University of South Carolina

Scholar Commons

Faculty Publications

Chemistry and Biochemistry, Department of

8-15-2007

Poly[µ2-nitrato-(µ4-pyrazine-2-carboxylato)disilver(I)]

Kathryn L. Seward University of South Carolina - Columbia

Joseph M. Ellsworth University of South Carolina - Columbia

Zeeshan M. Khaliq University of South Carolina - Columbia

Hans-Conrad zur Loye University of South Carolina - Columbia, zurloye@mailbox.sc.edu

Follow this and additional works at: https://scholarcommons.sc.edu/chem_facpub

Part of the Chemistry Commons

Publication Info

Published in Acta Crystallographica Section E, Volume 63, Issue 9, 2007, pages m2333-.

This Article is brought to you by the Chemistry and Biochemistry, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact digres@mailbox.sc.edu.

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Editors: W. Clegg and D. G. Watson

Poly[μ_2 -nitrato-(μ_4 -pyrazine-2-carboxylato)disilver(I)]

Kathryn L. Seward, Joseph M. Ellsworth, Zeeshan M. Khaliq, Mark D. Smith and Hans-Conrad zur Loye

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

metal-organic compounds

Acta Crystallographica Section E

Structure Reports

Online

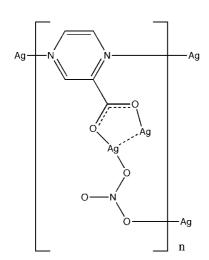
ISSN 1600-5368

Poly[μ_2 -nitrato-(μ_4 -pyrazine-2-carboxylato)disilver(I)1

Kathryn L. Seward, Joseph M. Ellsworth, Zeeshan M. Khaliq, Mark D. Smith and Hans-Conrad zur Loye*

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA

Correspondence e-mail: zurloye@mail.chem.sc.edu


Received 24 July 2007; accepted 1 August 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean $\sigma(C-C) = 0.008 \text{ Å}$; R factor = 0.030; wR factor = 0.063; data-to-parameter ratio = 10.5.

The title compound, $[Ag_2(C_5H_3N_2O_2)(NO_3)]_n$, is a threedimensional coordination polymer containing two-dimensional slabs held together by bridging nitrate groups. AgNO₄ and AgNO₅ silver coordination polyhedra arise. Weak argentophilic interactions $[Ag \cdot \cdot \cdot Ag = 3.0686 (7) A]$ occur in the crystal structure.

Related literature

For related literature, see: Dong et al. (2000); Qin et al. (2004).

Experimental

Crystal data

 $[Ag_{2}(C_{5}H_{3}N_{2}O_{2})(NO_{3})] \\$ $M_r = 400.84$

Monoclinic, P2₁/c a = 8.8263 (6) Å

b = 5.9804 (4) Å c = 15.3032 (11) Å $\beta = 93.480 \ (2)^{\circ}$ $V = 806.29 (10) \text{ Å}^3$ Z = 4

Mo $K\alpha$ radiation $\mu = 4.86 \text{ mm}^{-}$ T = 150 (1) K $0.08\,\times\,0.04\,\times\,0.02$ mm

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.862, \ T_{\max} = 1.000$ (expected range = 0.782-0.907)

8281 measured reflections 1425 independent reflections 1216 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.063$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.063$ S = 1.031425 reflections

136 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.83 \text{ e Å}^{-1}$ $\Delta \rho_{\min} = -0.64 \text{ e Å}^{-3}$

Table 1 Selected bond lengths (Å).

-			
Ag1-N1i	2.268 (5)	Ag2-O2	2.337 (4)
Ag1-O1	2.311 (4)	$Ag2-N2^{iv}$	2.377 (5)
Ag1-O5ii	2.464 (4)	Ag2-O3	2.426 (4)
Ag1-O1 ⁱ	2.534 (4)	$Ag2-O5^{v}$	2.483 (4)
Ag1-O2 ⁱⁱⁱ	2.633 (4)	Ag2-O4	2.726 (5)
Ag1-Ag2	3.0686 (7)	Ag2-O1i	2.801 (4)
Communications and an	(i)	_ + 3. (::)	1 _ 1 3. (:::)

