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ABSTRACT: We tested the application of 5-bromo-2'-deoxyuridine (BrdU), a thymidine analogue
that becomes incorporated into DNA during growth, to measure growth rates of individual marine
bacteria cells. Immunocytochemical detection of BrdU incorporation into bacterial DNA has the
potential for single-cell-based growth measurement. Optimized procedure for immunocytochemistry
was applicable to 14 marine heterotrophic bacterial isolates belonging to y-proteobacteria, a-pro-
teobacteria, Cytophaga-Flavobacterium-Bacteroides (CFB) group and Gram-positive bacteria. The
relationship between cell-specific fluorescence intensity and specific growth rate was linearly corre-
lated among CFB group isolates, which indicated a potential of the method for quantitative measure-
ment. Analysis of the detection limit indicated that bacteria with <1 d doubling time could be
detected in 5 h incubations using bacterial assemblages in seawater. The method was also applied to
visualize actively growing bacteria on phytoplankton detritus in seawater and was sensitive enough
to test the variation in growth rate of natural bacterial assemblages in coastal waters using incuba-
tions of a few hours in duration. The method has the potential to yield insights into microspatial vari-

ability in bacterial growth rates in seawater.
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INTRODUCTION

The importance of bacteria in organic matter fluxes
in the ocean is now well recognized (Azam 1998,
Kirchman & Williams 2000). Biomass and production of
bacteria measured in various oceanographic provinces
indicate that bacteria are significant regulators of the
fluxes of organic matter in the euphotic layers (Cole et
al. 1988) and the mesopelagic zone (Cho & Azam
1988). Also, culture-independent molecular tech-
niques have revealed high diversity and dynamics in
marine bacterial communities (e.g. DeLong et al. 1999,
Cottrell & Kirchman 2000a, Riemann et al. 2000,
Fandino et al. 2001). While organic matter influences
bacterial community structure, the dynamic changes in
bacterial community composition and their micro-
spatial activities can control organic matter fluxes,
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which emphasizes the necessity to study single-cell-
based activities and growth with micro-scale resolu-
tion (Bidle & Azam 1999, Azam & Long 2001, Long &
Azam 2001a).

During the last 2 decades, many investigators have
studied single-cell-based metabolic activities in nat-
ural assemblage of bacteria. Cell extension following
treatment with DNA gyrase inhibitor nalidixic acid has
been used to distinguish viable bacteria in natural
samples (Kogure et al. 1979). Tetrazolium salt reduc-
tion to colored or fluorescent formazan precipitate
within the bacterial cells has been used to examine the
individual cell electron-transport system activity (Zim-
mermann et al. 1978, Rodrigues et al. 1992). Fluores-
cein diacetate and its analogues have been used to
detect individual cell intercellular esterase activity
(Tsuji et al. 1995). Growth rates at the individual cell
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level have been measured by microautoradiography
using tritiated thymidine (*H-TdR) incorporation
(Fuhrman & Azam 1982, Douglas et al. 1987). How-
ever, the use of radioisotopes is often restricted by reg-
ulations, particularly in field settings. Ribosomal RNA
content, estimated by fluorescent in situ hybridization
using 16S rRNA oligonucleotide probes, has shown
potential for measuring individual cell and species-
specific growth rates, because rRNA:rDNA ratios are
correlated with the growth rate of cultured marine
bacteria (Kerkhof & Ward 1993). However, the rela-
tionship is complex, and its applicability to natural
assemblages of heterotrophic bacteria requires further
development.

A promising non-radioisotopic approach is to use a
thymidine analogue, 5-bromo-2'-deoxyuridine (BrdU).
BrdU is not known to naturally occur in the environ-
ment, hence it is applicable to non-radioisotopic tracer
incorporation studies. Further, it can readily be
immunochemically detected with very high sensitivity.
As in the case of microautoradiography, BrdU incorpo-
ration has the potential to provide microspatial infor-
mation on bacterial growth in seawater. In cell biology,
BrdU is widely used as an alternative to *H-TdR incor-
poration to label proliferating cells (e.g. Van Furth &
Van Zwet 1988, Asquith et al. 2002). Recently, BrdU
has been successfully used as an alternative to the
SH-TdR incorporation method in bulk measurements of
bacterial production in seawater (Steward & Azam
1999). Immunocapture of BrdU labeled DNA from soils
and lake waters was applied to community structure
analysis of metabolically active bacteria (Borneman
1999, Urbach et al.1999, Yin et al. 2000). Urbach et al.
(1999) demonstrated immunocytochemical detection of
BrdU incorporation into 2 marine bacterial isolates.
The method was combined with fluorescence in situ
hybridization using oligonucleotide rRNA-targeted
probes and applied to bacterioplankton samples in
coastal North Sea water (Pernthaler et al. 2002).

We have explored the possibility of developing a
method to measure individual-cell growth rate applic-
able to a broad range of marine bacteria and natural
marine assemblages. Specific aims of this study are to
(1) optimize BrdU immunocytochemical staining so
that it is applicable to a broad range of marine bacter-
ial isolates, and (2) determine the method applicability
for natural assemblages of bacteria in seawater.

