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Dynamics of conversion of conduction electrons into a collective charge-density-wave current

Alexander S. Kovalev, Yurij V. Pershin, and Alexander S. Rozhat/sky
B. I. Verkin Institute for Low Temperature Physics and Engineering, 47, Lenin Avenue, 310164 Kharkov, Ukraine
(Received 29 January 1996

The exactly solvable model which describes the dynamics of transformation of conduction electrons into
nonlinear charge-carrying excitations of charge-density waves in quasi-one-dimensional Peierls-Frohlich con-
ductors is formulated and studied by the inverse scattering transformation method. The pair of self-trapped
conduction electrons transform into a chargetkink localized in a single conducting chain and surrounded
by dipoles in neighboring chaingS0163-18206)04123-9

The commonly accepted model for the Peierls-Frohlich The final stage of conversion is aggregation of individual
quasi-one-dimensional charge-density-w&@®W) conduc-  phase deformations in different chains to a three-dimensional
tors relates their unusual transport properties, i.e., nonlineairray, t~t;>t,. The timet; can be attributed to a long-
conductivity, memory effects, etc., to the phase of the CDWrange Coulomb interactioh.
order parameterA exp(i¢), where the modulus is the Such arrays are responsible for generation of an excess
Peierls energy gap in a quasiparticle spectrum, argbv-  yoltage observed in numerous experiments on mesoscopic
erns the dynamics of the CDW condensétee collective  cpw samplegsee, e.g., Refs. 73@nd were studied in a
excitations of the occupied valence banthe phase dynam- ggries of phenomenological theoretical modi&ls37 in
ics description has been successful in explaining bulk chargpich the problem of the charge transformation dynamics
acteristics(see, e.g., Refs. 133However, one principal as- o yained unresolved. To our knowledge, the only paper in

tpheetha];rg]ri-gaDr\rNir?hycsg\?\}-vﬁége]e dgg?rfz;ntioorfslr:/t/?tﬁztcl)%ggé which an attempt was made to devise a self-trapping mecha-
. ying | P . nism in a one-dimension&l D) CDW conductor was Ref. 6.
tion electrons, remains unresolved and still arouses contr

versial explanations. 9t has been shown in Ref. 6 that at low temperaturesT ¢,

The basic feature of quasi-one-dimensional CDW conducthe transfer of conduction electrons to the valence band oc-

tors such as e.g., TaSis the instability of conduction elec- curs via ins_tantons which split from a condgction band a
trons against self-trapping, and conversion into the valenclgVel occupied by two _electrons,_ and push this level towa_rd_
band where electrons transform into additional collectivetN€ valence band. An instanton interpolates between the ini-
charge carriers. Self-trapping is connected with local gap delial state,|in)=[2 conduction electrongp=const,A=cons},
formations in conducting chains. The potential barrier for theand the final one}f)=[ no conduction electronsig;, =2,
self-trapping is~A, the time interval of the gap deformation A=cons}, and describes the self-trapping stage of conver-
is of order ofw ™! (w is the frequency of the Peierls phonons sion or the nucleation of a phase-slip-cer@8Q. The in-
which is of order of the Debye frequendd® and the inter- stanton mechanism is most efficient at a metal-CDW
chain interaction is of ordeF.. (T is the temperature of the interface® because the instanton action exponentially grows
Peierls transition In a weakly coupled array of highly con- with the distance.
ducting chainsT-<A, the self-trapping of electrons occurs  The subsequent evolution of the PSC has not yet been
in individual chains independently, and the charge transforinvestigated, and it is the aim of this paper to put forward a
mations proceeds in two steps, each characterized by its owjualitative microscopic theory of transformation of a trapped
time scalet;: transfer of conduction electrons into the va- electron pair into intrinsically nonlinear phase excitations of
lence band in a single chait;~ ™", and formation of a a CDW. The scenario of charge transformation is as follows:
collective charge carrier in this chaity>t,. The timet, is  at timet~w %, a self-trapped pair of electrons creates the
the intrinsic scale of the CDW-phase Hamiltonian atinitial phase profiledg, =2 (|f) state localized on a scale
A=const®™® of the Peierls coherence length,,~§=7%V¢/A, the length
The collective CDW chargp, and the current, densities &) not being the intrinsic scale of the phase Hamiltont4n;
in a single chain are related to phase gradients via the Frolhus 6¢,, serves as the initial condition to the phase motion

lich relations equations. To solve the Cauchy problem, we formulate an
exactly solvable model of phase dynamics in a cluster of
_ede . edo next-to-nearest-neighbor chains and apply the inverse scat-
P T T T @ tering transformatior{lST) method. It appears that over the

