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Polarization of Nuclear Spins from the Conductance of Quantum Wire

James A. Nesteroff, Yuriy V. Pershin, and Vladimir Privman
Center for Quantum Device Technology, Clarkson University, Potsdam, New York 13699-5721, USA

(Received 17 March 2004; published 14 September 2004)

We devise an approach to measure the polarization of nuclear spins via conductance measurements.
Specifically, we study the combined effect of external magnetic field, nuclear spin polarization, and
Rashba spin-orbit interaction on the conductance of a quantum wire. Nonequilibrium nuclear spin
polarization affects the electron energy spectrum making it time dependent. Changes in the extremal
points of the spectrum result in time dependence of the conductance. The conductance oscillation
pattern can be used to obtain information about the amplitude of the nuclear spin polarization and
extract the characteristic time scales of the nuclear spin subsystem.

DOI: 10.1103/PhysRevLett.93.126601 PACS numbers: 72.25.Dc, 73.23.–b

The promise of spintronics and quantum computing
has motivated recent theoretical and experimental inves-
tigations of spin-related effects in semiconductor hetero-
structures [1–10]. Nuclear and electron spins have been
considered as candidates for qubit implementations in
solid state systems [1–6]. The final stage of a quantum
computation process involves readout of quantum infor-
mation. In the case of a spin qubit one would have to
measure the state of a single spin. Yet, in spite of recent
efforts in this field, a single nuclear spin measurement is
still a great challenge.

There are several proposals for single- and few-spin
measurement. For example, a change of the oscillation
frequency of a micro-mechanical resonator (cantilever)
[11] is used. Another possibility to obtain information
about a qubit state lies in the measurement [12] of cur-
rent or its noise spectrum in a mesoscopic system (e.g.,
quantum wire, quantum dot, or single electron tran-
sistor) coupled to a qubit [13–15]. Significant progress
in spin measurements has been made using magnetic
resonance force microscopy [16], which presently allows
one to probe the state of 100 fully polarized electron
spins. Recently, an experimental architecture to manipu-
late the magnetization of nuclear spin domains was pro-
posed [5,6].

The present work demonstrates that a relatively small
ensemble of nuclear spins can significantly influence
transport through a quantum wire (QW). This offers a
new detector design, with the operation based on a new
effect arising as a consequence of the combined influence
of the spin-orbit interaction and nuclear spin polarization
on the electron subsystem. Recent progress in investiga-
tions of QWs [17–28] makes them a promising nanoscale
device component.

We consider transport through a QW in the presence of
an external in-plane magnetic field, Rashba spin-orbit
coupling [29], and a nonequilibrium nuclear spin polar-
ization. We assume that the external magnetic field is
directed along a wire. If the nuclear spin polarization
has a nonzero component perpendicular to the external

field at the initial moment of time (i.e., the two vectors are
not aligned), then we will demonstrate that the conduc-
tance of the wire exhibits damped oscillations. These
oscillations are a direct consequence of the interplay
between the evolving field of the nuclei and spin-orbit
interaction experienced by the conduction electrons in the
QW. Our results reveal that the damping times of these
oscillations are of the order of the longitudinal and trans-
verse relaxation times of the nuclear spins, while the
frequency of the oscillations is directly related to the
nuclear spin precession. With presently available QWs,
the number of nuclear spins in the region of the QW can
be quite large. However, experimental realizations of our
proposed system will yield valuable insights into the
physics of spin dynamics and measurement and will
advance the future implementations of few-spin elec-
tronic devices.

The system under investigation is depicted in Fig. 1.
The two-dimensional electron gas is split into two parts
by a potential applied to the gate electrodes. The narrow
constriction between the gates then forms a ‘‘dynamic’’
quantum wire. Let us define a coordinate system such that
the direction of the electron transport through the wire is
in the x-direction and lateral confinement is in the
y-direction. We assume that an external magnetic field is
applied in the x-direction. We will also consider an en-
semble of nuclear spins polarized locally in the region of
the wire. Experimentally, this can be accomplished by

HBn(t=0)
Gate 2DEG

FIG. 1 (color). Quantum wire with an applied magnetic field
in the x-direction, and an effective nuclear hyperfine field
initially pointing in the y-direction.
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means of optical pumping or other spatially-selective
techniques [30–32].