MATERIALS AND METHODS

Reagents. Anti-BrdU monoclonal antibodies (Fab
fragments from mouse), nucleases and incubation
buffer were obtained as components of the BrdU
Labeling and Detection Kit III from Boehringer-

Mannheim (currently available from Roche Molecular
Biochemicals #1444611). Although the exact formula-
tion is not known because it is proprietary, the nucle-
ases are known to contain exonuclease III and one or
more restriction endonucleases (Dinjens et al. 1992,
Steward & Azam 1999). FITC-labeled streptavidine
and TSA-Indirect Kit containing biotin-labeled tyra-
mide, Amplification Buffer and Blocking Reagent were
obtained from NEN Life Sciences (currently available
from Perkin Elmer Life Sciences #NEL700).

The SWM medium was prepared by amending GF/F
filtered seawater with 0.0058 % (w/v) casamino acids,
0.69 mM glucose, 0.30 mM NH,CI, 0.25 mM NaH,PO,,
0.2 pM ferric citrate and 0.2 pM EDTA (G. Steward &
F. Azam unpubl.) and was modified by adding 0.001 %
(w/v) BACTO™ Peptone (Difco). The trace amount of
peptone was added to stimulate growth, because some
isolates did not grow well in the original SWM
medium. Addition of BACTO™ Peptone causes conta-
mination by thymidine at 18 nM final concentration,
estimated from the manufacture's data, but it may vary
between lots. For this study, a single bottle of BAC-
TO™ Peptone was used for all media preparation. The
formulation of other buffers and solutions are as fol-
lows: phosphate-buffered saline (PBS; 135 mM NaC(l,
2.7 mM KCI, 4.3 mM NaH,PO,. 7H,0, and 1.4 mM
KH,PO, [pH 7.0]), Tris-EDTA (100 mM Tris Cl and
50 mM EDTA [pH 8.0]), TNT (100 mM Tris HCI [pH
7.5], 150 mM NaCl, and 0.05% v/v Tween 20), TNB
(100 mM Tris Cl1 [pH 7.5], 150 mM NacCl, and 0.5 % w/v
Blocking Reagent), anti-fading solution (0.1% w/v
ascorbic acid, 1:1 glycerol and PBS).

Labeling of marine bacterial isolates with BrdU.
Marine bacteria used in this study were isolated and
identified by partial sequences of the 16S rRNA gene
in previous studies (Fandino et al. 2001, Long & Azam
2001b). Bacterial isolates were grown in SWM medium
atroom temperature for 1 to 2 d. An aliquot of each cul-
ture was inoculated into fresh SWM medium to obtain
ODgo (optical density at 600 nm) in the range of 0.01 to
0.02. The experimental tubes (10 ml) were supple-
mented with BrdU at 200 nM final concentration. Bac-
terial cells cultured with 200 nM TdR were also pre-
pared for each isolate as negative controls to check
non-specific signals. The cultures were incubated in
the dark for 5 h at 23°C and then pelleted by centrifu-
gation at 20000 x g for 5 min. For the slow-growing
Isolate S-10, incubation was continued for 20 h. The
growth media was decanted, pelleted cells were fixed
with 4 % paraformaldehyde in PBS, washed with PBS
and resuspended in PBS. The cell suspension was
mixed with an equal volume of 100% ethanol and
stored at -15°C.

Immunocytochemical detection of BrdU. Aliquots
(5 pl) of bacterial cell suspensions were spotted onto
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6 mm-diameter wells of Teflon printed glass slides
(Electron Microscopy Science) and air-dried for 1 h.
The dried samples were dehydrated with serial treat-
ment of 70, 90 and 100 % ethanol each for 3 min. To
quench endogenous peroxidase in the samples, the
slides were treated with 3 % H,0O, in PBS for 10 min at
room temperature and washed twice with PBS. They
were then treated with 4% paraformaldehyde for
30 min at room temperature and washed 3 times with
PBS. For permeabilization of bacterial cells, the slides
were treated with 0.01 N HCI for 5 min at room tem-
perature, replaced with pepsin (2 mg ml?! in 0.01N
HCI) for 2 h at 37°C, washed 3 times with PBS, treated
with lysozyme (3 mg ml™! in TE buffer) for 15 min at
room temperature and washed 3 times with PBS. Intra-
cellular DNA was denatured by incubation with nucle-
ases (1:100 in incubation buffer) for 2 h at 37°C and
washed twice with PBS. Anti-BrdU monoclonal anti-
bodies conjugated with peroxidase were diluted in
PBS (1:500) containing 0.1 % BSA (bovine serum albu-
min), incubated with samples for 2 h at 37°C and
washed 3 times with PBS. The antibody signal was
amplified by catalyzed reporter deposition incubating
the slides with a biotin-labeled tyramide diluted 1:50 in
Amplification Buffer for 10 min at room temperature.
After the wash with TNT buffer 3 times, the slides
were treated with a FITC-labeled streptavidin in TNB
buffer (1:500) for 30 min at room temperature and
washed 3 times with TNT buffer. The samples were
counter-stained with DAPI (1 pg ml™?!) for 5 min and
washed with PBS. The anti-fading solution and cover
glasses were mounted on the slides. The slides were
examined by using an Olympus BH51 epifluorescence
microscope equipped with a UPlanApo 100 x objective
(total magnification x1000).