timet,~A/(wT.), the initial conditionde;, transforms into
When g electrons are converted into the CDW conden-a charged 2 kink with a core of orde: V/T localized in
sate, the phase acquires a local deformation with the ndhe same chain and surrounded by dipoles in all the other

phase shift chains.
For definiteness, let us take the zero temperature and

0p=@(X=»)— p(X=—x)=q. (2)  study the conversion of two electrons to a clusteZ aiear-
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est CDW chains which are oriented along the most conduct- Px Py
ing x direction and occupy the semiaxis=0. The phase P_WZO’ (6a)
Lagrangian takes the forf
Py
2 % 2 2 0"_(0 2 &—Z—a—Z'F(Z‘Fl)Sin?]:O, (Gb)
Lt ) ol h2V2 [ 9\ 2 N
-~ whVE ? w? 4\ ax where
BV2 (90\2 T=2Tex b Y=gy %
- 4 rv +22TCCOS(PO_<P) ’ (3) L. i i i .
X it is convenient to make the analytical continuation to the

whereg, denotes the phase in a central chain, ardbnotes Whole axis —eo<x<, recalling when necessary that the

phases in the nearest ones. tAt0 two electrons pass to a physically significant results should be studied finally on the

central chainipy(x,t=0)#0 and¢(x,t=0)=0. semiaxis B=x<oo, and represent the boundary conditions in a
The Cauchy problem must be supplemented with boundModel form

ary conditions at=0, see Eqgs(5) below. The initial mo-

mentt=0 to the Cauchy problem is defined as the one when Ix (r=0)= on (7=0)=0, (79)
the phase configuratiofe;, escapes from under the autolo- a7 aT
calization potential barrier with zero velocily,
24 an
ag 5(720)=W(T=0)=f(y). (7b)
— (t=0)=0. (43
at
where
As the result of the energy conservation in the process of 4T
self-trapping, we obtain 2fp=or |y|<—C=|o
) fy)= 2Tc, A ®
AVEe [0 >1,.
2A=fo|x—F ﬂ) , (4b) 0. yI>1o
T IX

The charge conservation imposes the topological constriction
and hence
=2m.

Joe
©

The solution of the linear equatidiéa) takes the form

x(y,n=3[F(y—7)+F(y+7)]-2m, (10

5’@0()/17') f7(P(ny)) _ fmd é,X(yiT)

990 gy L ay  TE Ty 0 dy
x (= ) &

The compatibility of this initial condition to the Lagrang-
ian (3) needs special comment. The Lagrang(@nis actu-
ally valid when phase gradients are small compareé,th
when|de/ox|~&; 1, the modulus and phase dynamics cannotwhere
be separated. Thus, when introducing the above initial con-
dition to the phase dynamics equations solely, we suppose F(z)= 27+ x(2,0), z>0
the existence of an intermediate region which we cannot de- | —x(|2],00—2m, z<O.
scribe analytically where the produég|dey/dx| is numeri-
cally but not parametrically small. To solve the Cauchy problem for the sine-Gord&G)

Keeping the above in mind, we present the model comEd (6b), we use the IST? Within the IST approach, the SG

plete set of boundary conditions in a physically plausibleequation is related to the linear scattering problem
form

(11)

L(m 7N W(£7,0)=0 (12)

J¢g 1 Je . . . — v
i (t=0)~ —, X (t=0)=0, (58  for the auxiliary spinor Jost functiodr (£, T’)‘):(\p;)' where

0 \ is the spectral parameter which takes real positive values,
andé=y/(\Z+1) andr=7/({Z+1). The operatoL takes

> dpg
dx — (t=0)= d¢j,= 2, (5b) the form
0 ax
~ oA 0 1 . oy
©o(x=0t=0)=—27, @o(x=»,t=0)=0, (50 L=I§—§—§ A= 7\ COS| 03— 7= siny
dog ~ de o1
- (1=0)=—-(t=0)=0, (5d) +t5 (7|, 13

and introduce new variableg=p,— ¢ andy=¢,+Ze. Now  whereo, (a=1, 2, and 3 are the Pauli matrices, ands the
the motion equations read unit matrix.
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coefficients and to find zeros of the reflection coefficiént.
Consider the eigenfunction®(&,\) with the asymptotes at

T o~ s
0 2z
3

To construct the solution, one has to calculate the Jost r,

‘l’:(ei/\g s (14) -
where A=\—(1/4\), and, até—o, )
b(\)e'ré
v, = a(\)e 1AE)- (15 z
G

The functionsb(\) anda(\) are the Jost coefficients; zeros
of a(\) define the solutions to the SG equation.