Once the nuclear spins are polarized, the charge carrier
spins feel an effective hyperfine field, Bn, which lifts the
spin degeneracy. The maximum nuclear field in GaAs can
be as high as Bn � 5:3 T in the limit that all the nuclear
spins are fully polarized [33]. This high level of nuclear
spin polarization has been achieved experimentally
[30,31]. Typically, natural semiconductor materials con-
tain at least a small fraction of one elemental isotope with
nonzero nuclear spin I [34,35]; for example, 69Ga (natural
abundance 60.1%), 71Ga (39.9%), and 75As (100%) all
have nuclear spin I � 3=2.

We will consider the effect that the precession and
decay of the nuclear spin polarization have on the current
through the QW. In order to observe this effect, the
nuclear spin polarization should not be collinear with
the applied magnetic field. We will assume that at the
initial moment of time all the nuclear spins are polarized
along x, and then only one kind of nuclear spins (those of
the same isotope) are selectively rotated to point in the
y-direction, e.g., by a radio-frequency NMR pulse [36].

The evolution of the nuclear magnetization can be
described phenomenologically by the Bloch equations
[36]. Since the effective magnetic field experienced by
the conduction electron spins due to the nuclear spin
polarization is proportional to the nuclear magnetization,
we can write the Bloch equations as

d ~Bi
n

dt
� �i

~Bi
n � ~H �

Bi
n;yŷ� Bi

n;zẑ

Ti
2

�
Bi
n;x � Bi

0

Ti
1

x̂; (1)

where the index i � 1; . . . ; p denotes different types of
nuclear spins, �i denotes the gyromagnetic ratios, Bi

0
gives the equilibrium values for the effective magnetic
fields of the nuclear spins, and Ti

1;2 are the longitudinal
and transverse spin relaxation times, respectively. The
total magnetic field due to the polarized nuclear spins is
defined as ~Bn �

Pp
i�1

~Bi
n. The equilibrium (thermal)

value of the effective magnetic fields Bi
0 is rather small,

and will be neglected in what follows. Assuming that
only the nuclear spin isotope with i � 1 was rotated in
the y-direction at t � 0, we can easily solve the Bloch
equations (1) to obtain the time dependence of the effec-
tive magnetic field of the spin-polarized nuclei,

Bn;x�t� �
Xp
i�2

Bi
n�t � 0�e�t=Ti1 ; (2)

Bn;y�t� � B1
n�t � 0�e�t=T1

2 cos��1Ht�; (3)

Bn;z�t� � �B1
n�t � 0�e�t=T1

2 sin��1Ht�: (4)

Here, B1
n�t � 0�ŷ and B2;...;p

n �t � 0�x̂ are the initial values
of the effective magnetic fields. In what follows we will
denote � � �1.

In the QW, the Hamiltonian for the conduction elec-
trons can be written in the form,

H �
p2

2m�
� V�y� � i��y

@
@x

�
g��B

2
~� 	 ~B: (5)

Here, ~p is the momentum of the electron, V�y� is the
lateral confinement potential due to the gates, �B and g�

are the Bohr magneton and effective g-factor, ~� is the
vector of the Pauli matrices, and ~B � ~Bn � ~H. The effect
of the external field ~H on the spatial motion is neglected,
assuming strong confinement in the z-direction. The third
term in (5) represents the Rashba spin-orbit interaction
for an electron moving in the x-direction [28]. We assume
that the effects of the Dresselhaus spin-orbit interaction
can be neglected [37].

All the time, scales of the nuclear spin dynamics are
much longer than the electron traversal time through the
QW, te. Therefore, we can assume that the electrons are
subject to constant effective interactions as they pass
through the QW. In solving the Schrödinger equation
for the electrons, we can treat the time dependence of
the nuclear hyperfine fields quasistatically. To justify this
statement, let us compare the shortest nuclear time scale,
the oscillatory period of the nuclear hyperfine field, tn,
with te. For example, for 69Ga, the spin precession fre-
quency is 10.7042 MHz in a magnetic field of 1 T [35],
which corresponds to tn ’ 0:1 �s. The traversal time can
be estimated as te ’ L=vf, where L is the length of the
QW and vf is the electron Fermi velocity. For L � 1 �m
and vf ’ 107 cm=s, we get te ’ 10 ps � tn.