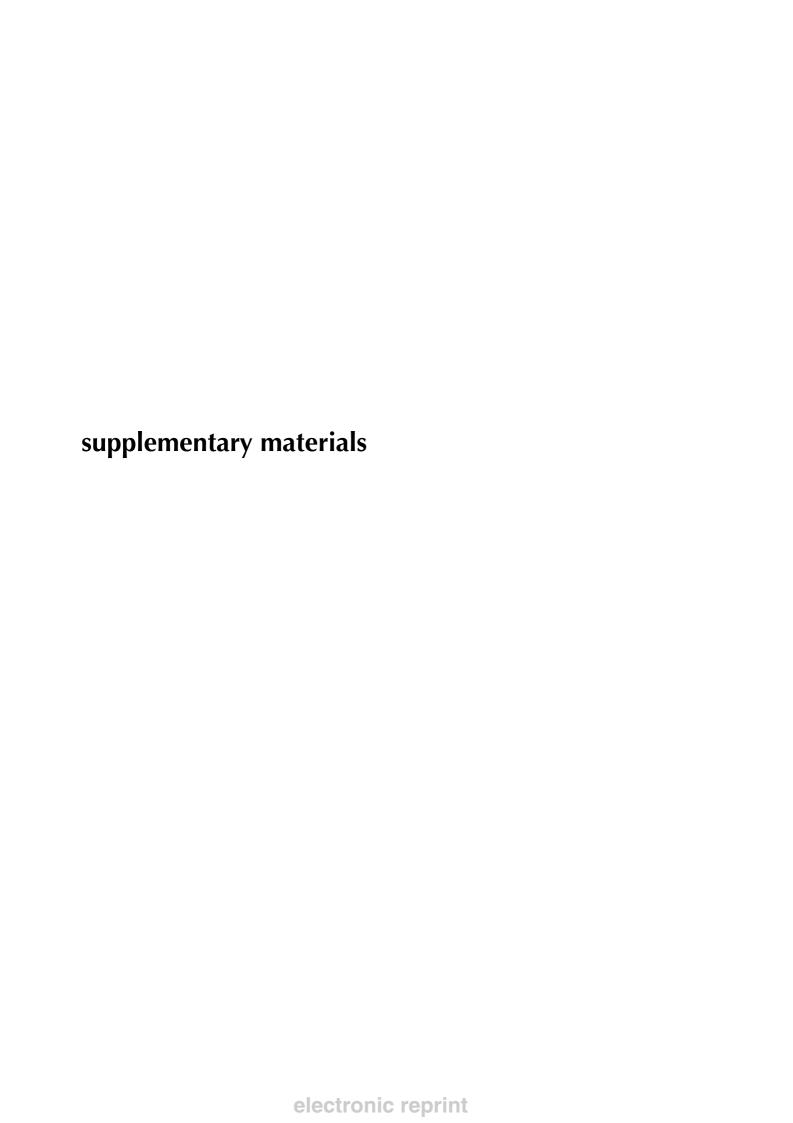
 $-x+1, y-\frac{1}{2}, -z+\frac{3}{2};$ (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (iv) -x + 1, -y, -z + 1; (v) -x, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

Financial support from the National Science Foundation through award CHE:0714439 and the University of South Carolina Magellan Scholar Program are gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2494).

References


Bruker (1998). SMART. Version 5.625. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SAINT-Plus (Version 6.22) and SADABS (Version 2.1). Bruker AXS Inc., Madison, Wisconsin, USA.

Dong, Y. B., Smith, M. D. & zur Loye, H.-C. (2000). Solid State Sci. 2, 335–341. Qin, S. B., Lu, S. M., Ke, Y. X., Li, H. M., Wu, X. T. & Du, W. X. (2004). Solid State Sci. 6, 753-755.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germanv.

Sheldrick, G. W. (2000). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, m2333 [doi:10.1107/S1600536807037968]

Poly[42-nitrato-(44-pyrazine-2-carboxylato)disilver(I)]

