
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Faculty Publications Computer Science and Engineering, Department
of

2003

Commitments Among Agents Commitments Among Agents

Ashok U. Mallya

Michael N. Huhns
University of South Carolina - Columbia, huhns@sc.edu

Follow this and additional works at: https://scholarcommons.sc.edu/csce_facpub

 Part of the Computer Engineering Commons

Publication Info Publication Info
Published in IEEE Internet Computing, Volume 7, Issue 4, 2003, pages 90-93.

This Article is brought to you by the Computer Science and Engineering, Department of at Scholar Commons. It has
been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more
information, please contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/csce_facpub
https://scholarcommons.sc.edu/csce
https://scholarcommons.sc.edu/csce
https://scholarcommons.sc.edu/csce_facpub?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

Agents on the Web

90 JULY • AUGUST 2003 Published by the IEEE Computer Society 1089-7801/03/$17.00©2003 IEEE IEEE INTERNET COMPUTING

Commitments
Among Agents

W e sent one of our agents off to buy a
book for us last month, but the book
never arrived. The publisher claimed

they had sent it, but the shipping company they
chose could not find a record of it. Unfortunately,
the credit card debit succeeded!

There appear to be several points of failure in
this transaction, which we typically describe in
terms of “blame.” Software agents, however, re-
quire terminology that is more formal, which we
can supply in the form of temporal commitments.

Commitments are a powerful representation for
modeling multiagent interactions. Previous ap-
proaches have considered the semantics of com-
mitments and how to check compliance with them
(see the sidebar on p. 93). However, these
approaches do not capture some of the subtleties
that arise in real-life applications such as e-com-
merce, in which contracts and institutions have
implicit temporal references. In this column, we
describe a rich representation for the temporal
content of commitments that lets us capture real-
istic contracts and avoid ambiguities. Conse-
quently, this approach lets us reason about
whether, and at what point, a commitment is sat-
isfied or breached, and whether it is or ever
becomes unenforceable.

Properties
for Business Applications
Business contracts commonly involve many claus-
es and have subtle time periods of reference. The
following is an informal list of some properties
that are relevant in practice, but not naturally han-
dled by current commitment-based approaches.

• Time intervals. Contracts often involve time
bounds, which simplify decisions about the sat-
isfaction or breach of commitments. Their exis-
tence in contracts is a significant reason tradi-

tional representations (such as paper documents)
rely on them. Practical commitments often must
be satisfied either in a fixed, bounded interval or
at a specified instant in the future.

• Maintenance. Current work on commitments
has concentrated on conditions for their
achievement, whereas real-life commitments
are as likely to be about the maintenance of
certain conditions. For example, a typical ser-
vice-level agreement could involve committing
to maintaining network connectivity during
business hours.

• Temporal anaphora. A particular variety of
time bounds arises in the notion of temporal
anaphora, an implicit range of salient times
within which a specified action occurred or will
occur.1 A promise such as “I will send you the
goods,” or a claim such as “I tried to call you
five times,” involves such a time range.
Although we are not concerned here with com-
monsense reasoning, our representational
framework for commitments should be able to
accommodate the results of such reasoning.

Point-based temporal logics, which model time as
a series of discrete moments rather than intervals,
are commonly used in distributed system specifi-
cations. Such logics are inadequate to express the
above requirements. Accordingly, we developed
an extension of Emerson’s Computation Tree
Logic (CTL)2 that can capture these cases of inter-
est. In CTL, the world at every moment branches
into all scenarios possible at that moment. Only
one scenario actually happens and is called the
real scenario, but we can reason about all possi-
ble scenarios.

Real-World Challenges
To motivate our study of temporal aspects of com-
mitments, we use situational examples that arise in

Ashok U. Mallya • North Carolina State University • aumallya@ncsu.edu
Michael N. Huhns • University of South Carolina • huhns@sc.edu

practical applications of Web services.
(We present solutions to these examples
later.) Consider a travel agent who
wishes to book an airline ticket to a cer-
tain destination, a rental car to use
while there, and a hotel room at which
to stay.

