is observed: d—decelerating field: «520.2. The mechanism of the pair creation
is observed.
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CONVERSION IN A 2D-CLUSTER OF NEAREST CHAINS

In this model we consider the conversion in a central
chain which is surrounded by N symmetrically arranged
nearest chains. The symmetry of the problem allows us to
describe the dynamics of conversion by the following two
equations:

]2x0

]t2 2
]2x0

]y2 1A sinM ~x01w̃ !1NB sin~x02x1!5«,

~13a!

]2x1

]t2 2
]2x1

]y2 1A sinM ~x11w̃ !1B sin~x12x0!5«,

~13b!

wherex0 is the phase in the central chain andx1 in neigh-
boring ones. Equations ~13! are supplemented by the condi-
tions ~9!. Equations ~13! differ from Eq. ~11! by the inter-
chain interaction term B sin(x02x1).

The oversimplified problem ~without the electric field
and commensurability potential! was solved analytically in
Ref. 8. It was shown in Ref. 8 that pair of self-trapped con-
duction electrons transforms into a charged 2p-kink local-
ized in a central chain and surrounded by dipoles in neigh-
boring chains. The result of a numerical study of same
problem is plotted in Fig. 2a. There are two distinctions be-
tween the results obtained analytically and numerically. First

is the existence of the radiation ~Fig. 2a! which has been
dropped in.8 Second, decrease of the velocity of the 2p-kink
~Fig. 2a!, which is the typical feature of the soliton-type so-
lutions in the discrete Sine-Gordon equation.11,12 The inclu-
sion of the commensurability @AÞ0 in Eq. ~13!# results in
suppression of the charged dipoles.

Taking into account the electric field in the r.h.s. of Eqs.
~13! leads to various pictures, which depend on the equation
parameters. As in the model of a single chain, the threshold
field is observed, which is higher that in the one-dimensional
model and which depends on the number of neighboring
chains N, the parameters A and B, and sign of the field.
Increasing the number of chains leads to increasing the
threshold field. In weak accelerating fields («/A,0.3)
charged 2p-kink moves in the central chain and only the
radiation is observed in the neighboring chains. In higher
accelerating fields («/A.0.3) fractional charge creation is
observed ~Fig. 2b!; it occurs in the central and in neighboring
chains simultaneously, which explains the enhancement of
the threshold field.

Figures 2c and 2d show the solutions of Eqs. ~13! in
decelerating fields. The dynamics in weak decelerating fields
(u«/Au,0.15) is analogous to the corresponding result for a
single chain. The initial profile, which moves opposite the
field, loses its velocity after some time and localizes near

FIG. 2. Dynamics of conversion of the electrons to the cluster of the nearest chains. N52, B51: a—incommensurate chains: «50, A50. The initial
condition transforms to a 2p-kink surrounded by dipoles; b—commensurate chains, accelerating field:«50.4, A51. The mechanism of the pair creation is
observed; c—commensurate chains, decelerating field: «520.2, A51. The mechanism of the pair creation is observed; d—commensurate chains, deceler-
ating field: «520.3, A51. The mechanism of the pair creation is observed.
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x50. In higher fields (u«/Au.0.15) the charge creation is
observed ~Figs. 2c and 2d!. The charge creation occurs in the
neighboring chains only ~Fig. 2c! or in the central and in the
neighboring chains simultaneously ~Fig. 2d!, but always soli-
tons and antisolitons in the neighboring chains form bound
states with solitons and antisolitons in the central chain. It
must be emphasized that the value of the threshold field de-
pends on the sign of the applied field. In our opinion, this is
artifact of the model; actually, in real experiment one has a
symmetric system with two metal/CDW interfaces, and ET is
independent on the sign of «.

BEYOND THE CLUSTER APPROXIMATION

Consider the finite number of chains arranged symmetri-
cally relative to the central chain. We start from the model
without electric field and commensurability term ~Fig. 3a!.
The picture obtained is in its common features similar to Fig.
2a. The charged 2p-kink moves in the central chain and is
surrounded by dipoles and radiation in the array of chains.

With increase in the size of array, the dipoles wil l be spread
in the direction perpendicular to x. The amplitude of radia-
tion is approximately the same in all the chains.

Figure 3b shows the solutions of Eq. ~5! at «50. The
commensurability suppresses the charged dipoles. The 2p-
kink moves in the central chain, losing its velocity.

In the presence of an electric field ~Figs. 3c and 3d!,
effects of the soliton-antisoliton pairs creation and fractional
charge solitons ~3! are not observed. In the decelerating field
~Fig. 3c! the 2p-kink looses velocity and localizes near
x50. In the accelerating field ~Fig. 3d!, the 2p-kink accom-
panied by radiation moves into the bulk.

In Fig. 4 the soliton-soliton interaction for the solitons
located in the neighboring chains is studied. This problem is
interesting in the context of the problem of the solitons ag-
gregation into the macroscopic phase-slip centers. The 2p-
kink localized in the center of the first chain is prepared
in the following way: the initial condition for this chain is
chosen in the form:

FIG. 3. Dynamics of conversion of the electrons to the 2D-array of chains. B51: a—incommensurate chains: «50, A50. The initial condition transforms
to a 2p-kink surrounded by dipoles; b—commensurate chains:«50, A51. Commensurability leads to the suppression of the dipoles; c—commensurate
chains, decelerating field: «520.5, A51. The initial condition transforms to a 2p-kink decelerating by the field; d—commensurate chains, accelerating field:
«50.5, A51. The initial condition transforms to a 2p-kink accelerating by the field.
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w1~ t50!522puS l

2
2yD , ~14!

where l is the length of the chain. Then, after some time, the
condition ~14! decays into the stable 2p-kink accompanied
by the radiation, which spreads in both directions in all the
chains. The velocity of this kink is zero due to the symmetri-
cal initial condition ~14! contrary to the initial condition ~9b!
which produces the kink with a nonzero velocity. Before the
collision we put the radiation equal to zero. Hence, we have
the static 2p-kink in the first chain and the moving 2p-kink
in the zero chain. From Fig. 1b we see that the velocity of the
kinks does not change after collision. The collision results
only in the small space shift of the kinks, which means that
the aggregation of such solitons into macroscopic phase-slip
centers does not occur in this model.

CONCLUSIONS

In this paper we have studied several models describing
the dynamics of conversion of conduction electrons into to-
pological solitons of the commensurate charge density wave.

In an incommensurate CDW, in the absence of electric
field, the initial condition transforms into the 2p-kink local-
ized in the central chain and surrounded by charged dipoles
in the other chains. The commensurability leads to suppres-
sion of such dipoles. In the presence of electric field when
B/A!1 and the field being sufficiently large, the mechanism
of topological charge creation is observed. If B/A,1 ~which
is more realistic! the fractional charge conductivity and cre-
ation of the soliton-antisoliton pairs are suppressed. The 2p-
kink is localized in the central chain and is surrounded by the
radiation in the other chains. The soliton velocity depends on
the field.

In the framework of this model the soliton-soliton inter-
action does not lead to the aggregation of the solitons into
macroscopic phase-slip centers.

*E-mail: pershin@hotmail.com
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