K. L. Seward, J. M. Ellsworth, Z. M. Khaliq, M. D. Smith and H.-C. zur Loye

Comment

Single crystal X-ray analysis of the title compound, (I), revealed a three-dimensional structure composed of silver dimer units [Ag1···Ag2 = 3.0686 (7), linked into two-dimensional slabs by the pca (2-pyrazinecarboxylate, $C_5H_3N_2O_2^-$) groups. (Dong *et al.*, 2000) The asymmetric unit is shown in **Figure 1** and geometrical data are listed in **Table 1**. All available coordination sites of the pca ligands (Qin *et al.*, 2004) are used in bonding to silver. The pca ligands bind to Ag1 atoms in a chelating fashion through N1 and O1 as shown in **Figure 2**. The Ag1 atoms are bridged to each other through an μ -2 interaction from the chelating oxygen atoms on the pca ligands (**Figure 2**) forming one-dimensional zigzag chains along the *b* axis (**Figure 3**). Each Ag1 atom is also bonded to the non-chelating oxygen atom O2. The terminal nitrogen atom (N2) and non-chelating oxygen atom (O2) (**Figure 3**) on the pca ligands are bonded to Ag2 atoms, connecting the zigzag chains in the c direction, propagating them into two-dimensional slabs in the [001] plane (**Figure 4**). Extending form either side of the slabs are nitrate groups, which are bonded to both Ag1 and Ag2. Ag1 is coordinated to one nitrate group through O5 and Ag2 is coordinated to three nitrate groups through O5, O3, and O4. These nitrate groups serve to tether the slabs into the extended three-dimensional structure shown in **Figure 5**.

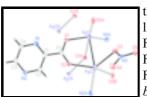
Experimental

2-Pyrazinecarboxylic acid (8.05 mmol, 1000 mg) and $Co(NO_3)(H_2O)_6$ (8.05 mmol, 2340 mg) were weighed and placed into a 100 ml round bottom flask. which was then heated to a temperature of 373 K and kept constant for 12 h and then allowed to cool to room temperature. The product, cobalt (III) pyrazinecarboxylate, (II), was suction filtrated and allowed to dry. After drying, (II) and $AgNO_3$ were combined in a 23 ml Teflon-lined autoclave with 5 ml of distilled water. The autoclave was sealed and heated to 403 K at a rate of 1.0 K/min. and held at a constant temperature for 24 h. After this period, the autoclave was cooled to 305 K at a rate of 0.1 K/min. Colorless plates of (I) were hand picked from the reaction.

Refinement

The hydrogen atoms were geometrically placed (C—H = 0.93 Å) and refined as riding with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures



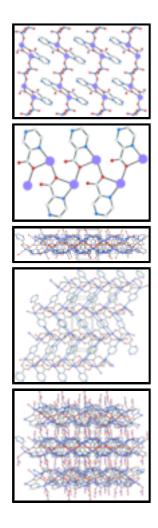

Figure 1. Asymmetric unit of (I) with additional atoms in a 3.5 Å coordination sphere around the Ag atoms. Atoms of the asymmetric unit highlighted with solid bonds. Displacement ellipsoids for the non-hydrogen atoms are drawn at the 50% probability level.

Figure 2. Chelating binding mode of pca ligands to Ag1 atoms, Ag2 atoms omitted for clarity.

Figure 3. Detail of the zigzag chain along the b axis, Ag2 atoms omitted for clarity.

Figure 4. Views (a) parallel and (b) perpendicular to the infinite slabs which propagate in the bc plane.

Figure 5. Full three-dimensional structure viewed along the [001] direction.

$Poly[\mu_2\text{-nitrato-}(\mu_4\text{-pyrazine-2-carboxylato}) disilver(I)]$

Crystal data

 $[Ag_2(C_5H_3N_2O_2)(NO_3)]$ $F_{000} = 752$ $M_r = 400.84$ $D_{\rm x} = 3.302 \; {\rm Mg \; m}^{-3}$ Mo $K\alpha$ radiation Monoclinic, $P2_1/c$ $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2ybc Cell parameters from 1599 reflections a = 8.8263 (6) Å $\theta = 2.3-22.7^{\circ}$ b = 5.9804 (4) Å $\mu = 4.86 \text{ mm}^{-1}$ c = 15.3032 (11) ÅT = 150 (1) K $\beta = 93.480 (2)^{\circ}$ Plate, colorless $0.08\times0.04\times0.02~mm$ $V = 806.29 (10) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 1425 independent reflections

1216 reflections with $I > 2\sigma(I)$ Radiation source: fine-focus sealed tube

 $R_{\rm int} = 0.063$ Monochromator: graphite $\theta_{\text{max}} = 25.0^{\circ}$ T = 150(1) K $\theta_{\min} = 2.3^{\circ}$ ω scans