• Example one. The travel agent
wants the passenger to fly on a
particular day while still reserving
the right to choose any flight on
that day. If the airline offers such a
deal, it becomes committed to
maintaining a condition — a
booked ticket — over an extended
time period. We must be able to
specify such maintenance condi-
tions in commitments.

• Example two. The car rental com-
pany might offer a one-week free
rental in January. This is a mainte-
nance condition in another time
period. We must be able to capture
such temporal intricacies without
bloating the domain language.

• Example three. Some commit-
ments might violate constraints
about time that commonsense rea-
soning would have detected. Such
a situation can arise, for example,
when a hotel offers an electronic
discount coupon that expires
today, but text on the coupon
states that it can only be used dur-
ing a future spring break.

• Example four. The car rental com-
pany might offer a warranty that
cannot be used during the period
in which the warranty is valid. The
company might guarantee that its
cars will not break down for at
least two days, promising an
immediate replacement if one
does. However, if the company is
closed on weekends, then a cus-
tomer who rents a car on a Friday
would not benefit from the war-
ranty if the car broke down on
Saturday.

Our method’s main contribution to
reasoning about commitments is that
it applies a richer temporal represen-
tation and shows how to detect when

a commitment is satisfied or breached.
Further, it keeps the temporal aspects
independent of the domain-specific
semantics of the condition that the
commitment is about. Thus, we can
reason about the temporal aspects in a
domain-independent manner.

A Temporal
Commitment Framework
Commitments are obligations that one
agent has to another.3 Formally, a
commitment C(d, x, y, p) relates a
debtor x, a creditor y, and a condition
p in such a way that x becomes
responsible to y for satisfying the con-
dition p; the commitment has a unique
identifier d. The commitment is satis-
fied when the condition p holds.

A framework’s essential elements
for representing and reasoning about
commitments are, first, a way to
describe commitments and operations
on commitments. Second, because of
their temporal nature, there must be
a way to describe moments and time
intervals. Third, because commit-
ments extend into the uncertain
future, there must be a way to
describe alternative outcomes.

Describing Commitments
For the first requirement, the follow-
ing operations create, satisfy, and
transform commitments:

• create(x, c) establishes the com-
mitment c in the system. This can
only be performed by c’s debtor x.

• cancel(x, c) cancels the commit-
ment c. This can only be performed
by c’s debtor x. Generally, making
another commitment compensates
cancellation.

• release(y, c) releases c’s debtor
x from commitment c. This only
can be performed by the creditor y.

• assign(y, z, c) replaces y with z
as c’s creditor.

• delegate(x, z, c) replaces x
with z as the c’s debtor.

• discharge(x,c) c’s debtor x ful-
fills the commitment.

The operators are applied to commit-
ments during a time interval.

Describing Time Intervals
For the second requirement, we define
two temporal quantifiers:

• Existential. [t1, t2]p means that p is
true at one or more moments in the
interval beginning at t1 and ending
at t2.

• Universal. means that p is
true at every moment in the inter-
val beginning at t1 and ending at t2.

To reason about future possibilities, we
need to consider the different things that
might occur during future time intervals.

Describing Alternative Outcomes
A branching-time logic, such as CTL
(shown in Figure 1), satisfies the third
requirement. It defines the following
operators that apply over a particular

[,]t t p1 2

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2003 91

Commitments Among Agents

a
b

c

d
...

...

...
...

m1

m2

m
3

m
4

m
0

...t
0 t1 t2 t3 t4

q..

...

m5

m
6

t5

Figure 1. Schematic representation of our model of time. Using computation tree
logic, our model defines the possible futures from a given moment in time, m0.

scenario (defined as a path into the
future from a moment in time):

• Until. A statement pUq, read p until
q, is true at a moment m1 on a sce-
nario if and only if q is true at
some moment m2 in the future and
p is true at all moments from m1
until m2.

• Eventually. A statement Fp, read
eventually p, means that p will be
true at some point in the future of
the given scenario.

• Always. A statement Gp, read always
p, means that p is true at every
moment in the given scenario.

