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Dynamics of conversion of conduction electrons into a collective charge-density-wave current

Alexander S. Kovalev, Yurij V. Pershin, and Alexander S. Rozhavsky*
B. I. Verkin Institute for Low Temperature Physics and Engineering, 47, Lenin Avenue, 310164 Kharkov, Ukraine

~Received 29 January 1996!

The exactly solvable model which describes the dynamics of transformation of conduction electrons into
nonlinear charge-carrying excitations of charge-density waves in quasi-one-dimensional Peierls-Frohlich con-
ductors is formulated and studied by the inverse scattering transformation method. The pair of self-trapped
conduction electrons transform into a charged 2p kink localized in a single conducting chain and surrounded
by dipoles in neighboring chains.@S0163-1829~96!04123-9#

The commonly accepted model for the Peierls-Frohlich
quasi-one-dimensional charge-density-wave~CDW! conduc-
tors relates their unusual transport properties, i.e., nonlinear
conductivity, memory effects, etc., to the phase of the CDW
order parameter,D exp(iw), where the modulusD is the
Peierls energy gap in a quasiparticle spectrum, andw gov-
erns the dynamics of the CDW condensate~the collective
excitations of the occupied valence band!. The phase dynam-
ics description has been successful in explaining bulk char-
acteristics~see, e.g., Refs. 1–3!. However, one principal as-
pect of the CDW physics, viz. the problem of interaction of
the current-carrying CDW-phase deformations with conduc-
tion electrons, remains unresolved and still arouses contro-
versial explanations.

The basic feature of quasi-one-dimensional CDW conduc-
tors such as e.g., TaS3, is the instability of conduction elec-
trons against self-trapping, and conversion into the valence
band where electrons transform into additional collective
charge carriers. Self-trapping is connected with local gap de-
formations in conducting chains. The potential barrier for the
self-trapping is;D, the time interval of the gap deformation
is of order ofv21 ~v is the frequency of the Peierls phonons
which is of order of the Debye frequency!,4–6 and the inter-
chain interaction is of orderTC ~TC is the temperature of the
Peierls transition!. In a weakly coupled array of highly con-
ducting chains,TC!D, the self-trapping of electrons occurs
in individual chains independently, and the charge transfor-
mations proceeds in two steps, each characterized by its own
time scalet i : transfer of conduction electrons into the va-
lence band in a single chain,t1;v21, and formation of a
collective charge carrier in this chain,t2@t1 . The timet2 is
the intrinsic scale of the CDW-phase Hamiltonian at
D5const.3–5

The collective CDW charger, and the currentj , densities
in a single chain are related to phase gradients via the Froh-
lich relations
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When q electrons are converted into the CDW conden-
sate, the phase acquires a local deformation with the net
phase shift

dw5w~x5`!2w~x52`!5qp. ~2!

The final stage of conversion is aggregation of individual
phase deformations in different chains to a three-dimensional
array, t;t3@t2 . The time t3 can be attributed to a long-
range Coulomb interaction.5

Such arrays are responsible for generation of an excess
voltage observed in numerous experiments on mesoscopic
CDW samples~see, e.g., Refs. 7–9! and were studied in a
series of phenomenological theoretical models5,10–13,7 in
which the problem of the charge transformation dynamics
remained unresolved. To our knowledge, the only paper in
which an attempt was made to devise a self-trapping mecha-
nism in a one-dimensional~1D! CDW conductor was Ref. 6.
It has been shown in Ref. 6 that at low temperaturesT!TC ,
the transfer of conduction electrons to the valence band oc-
curs via instantons which split from a conduction band a
level occupied by two electrons, and push this level toward
the valence band. An instanton interpolates between the ini-
tial state,u in&[u2 conduction electrons,w5const,D5const&,
and the final one,u f &[u no conduction electrons,dwin52p,
D5const&, and describes the self-trapping stage of conver-
sion or the nucleation of a phase-slip-center~PSC!. The in-
stanton mechanism is most efficient at a metal-CDW
interface,6 because the instanton action exponentially grows
with the distance.

The subsequent evolution of the PSC has not yet been
investigated, and it is the aim of this paper to put forward a
qualitative microscopic theory of transformation of a trapped
electron pair into intrinsically nonlinear phase excitations of
a CDW. The scenario of charge transformation is as follows:
at time t;v21, a self-trapped pair of electrons creates the
initial phase profiledwin52p ~u f & state! localized on a scale
of the Peierls coherence length,l trap;j05\VF/D, the length
j0 not being the intrinsic scale of the phase Hamiltonian;3,4

thusdwin serves as the initial condition to the phase motion
equations. To solve the Cauchy problem, we formulate an
exactly solvable model of phase dynamics in a cluster of
next-to-nearest-neighbor chains and apply the inverse scat-
tering transformation~IST! method. It appears that over the
time t2;D/(vTc), the initial conditiondwin transforms into
a charged 2p kink with a core of order\VF/TC localized in
the same chain and surrounded by dipoles in all the other
chains.