Permeabilization and denaturation tests. To opti-
mize the accessibility of the antibody to the incorpo-
rated BrdU, we examined the effects of incubation
time with enzymes employed in permeabilization and
denaturation on the signal strength of immunocyto-
chemical detection. The marine Vibrio isolate SB5
labeled with BrdU by the method described above was
used as a test species, because in our preliminary test
Vibrio isolates appeared to have the least permeable
cell wall and membrane among the Gram-negative
isolates tested in this study (see ‘Discussion’ for
details). All treatments, except the incubation time
specified in Table 2, were performed using the same
conditions as described above. The Vibrio isolate SB5
cells cultured with 200 nM TdR were used as negative
controls to check for non-specific signals.

Detection limit of BrdU immunocytochemistry for
bacterial cells. In order to obtain bacterial cells with
different levels of incorporated BrdU, the marine Vib-
rio SB5 was grown in SWM medium with 100 nM BrdU

or *H-BrdU (Moravek Biochemicals) and subsampled
at multiple time points. The overnight culture was
inoculated into 5 replicate polystyrene snap-cap tubes
and incubated at 18°C. One tube contained non-
radioactive BrdU and was used for immunocytochemi-
cal detection. The other 4 replicate tubes contained
SH-BrdU and were used to determine cell specific
BrdU incorporation. Prior to the inoculation of bacteria,
1 of 4 tubes received 5% final trichloroacetic acid
(TCA) to kill the bacteria and use it as a negative con-
trol. The subsampling was conducted at 2, 10, 20, 60,
120, 180 min of the first incubation and at 30, 60, 120,
180, 240, 300, 360 min of the second incubation. Incor-
poration of *H-BrdU was measured according to the
microcentrifugation protocol of Smith & Azam (1992),
while the non-radioactive BrdU samples were pro-
cessed as above for immunocytochemical detection.
Relationship between growth rate and cell-specific
signal intensity. Five marine isolates (Km1, D8, G22,
D21, F3) identified as members of the CFB group were
grown in SWM medium at room temperature for 2 d.
An aliquot of each culture was inoculated into a fresh
SWM medium to obtain an ODg in the range of 0.01 to
0.02. After incubation at 22°C for 2 h, the experimental
tubes (10 ml) were supplemented with BrdU at 10 pM
final concentration. The duplicate cultures were fur-
ther incubated for 5 h. Subsamples (0.5 ml) were with-
drawn for growth rate measurements at the 0, 2, 5, and
7 h during a total 7 h incubation. Samples were kept in
the dark during incubations. The subsamples were
fixed with 4 % formaldehyde and kept cool and dark
until analysis. At the end of the incubation, the dupli-
cate samples were pooled in one batch and pelleted by
centrifugation at 20000 x g for 5 min. The pelleted
cells were processed for immunocytochemical detec-
tion of BrdU as described above. Cell-specific fluores-
cence intensity was measured by capturing an epifluo-
rescent micrograph with a monochrome CoolSNAP
HQCCD camera (Roper Scientific). The image was
analyzed with MetaMorph Imaging System Software
(Universal Imaging). The software automatically rec-
ognized cell-like particles based on brightness distrib-
utions. We set thresholds to determine the cell margins
and to eliminate too small and too large particles, com-
paring the captured image with the real image under
the microscope. Also, particles recognized as having
irregular and obviously non-bacterial shapes were
manually eliminated. Background signals were not
subtracted, because they were consistently very low
and had little effect on signal variability. The inte-
grated gray value of each cell was measured to use it
as an indicator of cellular fluorescence intensity. An
averaged gray value of 200 to 1000 cells was obtained
for each isolate. Concurrently, the increase in cell
numbers was monitored by direct count using fluores-
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cence microscopy following DAPI staining. The growth
rate of each strain was estimated from linear regres-
sion at 2, 5 and 7 h during the incubation.

BrdU incorporation into bacterial cells in natural
seawater. Coastal surface seawater was collected with
a weighted polycarbonate flask from the end of the pier
at Scripps Institution of Oceanography on 5 October
2001, and used for the following experiments within 1 h
of collection. Aliquots of the seawater were incubated
with various concentrations of BrdU (10 nM, 100 nM,
1 pM and 10 pM) in the dark at in situ temperature (20 +
2°C), subsampled and fixed with 4 % formaldehyde at 5
time-points for up to 5 h. Controls were incubated with
TdR instead of BrdU at each concentration and fixed at
the end of the incubations. Fixed samples were filtered
onto 0.2 pm pore-size polycarbonate black filters
(25 mm diameter, Osmonics) and cut into 4 pieces. To
transfer the materials trapped on the filters to glass
slides, each piece was placed upside down onto a 6
mm-diameter well of the Teflon printed glass slides and
the filter was gently peeled off. Prior to transfer, the
wells of the glass slide were coated with poly-L-lysine
(Sigma) by placing 0.01 % (w/v) solution in each well,
removing excess solutions with a pipette and letting the
slides air-dry. Then, all the slides were processed for
immunocytochemical detection of BrdU from ethanol
dehydration as described above. The slides were
counter-stained with DAPI, and the number of BrdU
positive cells and total number of cells were counted.