Absorption correction: multi-scan $h = -10 \rightarrow 10$ (SADABS; Bruker, 2001)

 $k = -7 \rightarrow 7$ $T_{\min} = 0.862, T_{\max} = 1.000$ $l = -18 \rightarrow 18$ 8281 measured reflections

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring Least-squares matrix: full sites

 $R[F^2 > 2\sigma(F^2)] = 0.030$ H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0283P)^2]$ $wR(F^2) = 0.063$ where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ S = 1.03 $\Delta \rho_{\text{max}} = 0.83 \text{ e Å}^{-3}$ 1425 reflections

 $\Delta \rho_{\text{min}} = -0.64 \text{ e Å}^{-3}$ 136 parameters

Primary atom site location: structure-invariant direct

methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	y	Z	$U_{\rm iso}*/U_{\rm eq}$
Ag1	0.36377 (5)	0.31527 (7)	0.81236 (3)	0.01864 (15)
Ag2	0.25055 (5)	-0.04248 (8)	0.68028 (3)	0.01901 (15)
C1	0.6342 (6)	0.3866 (9)	0.5699 (4)	0.0133 (13)
C2	0.6641 (6)	0.2422 (10)	0.5023 (4)	0.0154 (13)
H2	0.6167	0.0995	0.5003	0.018*
C3	0.8236 (6)	0.4983 (10)	0.4470 (4)	0.0180 (14)
Н3	0.8890	0.5454	0.4035	0.022*
C4	0.7993 (7)	0.6392 (10)	0.5159 (4)	0.0184 (14)
H4	0.8528	0.7770	0.5203	0.022*
C5	0.5214 (6)	0.3149 (10)	0.6354 (4)	0.0153 (13)

N1	0.7015 (6)	0.5872 (8)	0.5776 (3)	0.0175 (11)
N2	0.7577 (5)	0.2963 (8)	0.4394(3)	0.0173 (11)
N3	-0.0623 (6)	0.1116 (8)	0.7017(3)	0.0188 (12)
O1	0.4992 (5)	0.4448 (7)	0.6981 (3)	0.0191 (10)
O2	0.4573 (4)	0.1311 (7)	0.6200(2)	0.0169 (9)
O3	0.0463 (5)	0.1172 (7)	0.7592(3)	0.0236 (10)
O4	-0.0353 (5)	0.0837 (8)	0.6231 (3)	0.0287 (11)
O5	-0.1959 (4)	0.1354 (7)	0.7241 (3)	0.0224 (10)

Atomic displacement parameters $(\mathring{\mathbb{A}}^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.0219 (3)	0.0141 (3)	0.0204(3)	0.0010(2)	0.0058 (2)	0.00323 (19)
Ag2	0.0166 (3)	0.0229 (3)	0.0182 (3)	-0.0022 (2)	0.00601 (19)	-0.0016 (2)
C1	0.012(3)	0.013 (3)	0.014(3)	0.002(2)	-0.002 (2)	0.002(2)
C2	0.017(3)	0.017(3)	0.012(3)	-0.001 (3)	-0.002 (2)	0.001(2)
C3	0.011 (3)	0.026 (4)	0.016(3)	0.002(3)	0.000(3)	0.009(3)
C4	0.018 (3)	0.011 (3)	0.027 (4)	-0.004(3)	0.000(3)	0.002(3)
C5	0.014(3)	0.017(3)	0.014(3)	0.005(3)	0.002(2)	0.005(3)
N1	0.018 (3)	0.018 (3)	0.016 (3)	0.000(2)	0.000(2)	-0.001 (2)
N2	0.015 (3)	0.024(3)	0.014(3)	-0.002 (2)	0.004(2)	0.001(2)
N3	0.022(3)	0.007(3)	0.027(3)	-0.004(2)	0.005(3)	-0.003 (2)
O1	0.023 (2)	0.015 (2)	0.021(2)	-0.0017 (18)	0.0110 (19)	-0.0045 (18)
O2	0.021 (2)	0.016(2)	0.015(2)	-0.0063 (18)	0.0053 (18)	-0.0018 (17)
O3	0.019(2)	0.022(2)	0.029(3)	0.0013 (19)	-0.003 (2)	-0.007(2)
O4	0.031 (3)	0.033 (3)	0.023 (3)	-0.003 (2)	0.011 (2)	-0.004(2)
O5	0.011 (2)	0.024(3)	0.032(3)	-0.0001 (19)	0.006(2)	-0.008 (2)