For definiteness, let us take the zero temperature and
study the conversion of two electrons to a cluster ofZ near-
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est CDW chains which are oriented along the most conduct-
ing x direction and occupy the semiaxisx>0. The phase
Lagrangian takes the form3,4
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1

p\VF
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]t D 2
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4 S ]w

]x D 212ZTC
2 cos~w02w!J , ~3!

wherew0 denotes the phase in a central chain, andw denotes
phases in the nearest ones. Att50 two electrons pass to a
central chain:w0~x,t50!Þ0 andw~x,t50!50.

The Cauchy problem must be supplemented with bound-
ary conditions att50, see Eqs.~5! below. The initial mo-
mentt50 to the Cauchy problem is defined as the one when
the phase configurationdwin escapes from under the autolo-
calization potential barrier with zero velocity,6

]w

]t
~ t50!50. ~4a!

As the result of the energy conservation in the process of
self-trapping, we obtain

2D5E dx
\VF

p S ]w0

]x D 2, ~4b!

and hence

]w0

]x
~ t50!;

1

j0
.

The compatibility of this initial condition to the Lagrang-
ian ~3! needs special comment. The Lagrangian~3! is actu-
ally valid when phase gradients are small compared toj0

21,
when u]w/]xu;j0

21, the modulus and phase dynamics cannot
be separated. Thus, when introducing the above initial con-
dition to the phase dynamics equations solely, we suppose
the existence of an intermediate region which we cannot de-
scribe analytically where the productj0u]w0/]x u is numeri-
cally but not parametrically small.

Keeping the above in mind, we present the model com-
plete set of boundary conditions in a physically plausible
form

]w0

]x
~ t50!;

1
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,
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w0~x50,t50!522p, w0~x⇒`,t50!50, ~5c!

]w0

]t
~ t50!5

]w

]t
~ t50!50, ~5d!

and introduce new variablesh5w02w andx5w01Zw. Now
the motion equations read

]2x
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2
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D
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4TC
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x.

it is convenient to make the analytical continuation to the
whole axis2`,x,`, recalling when necessary that the
physically significant results should be studied finally on the
semiaxis 0<x,`, and represent the boundary conditions in a
model form

]x

]t
~t50!5

]h

]t
~t50!50, ~7a!
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where
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The charge conservation imposes the topological constriction

E
0
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1Z
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~9!

The solution of the linear equation~6a! takes the form

x~y,t!5 1
2 @F~y2t!1F~y1t!#22p, ~10!

where

F~z!5 H2p1x~z,0!,
2x~ uzu,0!22p,

z.0
z,0. ~11!

To solve the Cauchy problem for the sine-Gordon~SG!
Eq ~6b!, we use the IST.14 Within the IST approach, the SG
equation is related to the linear scattering problem

L̂~h,h t̄ ;l!C~j,t̄,l!50 ~12!

for the auxiliary spinor Jost functionC(j,t̄,l)5(C2

C1), where

l is the spectral parameter which takes real positive values,
andj5y/(AZ11) andt̄5t/(AZ11). The operatorL̂ takes
the form

L̂5 Î
]

]j
2

i

2 F S l2
1

4l
cosh D ŝ32

ŝ2

4l
sinh

1
ŝ1

2
~hj2h t̄ !G , ~13!

whereŝa ~a51, 2, and 3! are the Pauli matrices, andÎ is the
unit matrix.
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To construct the solution, one has to calculate the Jost
coefficients and to find zeros of the reflection coefficient.14

Consider the eigenfunctionsC~j,l! with the asymptotes at
j→2`,

C25S 0e2 iLj D , ~14!

whereL5l2~1/4l!, and, atj→`,

C15S b~l!eiLj

a~l!e2 iLj D . ~15!

The functionsb~l! anda~l! are the Jost coefficients; zeros
of a~l! define the solutions to the SG equation.

To calculate the initial Jost coefficients, in~13! we set
cosh~j,0!51, which is justified by the inequalityTc!D. We
obtain

a~l,0!5exp~ iL l 0!S coskl02 i
L

k
sinkl0D , ~16!

b~l,0!5 i
f 0
k
sinkl0 , ~17!

wherek5AL21 f 0
2.