The eigenvalues of (5) can be written [28] as

E‘;��k� �
�h2k2

2m�
� Etr

‘ � �

������������������������������������������������������
B2�t� �

2�kBy�t�

�
� �

�k
�
�2

s
:

(6)

Here, � refer to the spin direction, � � g��B=2, and
Etr
‘ is the ‘-th eigenvalue of V�y�. Assuming the para-

bolic confinement potential in the y-direction, we have

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00
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0.50
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1.00

γHt =π/2 γHt =πγHt =0

E

p (in units of η)

FIG. 2 (color). The lowest-energy subbands, in units of �h!, as
functions of p � �hk, for three different times. Here # �����������������
2m� �h!

p
. The two sets of curves correspond to spin �.
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Etr
‘ � �h!�‘� 1=2�. The energy spectrum (6) at different

moments of time is shown in Fig. 2, for the two spin-split
subbands characterized by ‘ � 0.

The time dependence introduced by the nuclear spin
precession causes the energy bands to oscillate in time.
The nonparabolic structure of the subbands is due to the
Rashba term in (5). The directional asymmetry of the
energy spectrum shown in Fig. 2 is related to the fact that
the nuclear spin polarization increases the effective
Rashba field for electrons moving in one direction and
decreases this field for electrons moving in the opposite
direction. We note that the nuclear spin relaxation pro-
cesses described by the exponential damping factors in
(2)–(4) ultimately suppress the oscillatory behavior of the
energy spectrum with time.

In order to calculate the conductance of the QW, we
assume [22] that the applied voltage is small compared to
kBT=e, and that the transport through the QW is ballistic.
Then the conductance, G, in the wire can be approxi-
mated by the linear response formula [22,27]. For sub-
bands with several local extremal points, to be labeled by
ext, it was shown in [28] that

G �
e2

h

X
‘;�

X
ext

%extf�Eext
‘;��; (7)

where f�E� is the Fermi-Dirac distribution function, %ext

is �1 for a minimum or maximum, respectively, and
perfect transmission through the wire is assumed [22].

Figure 3 shows the numerically calculated conductance
as a function of the reservoir chemical potential, mea-
sured from the bottom of the confining potential V�y�, at
different times. The conductance curves in Fig. 3(b) are
smooth due to the thermal broadening of the Fermi-Dirac
distribution. As temperature is lowered, these plateaus
will become sharper, as seen in Fig. 3(a). It is interesting
to note that for �Ht � 0 and & (not shown in Fig. 3) the
plateaus are nearly identical. This is due to the fact that

the conductance depends only on the energies of the
extremal points and not their location. In the case of
�Ht � &=2, the 2�kBy�t�=� term in (6) vanishes, thereby
causing the energy spectrum to become symmetric with
respect to the origin. Thus, according to (7), as the
chemical potential of the reservoirs increases, the two
minima will contribute 2e2=h to the conductance. If the
potential is increased further towards the local maximum
point, the conductance will be lowered to e2=h, which is
illustrated in Fig. 3(a).

In Fig. 4, the conductance at � � 0:5 �h! is shown. This
serves to illustrate that with an appropriate choice of the
parameters, one could observe large conductance oscil-
lations in a QW. As noted before, the oscillations are due
to the precession of the nuclear hyperfine field and have
the frequency !n � �H. However, these conductance
oscillations are damped, and the envelope of this damp-
ing can be attributed mainly to the exponential decay of
By�t� on the time scale T2.

In conclusion, we have demonstrated that nuclear spin
polarization can be monitored via the conductance mea-
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FIG. 3 (color). Time dependence of the conductance at (a) zero temperature and (b) finite temperature, as a function of the
reservoir chemical potential, �.
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surements of a quantum wire. Precession and relaxation
of polarized nuclear spins makes the energy spectrum of
the quantum wire time dependent with oscillating min-
ima and maxima of the subbands. These oscillations
could be observed in a conductance measurement at cer-
tain values of the gate voltage. We emphasize that this
effect arises as a result of the interplay of the Rashba
spin-orbit interaction, external magnetic field, and non-
equilibrium nuclear spin polarization.

We acknowledge useful discussions with S. N.
Shevchenko and I. D.Vagner. This research was supported
by the National Security Agency and Advanced Research
and Development Activity under Army Research Office
Contract No. DAAD-19-02-1-0035, and by the National
Science Foundation, Grant No. DMR-0121146.
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