BrdU incorporation into bacterial cells in detritus-
enriched seawater. Coastal seawater was collected as
described above at the pier of Scripps Institution of
Oceanography on 14 January 2002. The seawater was
incubated with 1 pM BrdU in a 50 ml plastic tube in the
dark at in situ temperature (15 + 2°C). The tube was
enriched with freeze-thaw Kkilled Thalassiosira weiss-
flogii cells (5000 cells ml!) prepared as previously
described in Bidle & Azam (2001). Subsamples were
taken and fixed with 4% formaldehyde at 7 time-
points for up to 48 h, and processed for immunocyto-
chemical detection of BrdU as described above. The
number of BrdU-positive and DAPI-stained cells, as
well as the number of free and attached cells, were
counted. Colored fluorescence images were captured
by the CoolSNAP HQ CCD camera equipped with a
tunable RGB filter (Cambridge Research & Instrumen-
tation).

RESULTS
BrdU immnocytochemical detection

Immunocytochemical detection of incorporated
BrdU showed positive signals for all isolates (Table 1).
No signals were detected from cells of any isolate incu-
bated with TdR instead of BrdU. The signals of 2 iso-
lates, SB12 and S-10, while distinguishable from those

Table 1. Immunocytochemical detection of 5-bromo-2'-deoxyuridine (BrdU) incorporated by marine bacterial isolates. Isolate B19
was identified by colony hybridization using a group-specific oligonucleotide probe, but its 16S rRNA sequence has not been
confirmed yet (L. B. Fandino pers. comm.). +: BrdU detected; —: not detected

Phylogenetic grouping Isolate GenBank BrdU antibody Source
and genus of closest relatives name accession no. detection
y-proteobacteria
Pseudoalteromonas BBFL4 AF366032 + Long & Azam (2001b)
Pseudoalteromonas BB2FL1 AF366031 + Long & Azam (2001b)
Pseudoalteromonas JSL12-2 AF366034 + Long & Azam (2001b)
Vibrio SB5 AF366019 + Long & Azam (2001b)
Vibrio SB7 AF366020 + Long & Azam (2001b)
a-proteobacteria
Roseobacter BBAT1 AF365992 + Long & Azam (2001b)
Roseobacter BBAT3 AF365994 + Long & Azam (2001b)
Cytophaga-Flavobacterium-Bacteroides
Flexibacter SB12 AF366002 +/— Long & Azam (2001b)
Flexibacter Km1 AF367847 + Unpublished
Flexibacter D8 AF125323 + Fandino et al. (2001)
Flexibacter D21 AY030100 + Unpublished
Cytophaga F3 AF125326 + Fandino et al. (2001)
Cytophaga G22 AF125324 + Fandino et al. (2001)
B19 + Fandino pers. comm.
Gram-positive bacteria
Staphylococcus S-10 AF488783 +/— Long & Azam (2001b)
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Table 2. Fluorescence signal intensity of the marine isolate
SB5 by 5-bromo-2'-deoxyuridine (BrdU) immunocytochem-
istry with various cell treatments. Signal intensity level is
indicated by the number of plus symbols: +++ > ++ > +.

—: no signal
Treatment (min) BrdU Control
Permeabilization
Pepsin (2 mg ml™!, 37°C)
0 _ _
10 + -
30 + -
60 + -
90 +++ -
120 +++ -
150 ++ +
180 ++ -
Lysozyme (3 mg ml!, room temp.)
0 ++ -
30 +++ -
45 +++ -
75 + -
Denaturation
Nuclease (37°C)
0 — —
60 ++ -
120 +++ -
Overnight (4°C) + -

of controls, however were weaker than those of other
isolates. Growth rates ranged 0.01-0.61 h™! during
incubation for BrdU labeling.

Permeabilization and denaturation

Optimum incubation durations to achieve a strong
immunocytochemical signal were selected on the basis
of the result of permeabilization and a denaturation
test using SB5 (Table 2). A signal was obtained without
lysozyme treatment, although the intensity was
weaker than for the treated samples, while pepsin and
nuclease treatments were essential. Treatment for 60
and 90 min with pepsin, 30 and 45 min with lysozyme,
and 2 h with nuclease gave the strongest signals.