Geometric parameters (Å, °)

Ag1—N1 ⁱ	2.268 (5)	C2—H2	0.9500
Ag1—O1	2.311 (4)	C3—N2	1.343 (8)
Ag1—O5 ⁱⁱ	2.464 (4)	C3—C4	1.377 (9)
Ag1—O1 ⁱ	2.534 (4)	С3—Н3	0.9500
Ag1—O2 ⁱⁱⁱ	2.633 (4)	C4—N1	1.354 (8)
Ag1—Ag2	3.0686 (7)	C4—H4	0.9500
Ag2—O2	2.337 (4)	C5—O2	1.252 (7)
Ag2—N2 ^{iv}	2.377 (5)	C5—O1	1.260 (7)
Ag2—O3	2.426 (4)	N1—Ag1 ⁱⁱⁱ	2.268 (5)
Ag2—O5 ^v	2.483 (4)	N2—Ag2 ^{iv}	2.377 (5)
Ag2—O4	2.726 (5)	N3—O4	1.250(6)
Ag2—O1 ⁱ	2.801 (4)	N3—O5	1.256 (6)
C1—N1	1.341 (7)	N3—O3	1.262 (6)
C1—C2	1.384 (8)	O1—Ag1 ⁱⁱⁱ	2.534 (4)
C1—C5	1.516 (8)	O5—Ag1 ^v	2.464 (4)
C2—N2	1.346 (7)	O5—Ag2 ⁱⁱ	2.483 (4)

N1 ⁱ —Ag1—O1	158.37 (16)	O1 ⁱ —Ag2—Ag1	50.89 (8)
N1 ⁱ —Ag1—O5 ⁱⁱ	117.34 (16)	N1—C1—C2	121.4 (5)
O1—Ag1—O5 ⁱⁱ	84.23 (14)	N1—C1—C5	120.0 (5)
N1 ⁱ —Ag1—O1 ⁱ	70.42 (16)	C2—C1—C5	118.7 (5)
O1—Ag1—O1 ⁱ	88.53 (9)	N2—C2—C1	122.5 (5)
O5 ⁱⁱ —Ag1—O1 ⁱ	161.38 (14)	N2—C2—H2	118.7
N1 ⁱ —Ag1—O2 ⁱⁱⁱ	108.24 (15)	C1—C2—H2	118.7
O1—Ag1—O2 ⁱⁱⁱ	74.41 (13)	N2—C3—C4	122.0 (6)
O5 ⁱⁱ —Ag1—O2 ⁱⁱⁱ	82.52 (13)	N2—C3—H3	119.0
O1 ⁱ —Ag1—O2 ⁱⁱⁱ	112.02 (13)	C4—C3—H3	119.0
N1 ⁱ —Ag1—Ag2	88.99 (13)	N1—C4—C3	121.9 (6)
O1—Ag1—Ag2	84.16 (10)	N1—C4—H4	119.0
O5 ⁱⁱ —Ag1—Ag2	103.01 (10)	C3—C4—H4	119.0
O1 ⁱ —Ag1—Ag2	59.08 (10)	O2—C5—O1	126.5 (5)
O2 ⁱⁱⁱ —Ag1—Ag2	157.29 (9)	O2—C5—C1	115.6 (5)