The operator Ap denotes that p holds
in all scenarios that are valid at the
present moment.

Finally, we need three predicates to
indicate whether a commitment c has
been satisfied, breached, or still
holds, written satisfied(c),
breached(c), and holds(c),
respectively. Also, active(c) is an
abbreviation for a commitment that
has not been cancelled, delegated,
assigned, released, or discharged.

Using the Framework
With these definitions, we can define the
semantics of the language for commit-
ments, which for a model M will have
rule statements such as this one that
defines the satisfied(c) predicate:

Μ |=m satisfied(c) iff (∃m3 : m3 � m and
Μ |=m3 discharge(x, c) and (∃m1 : m1 ≺
m3 and Μ |=m1 create(x, c) and (∀m2 : m1

� m2 ≺ m3 ⇒ Μ |=m2 active(c))))

This says that a commitment is satis-
fied if and only if it was created and
later discharged by an agent x, and if
it was continuously active between
the time it was created and the time
it was discharged. We can also
impose constraints on the model,
such as

Μ |=m (cancel(x, c) ⇒ AG¬holds(c)),

which states that a cancelled commit-
ment no longer holds. Mallya and col-

leagues have described a complete
semantics for this model elsewhere.4

Resolving
Temporal Commitments
A temporal commitment is resolvable
if its satisfaction or breach can be
determined at some moment. Under
certain conditions, we can ascertain
the irresolvability of a temporal com-
mitment even before the specified time
interval occurs.

Solutions to examples one and two
are straightforward; we can represent
the temporal structure of the events in
the examples using nested time inter-
vals. We move on to the more interest-
ing examples here.

Solution to Example Three
To model example three, the hotel H
makes a commitment to a guest g. The
commitment is C(d, H, g, [t1, t1
+ 24hrs]()), where t1
+ 24 hrs < t3 because it is not Spring
break yet; [t1, t1 + 24hrs] denotes the
interval “today” (say, a day in Janu-
ary); denotes the
interval when spring break happens;
and q is an atomic proposition that
denotes something that the coupon
offers. In this case,
cannot be resolved at least until t3
+ 7days, and [t1, t1 + 24hrs](•) must be
resolved at most by t1 + 24hrs for it
not to be breached. But because t1
+ 24hrs < t3 + 7days, this condition
cannot be resolved. Hence, the com-
mitment cannot be satisfied.

Solution to Example Four
We can model example four by the
commitment C(d, R, c,
(great_car ∨ [t1,
t2]replace_car)), where the literal
great_car means the car has not bro-
ken down; the literal replace_car rep-
resents the warranty that the rental
company gives on the quality of the
car; R represents the rental company;
and c the customer. In this model, t1
represents the instant at which the car
is rented on Friday, and t2 denotes the
closing of the rental company on Fri-
day. Hence, t2 < t1 + 2days.

We see that there exists a moment
in the set of all moments of the dis-
juncts at which every literal is either
breached or is unresolvable because its
time interval has passed. If the car
breaks down a day after it was rented
— that is, at t3 = t1+1day — then the
only proposition that is not yet
breached at that point is the guarantee
by the renter to replace it. However,
the latest upper bound of the instant at
which we could have ascertained the
truth of this proposition has passed.

Formally, ∃mx, mearly � mx � mlate: ∀i:(
Μ |=m breached(Li)) ∨ (τ(mx) > r+(Li)). In
this example, τ(mearly) = t1, τ(mlate) =
t1+2days, i = 2, L1 =
great_car, L2 = [t1, t2]replace_car, and
the r+ operator finds the latest instant at
which the satisfaction of its proposition
can be determined. The solution shows
that the warranty is unfavorable to the
customer.

Advantages of Deadlines
The concept of deadlines is necessary
for practical use of commitments. Tra-
ditionally, deadlines have been hidden
in the atomic propositions, but as we
have shown, an explicit formulation of
temporal commitments is highly desir-
able. It ensures uniform treatment of
operational characteristics across
domains. Our approach to developing
such a system not only allows for the
expression of statements that involve
deadlines, but also decouples the tem-
poral quantification from the proposi-
tion, allowing us to reason about the
temporal aspect without regard to the
propositions’ meaning.