Detection limit

Detection limit of immunocytochemical staining was
also determined using SB5. The cellular BrdU content
was estimated from SH-BrdU incorporation. It in-
creased over time and reached 0.080 + 0.0067 amol
cell! in the first incubation, however, the signal of im-
munocytochemical detection of BrdU could not be ob-
served from all of these samples. In the second incuba-

Cellular BrdU content (amol cell™)

tion, fresh media was added to accelerate the growth
of SB5 and thus BrdU incorporation. The cellular BrdU
content was 0.37 + 0.06 amol cell! at 30 min, increas-
ing to 0.60 amol cell! (an average of duplicate data:
the values for 3 replicates were 0.09, 0.59 and 0.62 and
we omitted 0.09 in the average) at 60 min, which then
decreased over time (120, 180, 240, 300 min) probably
due to the dilution of BrdU incorporated into the cells,
and reached 0.073 + 0.024 amol cell"! at the end of the
incubation (360 min). The cells outpaced the availabil-
ity of exogenous BrdU in the middle of growth and
thus, when exogenous BrdU was depleted but the cells
were still growing, BrdU in the cells would have been
diluted by successive cell division. The signal of BrdU
immunocytochemistry was detectable for all of these
samples. The amounts of BrdU incorporated into a cell
and our detection ability are summarized in Fig. 1. The
amounts of BrdU incorporated ranged from 0.0002 +
0.0001 to 0.42 + 0.027 amol cell!. Below 0.1 amol BrdU
cell’!, a reliable limit could not be determined as cells
at 0.073 + 0.024 amol BrdU cell'! were detectable,
while the cells with 0.080 + 0.0067 amol BrdU cell™!
were not. However, samples at greater than 0.1 amol
BrdU cell! were all detectable.

Growth rates and fluorescence signal intensity

Five CFB isolates showed specific growth rates rang-
ing from 0.015 to 0.037 h™! (Fig. 2). Cell-specific fluo-
rescence signal intensity of the BrdU immunoassay
was significantly correlated with specific growth rates
of the isolates (r = 0.940, p < 0.01).

Undetectable =—— | —= Detectable

1 23 4 5 6 7 8 91011 12 13
Sample no.

Fig. 1. Detection limits of cellular BrdU content of Vibrio iso-
late SB5 by immunocytochemical staining. Time-course sam-
ples were taken from parallel incubations with 1 set of
5-bromo-2'-deoxyuridine (BrdU) and 3 sets of *H-BrdU. Cel-
lular BrdU content was derived from *H-BrdU incorporation.
Error bar shows +1 SD except Sample 13, wheren = 2
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Fig. 2. Relationship between the specific growth rates of Cy-
tophaga-Flavobacter-Bacteroides (CFB) group isolates and
cell specific fluorescence intensity as a proxy of BrdU in-
corporation. Error bars show +1 SD. Growth rates are mean
values of duplicate measurements. Error bar indicates the de-
viation of fluorescence intensity among 200 to 1000 cells
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Fig. 3. 5-bromo-2'-deoxyuridine (BrdU) positive cells during
an incubation of coastal seawater at different concentrations
of BrdU. Data are mean values of duplicate measurements.
Regression equations derived by the least square method
are y = 2.52x + 1.87 for 10 nM BrdU (O), y = 5.22x + 2.38 for
100 nM BrdU (0), y = 8.46x + 6.05 for 1 pM BrdU (m), and y
= 5.58x — 0.502 for 10 ptM BrdU (@). The multiple correla-
tion coefficient, R, is 0.983, 0.968, 0.967 and 0.916, respec-
tively. SD of each slope is 0.269, 0.765, 1.27 and 1.29,
respectively

Incorporation by bacteria in natural seawater
samples

BrdU incorporation for seawater samples showed an
increase of BrdU-positive cells over time (Fig. 3). Posi-
tive signals were detected after 1 h incubation with
BrdU. The highest BrdU concentration did not give the
highest percentage of positive signals, and the appro-
priate BrdU concentration to maximize the percentage
of BrdU positive cells was 1 pM in natural seawater
(Fig. 3). The percentage of BrdU-positive cells from the
total number of cells increased to up to 47 %. The false

100
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Cell number (10* cells ml™!)
s
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40 -

' ¢
20 | ii | s

0 10 20 30 40 50
Incubation time (h)

HOH O

Fig. 4. Effects of phytoplankton-detritus enrichment on indi-
vidual cell growth. Time course of the number of total bac-
teria (O, O) and BrdU positive bacteria (®, W) during an
incubation of coastal seawater with 1 pM 5-bromo-2'-
deoxyuridine (BrdU) and freeze-thaw-killed diatoms detri-
tus enrichment. (A) Free-living bacteria. (B) Particle-
attached bacteria in the enriched seawater microcosm.
(C) Free-living bacteria in seawater without detritus enrich-
ment. Error bars show +1 SD

positive signals observed in TdR control samples were
less than 5%. The percentage of positive cells varied
with different concentrations of BrdU. Coating a glass
slide with poly-L-lysine resulted in a highly effective
transfer of cells from the filter. In our preliminary
experiment, cell counts on glass slides after the trans-
fer did not show statistically significant differences in
comparison with cell counts on filters. Also, cells
remaining on the filter after the transfer were too
scarce to have enough counts (<1 per microscope field-
of-view). Further treatment with ethanol and pepsin
did not significantly affect the retention of transferred
cells on the glass slide.
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BrdU incorporation in detritus-enriched seawater
samples