O2—Ag2—N2 ^{iv}	88.14 (15)	O1—C5—C1	117.9 (5)
O2—Ag2—O3	130.03 (15)	C1—N1—C4	116.2 (5)
N2 ^{iv} —Ag2—O3	130.27 (16)	C1—N1—Ag1 ⁱⁱⁱ	118.2 (4)
O2—Ag2—O5 ^v	139.56 (14)	C4—N1—Ag1 ⁱⁱⁱ	125.5 (4)
N2 ^{iv} —Ag2—O5 ^v	87.74 (15)	C3—N2—C2	115.8 (5)
O3—Ag2—O5 ^v	80.52 (14)	C3—N2—Ag2 ^{iv}	129.3 (4)
O2—Ag2—O4	118.69 (14)	C2—N2—Ag2 ^{iv}	114.0 (4)
N2 ^{iv} —Ag2—O4	86.86 (15)	O4—N3—O5	121.0 (5)
O3—Ag2—O4	49.43 (14)	O4—N3—O3	119.5 (5)
O5 ^v —Ag2—O4	101.22 (13)	O5—N3—O3	119.5 (5)
O2—Ag2—O1 ⁱ	70.81 (13)	C5—O1—Ag1	118.8 (4)
N2 ^{iv} —Ag2—O1 ⁱ	118.73 (14)	C5—O1—Ag1 ⁱⁱⁱ	113.2 (4)
O3—Ag2—O1 ⁱ	105.05 (13)	Ag1—O1—Ag1 ⁱⁱⁱ	127.74 (17)
O5 ^v —Ag2—O1 ⁱ	76.19 (13)	C5—O2—Ag2	132.1 (4)
O4—Ag2—O1 ⁱ	153.84 (12)	N3—O3—Ag2	101.4 (3)
O2—Ag2—Ag1	73.70 (9)	N3—O4—Ag2	87.4 (3)
N2 ^{iv} —Ag2—Ag1	161.16 (12)	N3—O5—Ag1 ^v	114.3 (3)
O3—Ag2—Ag1	67.65 (10)	N3—O5—Ag2 ⁱⁱ	117.9 (3)
O5 ^v —Ag2—Ag1	102.71 (10)	Ag1 ^v —O5—Ag2 ⁱⁱ	126.91 (17)
O4—Ag2—Ag1	106.05 (10)		
N1 ⁱ —Ag1—Ag2—O2	-145.90 (16)	C1—C2—N2—C3	1.4 (8)
O1—Ag1—Ag2—O2	13.55 (15)	C1—C2—N2—Ag2 ^{iv}	-169.3 (4)
O5 ⁱⁱ —Ag1—Ag2—O2	96.24 (14)	O2—C5—O1—Ag1	12.5 (8)
O1 ⁱ —Ag1—Ag2—O2	-78.24 (15)	C1—C5—O1—Ag1	-168.8 (4)
O2 ⁱⁱⁱ —Ag1—Ag2—O2	-5.7 (3)	O2—C5—O1—Ag1 ⁱⁱⁱ	-173.1 (5)
N1 ⁱ —Ag1—Ag2—N2 ^{iv}	-130.0 (4)	C1—C5—O1—Ag1 ⁱⁱⁱ	5.6 (6)
		-	