The spectral equationsa~l,0!50 was analyzed in Ref. 15,
where it has been shown that the conditionl 0f 05p @see Eq.
~8!# corresponds to a pair of kinks moving in opposite direc-
tions. The kink on the semiaxisx>0 is the only one that is
physically relevant for us. Its asymptote att→` is

h~x,t !524 tan21expH 2
x2Vt

dAZ11S 12
V2

C0
2D 1/2J ,

~18!

whered5\VF/2TC , C05VF\v/D, and

V5C05 12

8AZ11

p

TC
D

11F12S 8AZ11

p

TC
D D 2G 1/26 . ~19!

For the parameters of TaS3,
2 V'0.98C0.

The solution~18! itself satisfies the topological condition

dh5h~x→`,t !2h~x50,t !52p, ~20!

which means that the electric charge of self-trapped electrons
remains localized in a central chain at arbitrary time. Indeed,
combining the Eqs.~20! and ~9!, we obtain

dw052p and dw50. ~21!

All the other chains contain dipoles with charges

qdip56
2e

Z11
; ~22!

the length of a dipole is proportional tol dip;dV5C02V.
The phase distribution for TaS3 ~Z52! is shown schemati-
cally in Fig. 1.

The solution of the Cauchy problem presented above,
though physically transparent, leaves a certain feeling of dis-
content for two reasons: it is accessible only for a model
boundary condition~7b! and~8!. In addition, the IST method
cannot give even an estimate of the time at which the asymp-
tote ~18! is reached.

Below, we show qualitatively that the principal results
~21! are, in fact, insensitive to a specific shape~8! of f (x),
and depend only on the topological constrictions~5b! and
~5c!. We also show that the time of the steady-kink-velocity
formation is of the orderv21, and that it depends weakly on
the shape of the initial phase profile. The time of a 2p-kink
steady profile formation is of the order ofD/vTC@v21.

Consider the one-parameter two-soliton solution to the
SG equation16

hR~j,t!524 tan21S coshS Ut

A12U2D
U sinhS j

A12U2D D , ~23!

whereU5V/C0 , which obeys the initial conditions

hR~j510,t50!522p,
~24!

hR~j→1`,t50!50.

To connectU with the initial space derivative, puthR~j5l 0,
t50!52p, which gives

l 05A12U2tan21
1

U
. ~25!

FIG. 1. Phase distribution in central and neighboring chains,
Z52.
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For TaS3 parameters,l 0'0.26, we obtainV>0.96C0 , in ex-
cellent agreement with the IST results~Fig. 2!. It is conve-
nient to define the time of establishing the asymptotically
steady velocity,t` , as the one when the time derivative of a
profile at a pointj equalsU/2, i.e.,

dj

dtU
t5t`

5
U

2
5

sinhS Ut`

A12U2D
F 11

S coshS Ut`

A12U2D
U

D 2G 1/2. ~26!

From ~26! we obtain

t`5
A12U2

U
arc sinhS 11U2

3 D 1/2. ~27!

Combining~27! and ~25!, we arrive att`;l 0 ~t`;1/v!.
Mention should be made, at least qualitatively, of how

three-dimensional effects modify the results obtained within

the framework of the model~3! which, although it takes into
account the interaction with neighboring chains, is essen-
tially a one-dimensional one. As our model~3! mathemati-
cally is closely related to the model of a crowdion in a 3D
elastic medium, we can use the results for crowdion.17

Numerical analysis17 shows the existence of two scales in
the core of a localized charge densityr, resulting from the
nonlocal nature of the model. At large distances
x@ l C;30d(d5\VF/2TC), the exponential decrease of the
densityr changes to the power-law relationshipr;( l C/x)

3.
Whereas the density peculiar to a charged chain is of or-

der ofr0;e/d, the charge densities in neighboring chains are
of order ofr

*
;e/d1022, and the scale of a dipole field is of

order of l d;10d. Furthermore, the dynamics of a charge
formation in a 3D case is more complicated than in a 1D
model. There are two different characteristic velocities in a
3D medium: the longitudinal oneC0, and the transverse one
C';(TC/eF)C0!C0 . The charge moving with the veloci-
ties V in the intervalC',V,C0 produces the Cherenkov
radiation with the radiative force:18

F;~V22C'
2 !S TCeF

D 4. ~28!

It follows from Eq. ~28! that the charge which comes into
being with the initial velocityV>C0 loses its velocity to the
point C' over distancel h;j0(eF/TC)

3 during the time
th;1/v(eF/TC)

3. This radiative effect can be speculatively
related to the ‘‘narrow band noise’’ problem.1,2 Finally, note
that in a case of a static kink, the dipole field in neighboring
chains transforms to a quadrupole one.17
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