The total number of cells increased in the enriched
seawater, whereas this was not observed in the seawa-
ter without enrichment. BrdU-positive cells were
detectable after 1 h of incubation in both of the seawa-
ter cultures, and increased for 24 h in the enriched sea-
water and for 8 h in the seawater without enrichment
(Fig. 4A,C). Significant attachment of bacteria to parti-
cles was observed after 24 h incubation (Fig. 4 B).
Actively growing cells on detritus were successfully
visualized (Fig. 5). The percentage of BrdU-positive
cells reached 35% for free-living cells (Fig. 4A) and
56% for particle-attached cells (Fig. 4B) in the
enriched microcosm and 45 % for free-living cells in
the unenriched one (Fig. 4C).

DISCUSSION

Assemblage-level studies of heterotrophic bacterial
production during the last 2 decades have had a major
influence on our concepts of pelagic food webs and
oceanic carbon cycling. They have also raised new
questions on mechanisms that underlie the ability of
bacteria to interact with organic matter and thus com-
pete with particle-eating organisms and other bacteria.
In order to address such questions we need to develop
a set of methods and a conceptual framework to
explore individual cell-based ecology and biogeo-
chemical activities of pelagic bacteria at the
microscale. Pioneering work by Overney & Fuhrman
(1999), Lee et al. (1999) and Cottrell & Kirchman
(2000a,b) has resulted in methods that combine
microautoradiography and fluorescent in situ hybrid-
ization (FISH) to assess individual cell-based rates of
metabolism and growth. Our method should comple-
ment these methods by obviating the use of radio-
isotopes as well as offering some additional capabili-
ties. We demonstrate the feasibility, potential and
limitations in using the method in field studies as well
as discuss avenues to improve its capabilities.

The desirability of a non-radioisotopic method is self-
evident to the field ecologist. As a basis for measuring
bacterial growth rate, BrdU may also offer some addi-
tional advantages over the 3H-TdR, as discussed by
Steward & Azam (1999) in relation to their assem-
blage-level BrdU-based method. BrdU provides
greater specificity of incorporation into DNA and of
detection by the antibody (the antibody is not expected
to detect any brominated molecules produced by
potential metabolism of BrdU). An advantage of BrdU
over microautoradiography for individual cell-growth
studies is that the fluorescence signal of even closely

Fig. 5. Epifluorescence photomicrograph of natural bacterial
assemblages attached to diatom detritus. Bacteria incubated
with 5-bromo-2'-deoxyuridine (BrdU) were double stained
with immunocytochemistry using anti-BrdU antibody and
DAPI Under UV light excitation, all bacteria stained by DAPI
show bluish-white fluorescence and a diatom cell shows red-
dish fluorescence due to photosynthetic pigments (upper).
Actively growing bacteria are selectively labeled with BrdU
and show green fluorescence under blue light excitation
(lower)

located individual cells, e.g. those colonizing a parti-
cle, can generally be discriminated. Indeed, the BrdU
approach should enable growth studies, by confocal
microscopy, of bacteria on marine particles or in
biofilms. Thus, the method may be particularly useful
in testing hypotheses on microspatial growth patterns
and responses.

Not all bacteria incorporate *H-thymidine but early
microautoradiography studies (Fuhrman & Azam 1982)
showed that non-responsive bacteria comprised a
minor fraction of bacterial assemblages in seawater.
They may fail to incorporate *H-thymidine into DNA
during growth possibly for lack of transmembrane
transport systems or thymidine kinase (Pollard & Mori-
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arty 1984, Jeffrey & Paul 1990). Likewise, a small frac-
tion of growing bacteria in seawater may fail to incor-
porate BrdU. Urbach et al. (1999) could not detect DNA
labeling with BrdU in 2 marine isolates (a Flavobac-
terium sp. and a Gram-positive bacterium) by dot-blot
analysis of extracted DNA out of 4 tested isolates.
Pernthaler et al. (2002) showed that a-proteobacteria,
CFB-group bacteria and Actinobacteria all had the
ability to incorporate BrdU. We found that BrdU is
incorporated by isolates belonging to all major taxo-
nomic groups of marine bacteria, including y-pro-
teobacteria, a-proteobacteria, CFB-group bacteria and
Gram-positive bacteria. These groups comprise the
dominant fraction of coastal marine bacteria in pelagic
environments (e.g. Suzuki et al. 1997, Cottrell & Kirch-
man 2000a, Fandino et al. 2001). Recently, microau-
toradiography combined with FISH showed that major
groups of marine bacteria appeared to incorporate *H-
thymidine (Cottrell & Kirchman 2003). While the possi-
ble presence of BrdU-non-responsive cells should be
kept in mind, our results suggest that the BrdU
approach has the potential to be broadly applicable to
all major phylogenetic groups of bacteria in pelagic
marine assemblages.