To calculate the initial Jost coefficients, {A3) we set v
cos7(¢£,0)=1, which is justified by the inequality .<A. We
obtain

k

mnmzi%gmb, 17 ﬁﬁ\\Q(\‘*___ﬁ

wherek= A%+ {2,

The spectral equatioreg\,0)=0 was analyzed in Ref. 15, o ) _ )
where it has been shown that the conditigh,= [see Eq. FIG. 1. Phase distribution in central and neighboring chains,
(8)] corresponds to a pair of kinks moving in opposite direc-£=2-
tions. The kink on the semiaxis=0 is the only one that is
physically relevant for us. Its asymptotetat-« is

a()\,0)=exp(iAI0)(cosklo—i ésinklo), (16) l¢

| e

The solution of the Cauchy problem presented above,
though physically transparent, leaves a certain feeling of dis-

x— Vit content for two reasons: it is accessible only for a model
n(x,t)=—4tan exp)] — =717 | » boundary conditior{7b) and(8). In addition, the IST method
dVz+1|1- _2) cannot give even an estimate of the time at which the asymp-
0 tote (18) is reached.
(19 Below, we show qualitatively that the principal results
whered=#V-/2T. Co=Vchiw/A, and (21) are, in fact, insensitive to a specific shaige of f(x),
Flelc, Mom VFI® and depend only on the topological constrictids®) and
8VZ+1 E (50). We also show that tble time of the steady-kink-velocity

formation is of the ordew™ -, and that it depends weakly on

A

v=cil 1- ™ (19 the shape of the initial phase profile. The time of7aknk
-0 212 (- steady profile formation is of the order AfwTe>w L
8vZ+1T¢ ) : i
1+|1- N Consider the one-parameter two-soliton solution to the
™ SG equatiotf
For the parameters of Ta3 V~0.98C,.
The solution(18) itself satisfies the topological condition cosr( Ur
J1-U?
Sn=n(x—=,t) = n(x=0t)=2m, (20 nr(€,m)=—4tan ! . (23

which means that the electric charge of self-trapped electrons U sinf( 2)
remains localized in a central chain at arbitrary time. Indeed, vli-U

combining the Eqs(20) and (9), we obtain whereU =V/C,, which obeys the initial conditions

All the other chains contain dipoles with charges (24
NR(§—+°,7=0)=0.
2e
Qgip= tm; (220  To connectJ with the initial space derivative, puiz(£é=l,,
7=0)=—, which gives
the length of a dipole is proportional 1g;,~éV=Cy—V. 1
The phase distribution for Ta8Z=2) is shown schemati- _ = —1 =
cally in Fig. 1. lo=vi-UTan = - (25)
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the framework of the modéB) which, although it takes into
account the interaction with neighboring chains, is essen-
tially a one-dimensional one. As our mod@&) mathemati-
cally is closely related to the model of a crowdion in a 3D
elastic medium, we can use the results for crowdion.
Numerical analysis shows the existence of two scales in
the core of a localized charge densjtyresulting from the
nonlocal nature of the model. At large distances
026 { §==Z b x>1-~30d(d=%VE/2T), the exponential decrease of the
densityp changes to the power-law relationship (1 /x)>.
FIG. 2. Dependence of the kink velocity on the initial condition. Whereas the density peculiar to a charged chain is of or-

Solid line: result of the IST analysis; dashed line: probe functionder ofpo~e/d, the Ch{ilgge densities in neighbpring ,Chains are
(23). of order ofp, ~e/d10™ %, and the scale of a dipole field is of

order of I4~10d. Furthermore, the dynamics of a charge
For Ta§ parameters,;~0.26, we obtainV=0.96C,, in ex- formation in a 3D case is more complicated than in a 1D
cellent agreement with the IST resulig. 2. It is conve- Model. There are two different characteristic velocities in a
nient to define the time of establishing the asymptotically3P medium: the longitudinal on€,, and the transverse one
steady velocity, , as the one when the time derivative of a C1 ~(Tc/€g) Co<Co. The charge moving with the veloci-
profile at a point¢ equalsU/2, i.e., tiesV in the |ntervaICL<V<C%iproduces the Cherenkov
radiation with the radiative force:

! }-( UTOO ) TC 4
sinh —— ~(V2—C2)| &
d¢f U J1-u? 26 F~(V CL)( . (28)
- - 27172

dr =1, 2 cos Ur, It follows from Eg. (28) that the charge which comes into

[1-U2 being with the initial velocityv=C,, loses its velocity to the

1+ B E— point C, over distancel,~ &,(e/Tc)® during the time
t,~Lw(ee/Tc)3. This radiative effect can be speculatively

From (26) we obtain related to the “narrow band noise” problehd.Finally, note

that in a case of a static kink, the dipole field in neighboring

2 chains transforms to a quadrupole dfe.

J1—-U? ~[1+U?

S T arc smvs 3 (27)
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