O1—Ag1—Ag2—N2 ^{iv}	29.5 (4)	N1 ⁱ —Ag1—O1—C5	53.1 (7)
O5 ⁱⁱ —Ag1—Ag2—N2 ^{iv}	112.2 (4)	O5 ⁱⁱ —Ag1—O1—C5	-122.9 (4)
O1 ⁱ —Ag1—Ag2—N2 ^{iv}	-62.3 (4)	O1 ⁱ —Ag1—O1—C5	39.9 (3)
O2 ⁱⁱⁱ —Ag1—Ag2—N2 ^{iv}	10.3 (4)	O2 ⁱⁱⁱ —Ag1—O1—C5	153.3 (4)
N1 ⁱ —Ag1—Ag2—O3	66.45 (17)	Ag2—Ag1—O1—C5	-19.1 (4)
O1—Ag1—Ag2—O3	-134.10 (15)	N1 ⁱ —Ag1—O1—Ag1 ⁱⁱⁱ	-120.4 (4)
O5 ⁱⁱ —Ag1—Ag2—O3	-51.42 (15)	O5 ⁱⁱ —Ag1—O1—Ag1 ⁱⁱⁱ	63.6 (2)
O1 ⁱ —Ag1—Ag2—O3	134.11 (15)	O1 ⁱ —Ag1—O1—Ag1 ⁱⁱⁱ	-133.6 (3)
O2 ⁱⁱⁱ —Ag1—Ag2—O3	-153.3 (3)	O2 ⁱⁱⁱ —Ag1—O1—Ag1 ⁱⁱⁱ	-20.20 (19)
N1 ⁱ —Ag1—Ag2—O5 ^v	-7.57 (15)	Ag2—Ag1—O1—Ag1 ⁱⁱⁱ	167.4 (2)
$O1$ — $Ag1$ — $Ag2$ — $O5^v$	151.88 (14)	O1—C5—O2—Ag2	9.9 (9)
O5 ⁱⁱ —Ag1—Ag2—O5 ^v	-125.44 (17)	C1—C5—O2—Ag2	-168.8 (3)
O1 ⁱ —Ag1—Ag2—O5 ^v	60.09 (14)	N2 ^{iv} —Ag2—O2—C5	166.0 (5)
O2 ⁱⁱⁱ —Ag1—Ag2—O5 ^v	132.7 (2)	O3—Ag2—O2—C5	21.2 (6)
N1 ⁱ —Ag1—Ag2—O4	98.23 (16)	O5 ^v —Ag2—O2—C5	-109.6 (5)
O1—Ag1—Ag2—O4	-102.32 (14)	O4—Ag2—O2—C5	80.6 (5)
O5 ⁱⁱ —Ag1—Ag2—O4	-19.63 (14)	O1 ⁱ —Ag2—O2—C5	-72.6 (5)
O1 ⁱ —Ag1—Ag2—O4	165.89 (14)	Ag1—Ag2—O2—C5	-19.0 (5)
O2 ⁱⁱⁱ —Ag1—Ag2—O4	-121.5 (2)	O4—N3—O3—Ag2	-16.1 (5)
N1 ⁱ —Ag1—Ag2—O1 ⁱ	-67.66 (16)	O5—N3—O3—Ag2	164.3 (4)
O1—Ag1—Ag2—O1 ⁱ	91.79 (11)	O2—Ag2—O3—N3	104.4 (3)
O5 ⁱⁱ —Ag1—Ag2—O1 ⁱ	174.48 (14)	N2 ^{iv} —Ag2—O3—N3	-26.6 (4)
O2 ⁱⁱⁱ —Ag1—Ag2—O1 ⁱ	72.6 (2)	O5 ^v —Ag2—O3—N3	-105.4 (3)
N1—C1—C2—N2	-2.1 (9)	O4—Ag2—O3—N3	8.4 (3)
C5—C1—C2—N2	177.2 (5)	O1 ⁱ —Ag2—O3—N3	-178.2 (3)
N2—C3—C4—N1	-3.5 (9)	Ag1—Ag2—O3—N3	146.6 (3)
N1—C1—C5—O2	175.8 (5)	O5—N3—O4—Ag2	-166.4 (5)
C2—C1—C5—O2	-3.5 (8)	O3—N3—O4—Ag2	14.0 (5)
N1—C1—C5—O1	-3.1 (8)	O2—Ag2—O4—N3	-128.1 (3)
C2—C1—C5—O1	177.7 (5)	N2 ^{iv} —Ag2—O4—N3	145.8 (3)
C2—C1—N1—C4	0.0(8)	O3—Ag2—O4—N3	-8.3 (3)
C5—C1—N1—C4	-179.2 (5)	O5 ^v —Ag2—O4—N3	58.7 (3)
C2—C1—N1—Ag1 ⁱⁱⁱ	177.5 (4)	O1 ⁱ —Ag2—O4—N3	-22.8 (5)
C5—C1—N1—Ag1 ⁱⁱⁱ	-1.8 (7)	Ag1—Ag2—O4—N3	-48.2 (3)
C3—C4—N1—C1	2.7 (8)	O4—N3—O5—Ag1 ^v	60.4 (6)
C3—C4—N1—Ag1 ⁱⁱⁱ	-174.6 (4)	O3—N3—O5—Ag1 ^v	-120.0 (4)
C4—C3—N2—C2	1.3 (8)	O4—N3—O5—Ag2 ⁱⁱ	-129.7 (4)
C4—C3—N2—Ag2 ^{iv}	170.3 (4)	O3—N3—O5—Ag2 ⁱⁱ	49.9 (6)
Symmetry codes: (i) $-x+1$, $y-1/2$, $-z+3$	3/2; (ii) $-x$, $y+1/2$, $-z+3/2$; (iii) $-x+1$, $y+1/2$, $-z+3/2$; (iv) $-x+1$, $-y$, $-z+3/2$; (iv) $-x+1$, $-z+3/2$; (iv) $-x$	z+1; (v) $-x$, $y-1/2$, $-z+3$