A critical issue for the feasibility of individual-cell
BrdU detection was to optimize the sample treatment
protocol in order to maximize the penetration of anti-
body-enzyme conjugate into the cells, while prevent-
ing DNA egress. Lanoil & Giovannoni (1997) employed
pepsin and lysozyme treatments for large DNA probes
to permeate the cell membrane in bacterial chromo-
somal painting. Urbach et al. (1999) successfully
applied this protocol to immunocytochemical detection
of BrdU-labeled Roseobacter sp. and Alteromonas sp.
In our study, the results of treatments with these diges-
tive enzymes varied among different bacterial species
tested. For instance, pepsin treatment was essential for
Roseobactor and Vibrio isolates but not for Pseudo-
alteromonas isolates. Further, the Roseobactor BBAT1
required pepsin treatment for a shorter time than the
Vibrio SB5. Given such variability, we decided to use
SB5, our ‘hardiest’ Gram-negative isolate, as the model
in optimizing the treatment conditions for natural
assemblages. Pernthaler et al. (2002) used a warmed
surfactant (Triton X-100) and lysozyme to permeabilize
cells for FISH and BrdU detection. The method was
applicable to 21 strains of bacterial isolates belonging
to a-proteobacteria, CFB-group bacteria and Acti-
nobacteria, although 1 of 2 strains of Actinobacteria
showed a low percentage of positive signals. Their
treatment for permeabilization requires less incuba-
tion time than ours and thus may be useful to shorten
the processing time. Gram-positive bacteria are
expected to require a harsher treatment to achieve
antibody-enzyme conjugate penetration than Gram-

negative bacteria (Schonhuber et al. 1997). We focused
more on testing Gram-nagative bacteria because they
presumably dominate the coastal pelagic waters. Pro-
tocols for Gram-positive bacteria should be further
evaluated in future works.

In preliminary experiments, we tried centrifugation
to collect bacterial cells in natural seawaters. The
recovery efficiency of bacterial cells was 63 + 9.4%
during the process for concentration by centrifugation.
The filter transfer protocol, in contrast, showed no sig-
nificant cell loss. Filtration rather than centrifugation
also preserves some microspatial information on indi-
vidual cells (e.g. growth rates of attached and ‘free’
bacteria). We also sought to simplify the protocol by
performing the entire sample processing on the filter
(without transfer to a slide), but this required larger
reagent volumes as well as increasing the background
fluorescence due to non-specific binding of antibody
and fluorochromes to the filter. Transferring the fil-
tered cells to a glass slide yields better results for sea-
water samples.

The highest percentage of the BrdU positive signal
was obtained at 1 pyM BrdU in the seawater incubation
experiment (Fig. 3). The percentage positive signal at
10 pM BrdU was less than that at 1 pM, indicating
some inhibition in BrdU incorporation or DNA synthe-
sis at high BrdU concentration. One possible explana-
tion is that mutagenic or other genotoxic effects of
BrdU prevented further incorporation or DNA synthe-
sis (Hanawalt 1967, Binnie & Coote 1986, Yamamoto &
Fujiwara 1990). The thymidine analog, BrdU, can be
easily incorporated into DNA in place of the natural
base probably because of a similar van der Waals
radius of the bromine atom to the methyl group at the
5-carbon position of the pyrimidine ring. However, 5-
bromouracil in DNA may pair with guanine instead of
adenine, because the bromine atom has greater elec-
tronegativity than the methyl group. This may change
electron distribution in the pyrimidine ring and thus
may cause a shift in chemical structure from keto to
enol state. This keto-enol shift is thought to be respon-
sible for the mutagenic effect of 5-bromourracil in
DNA. A strain of Escherichia coli incorporates 5-bro-
mouracil but eventually stops DNA synthesis at a con-
centration of ca. 50 pM (Hanawalt 1967). Binne &
Coote (1986) showed that BrdU altered the normal pat-
tern of DNA synthesis of a strain of Bacillus subtilis,
and caused inhibitory effects on sporulation. Also, bac-
terial DNA labeled with BrdU becomes susceptible to
inactivation by UV or visible light (Yamamoto & Fuji-
wara 1990).

The appropriate BrdU concentration to maximize
percentage BrdU positive cells was 1 pM in natural
seawater (Fig. 3). However, this is 100-fold higher than
that of *H-TdR routinely used in radiotracer studies,
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and also that of BrdU reported to show saturation in
seawater incubation by Steward & Azam (1999). By
adding a high concentration of BrdU, a stimulation of
growth due to the metabolism of BrdU as a nutrient
source might become significant, which possibly leads
to overestimation of in situ active cells. As BrdU con-
tains 9 molecules of carbon, 1 pM of BrdU is compara-
ble to 9 uM of carbon concentration. If the DOC con-
centration of seawater is ~90 puM, a typical value found
in coastal area, and contains 10 to 20 % labile fraction,
addition of BrdU in 1 uM of final concentration causes
roughly a 50 to 100 % increase of available organic car-
bon content in the seawater. Although a significant
increase of bacterial cell abundance was not observed
in our seawater cultures, a possibility that BrdU served
as a 'nutrient’ rather than a tracer could not be ruled
out. Further works examining changes of community
structure should evaluate whether adding 1 pM BrdU
specifically stimulates the growth of some bacteria but
not others.

The sensitivity of detecting BrdU incorporation in
individually growing bacteria should increase with the
length of incubation with BrdU. However, shorter incu-
bations are generally desirable in testing hypotheses
on in situ bacterial growth; longer containment periods
could influence the growth rates being measured, due
to the container ‘wall effect’, grazing, viral lysis, or sub-
strate depletion. Thus, most studies of assemblage-
level growth measurements incubate 2 to 10 ml seawa-
ter samples for a few hours (Smith & Azam 1992, Kemp
et al. 1993, Biddanda et al. 1994, Pakulski et al. 1998,
Steward & Azam 1999), as we did here. Our detection
limit for BrdU incorporation was ~0.1 amol cell"! for
SB5 (Fig. 1), while a pelagic bacterium is estimated to
incorporate 0.5 amol cell* BrdU to double its DNA (we
assume 0.7 amol cell"! TdR per doubling [Fuhrman &
Azam 1982] and a BrdU:TdR incorporation ratio of 0.7
[Steward & Azam 1999]). Thus, 5 h incubations would
suffice for a bacterium doubling its DNA in 25 h to
incorporate sufficient BrdU (0.1 amol) to become
detectable. Therefore, using our current protocol,
longer incubations would be required to detect any
growth of bacteria with doubling times greater than
~1d (0.028 h™! for growth rate). If slow-growing assem-
blages are being studied, we suggest using large sea-
water samples to minimize containment effects. Since
BrdU is inexpensive and non-radioactive, it should
even be practical to use sample sizes of many liters
during incubation (followed by processing of small
aliquots). We caution, however, that BrdU is mutagenic
and appropriate protocols should be developed for dis-
posing large volumes, e.g. after volume reduction by
adsorption to a suitable matrix.

The method sensitivity appears sufficient to gain
useful insights and constraints on bacterial growth in

seawater samples. Our eventual goal is to quantify
individual cell fluorescence and rigorously calibrate it
against standard curves to directly compute individual
cell growth rate. This goal is feasible, if we have more
uniform signals and evaluate species variability of the
relationship (Fig. 2). Further, we quantified the time
taken by a fraction of the bacterial assemblage to equal
or exceed the BrdU incorporation of 0.1 amol, our
detection limit based on culture studies. A substantial
fraction, 19%, of an assemblage off Scripps Pier
became BrdU-positive in only 1 h incubation (Fig. 3).
These cells would therefore be growing at 0.14 h!
(doubling time 5 h) or faster (assuming that detection
threshold of SB5 is applicable to natural assemblages
of bacteria). These measurements, although quite lim-
ited, lead to the interesting conclusion that the nutrient
status of coastal seawater samples examined by us was
conducive to rapid growth of a significant fraction of
the bacterial assemblages. A larger fraction (47 % at
5 h) became BrdU-positive with an increase in incuba-
tion time. Longer incubation times or otherwise
enhanced sensitivity may be required in environments
such as oligotrophic regions or the deep sea where
bacterial growth is expected to be very slow. However,
the method in its present level of sensitivity can be
used to test whether the environments exhibiting very
low assemblage-average growth rates contain hot-
spots of relatively fast growth.

The response of the natural assemblage to enrich-
ment with detritus particles was observed with our
method. Free-living bacteria showed rapid growth
enhancement; 15% of the cells were scored positive
within 1 h (Fig. 4). Attachment of bacteria to particles
was observed within 1 h of incubation, and 31 % of the
attached cells were scored positive within 24 h (Fig. 4).
Also, large and comparable fractions of both free living
(65%) and attached (46 %) bacteria remained BrdU-
negative even after 48 h incubation, suggesting that
they were growing very slowly (>10 d doubling time),
were dormant or non-responsive to our BrdU protocol.
These observations also suggest that the BrdU method
in conjunction with nutrient and other perturbation is
potentially applicable to testing hypotheses on envi-
ronmental factors affecting the growth physiology and
ecology of bacteria in natural marine assemblages.

The potential of the BrdU method to preserve micro-
spatial growth information, e.g. growth of bacteria
associated with particles or other organisms, is a strong
motivation to further develop the methodology.
Microspatial structure of the organic matter field and
bacterial interactions with it are important in under-
standing bacterial ecology and organic matter dynam-
ics in the ocean (Azam 1998, Azam & Long 2001, Long
& Azam 2001a). Our study shows that the approach has
promise. We could successfully visualize bacterial cells
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that were growing on phytoplankton detritus (Fig. 5).
Also, the linear relationship between growth rate and
fluorescence intensity suggested the possibility for
direct quantitative analysis of bacterial growth at the
single-cell level (Fig. 2). Combining BrdU and FISH or
fluorescence antibody methods should help determine
species-specific in situ growth rates at the individual-
cell level (Pernthaler et al. 2002). In sum, the BrdU
approach can contribute to the development of individ-
ual cell-based ecology of marine bacteria and under-
stand how microscale interactions of bacteria regulate
ocean-basin scale biogeochemistry.
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