Fig. 1

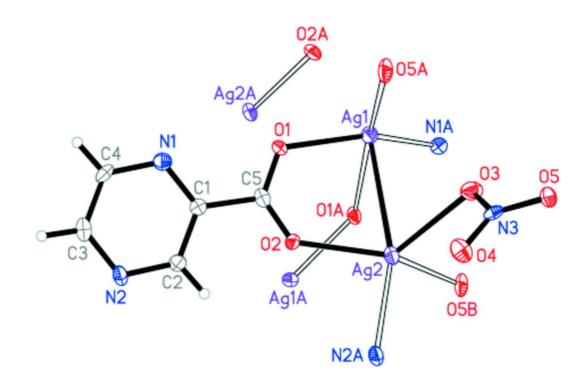


Fig. 2

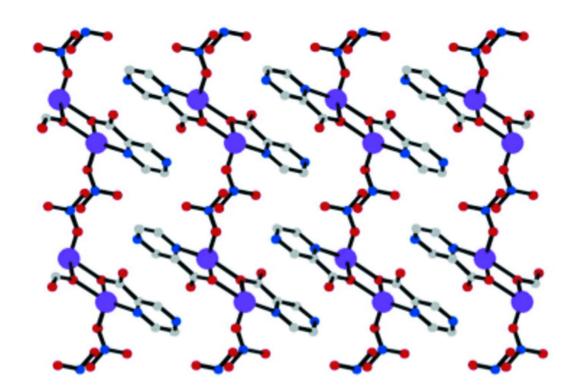


Fig. 3

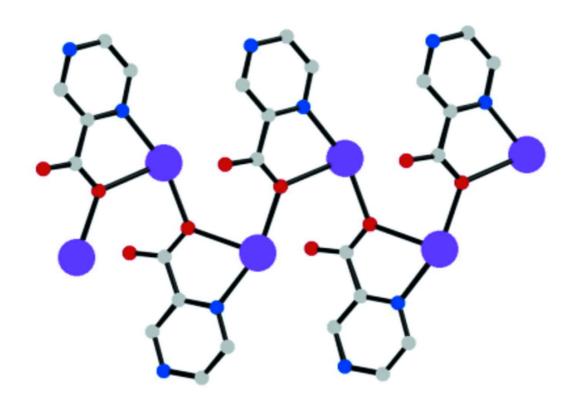


Fig. 4

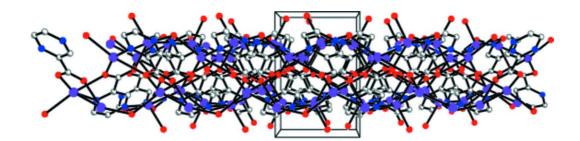


Fig. 5

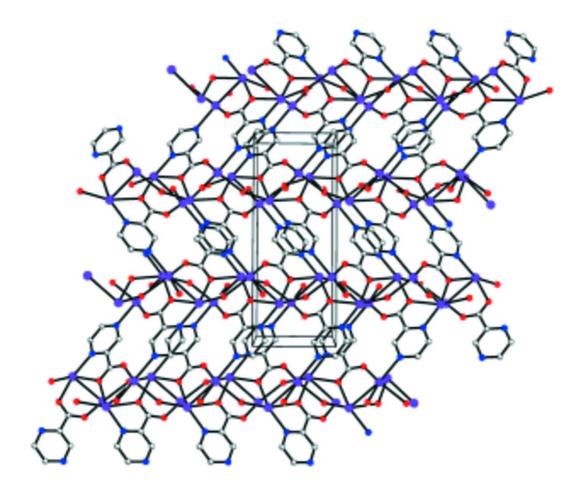
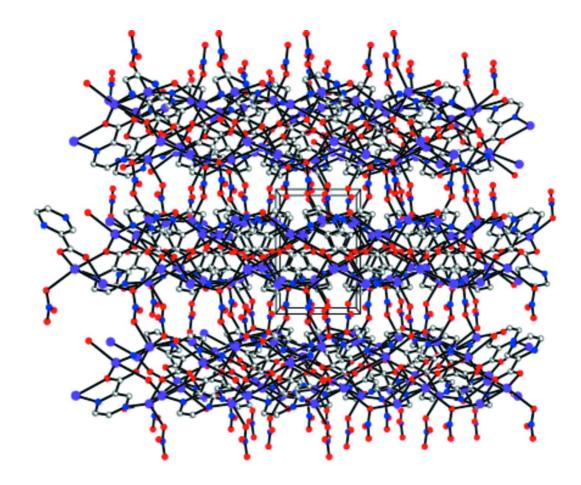



Fig. 6