Future Directions
Our work on the temporal aspects of
commitments is far from complete. In
the larger scheme of things, agents
would use commitments while inter-
acting within the bounds of some pro-
tocol. Commitments between partici-
pants would shape the protocol and it,
in turn, would constrain the commit-
ments made within it. We therefore
focus on agent interaction protocols
and the flexibility in execution that
commitments afford to these protocols.

[, + days]t t1 1 2

[, + days]t t1 1 2

[, + days]t t q3 3 7

[, + days]t t3 3 7

[, + days]t t q3 3 7

92 JULY • AUGUST 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Agents on the Web

A direction for further research is
to apply the theory developed here to
Venkataraman and Singh’s compli-
ance-checking scheme,5 in which
agents participating in a commit-
ment-based protocol use a vector-
clock to keep track of events they can
perceive. A protocol violation by any
agent can then be detected by com-
bining what each agent has recorded.
The temporal structure that
Venkataraman and Singh use is
weaker than ours, and an application
of our work to this scheme would be
interesting.

Another direction is to incorporate
dialogue game protocols (DGPs)6 into
commitment machines (CMs).7 DGPs
are based on intuitive notions about
the nature of human dialogue — the
intent of conversations, and the aim of
argumentation. Although the theory
behind them has been around since
Aristotle’s time, they have only recent-
ly been proposed as a more flexible
alternative to game- and auction-the-
oretic protocols for agent interactions.
A CM is a commitment-based protocol

execution framework that allows more
flexibility than traditional formalisms,
such as finite state machines. DGPs can
model appropriate phases of a CM pro-
tocol. Identifying the DGP classes that
can model a certain phase would afford
participants the convenience of choos-
ing any of the allowed DGP classes. A
sound theory of such a composition
and its compliance aspects would
greatly benefit workflow development
and Web-service composition.

Acknowledgment
The US National Science Foundation supported

this work under grant nos. IIS-0083362 and

DST-0139037.

References
1. B. Partee, “Nominal and Temporal Anapho-

ra,” Linguistics and Philosophy, vol. 7, no.
3, 1984, pp. 287–324.

2. E.A. Emerson, “Temporal and Modal Logic,”
Handbook of Theoretical Computer Science,
vol. B, 1990, pp. 995–1072.

3. C. Castelfranchi, “Commitments: From Indi-
vidual Intentions to Groups and Organiza-
tions,” Proc. AAAI‘93 Workshop AI and
Theories of Groups and Organizations: Con-
ceptual and Empirical Research, AAAI, 1993.

4. A.U. Mallya, P. Yolum, and M.P. Singh,
“Resolving Commitments Among Autono-
mous Agents,” to appear in Proc.
AAMAS‘03 Workshop Agent Communica-
tion Languages and Conversation Policies,
ACM Press, 2003.

5. M. Venkataraman and M.P. Singh, “Verify-
ing Compliance with Commitment Proto-
cols: Enabling Open Web-Based Multiagent
Systems,” Autonomous Agents and Multia-
gent Systems, vol. 2, no. 3, 1999, pp.
217–236.

6. P. McBurney and S. Parsons, “Dialogue Game
Protocols,” to appear in Proc. Comm. Multi-
Agent Systems: Background, Current Trends
and Future, vol. 2650, Lecture Notes in Arti-
ficial Intelligence, Springer, 2003, pp. 317-331.

7. P. Yolum and M.P. Singh, “Commitment
Machines,” Proc. 8th Int’l Workshop Agent
Theories, Architectures, and Languages
(ATAL ‘01), Springer-Verlag, 2001.

Ashok U. Mallya is a PhD candidate in the

Department of Computer Science at North

Carolina State University, from which he

received an MS. His current research interest

is agent interaction protocols.

Michael N. Huhns is a professor of computer sci-

ence and engineering at the University of

South Carolina, where he also directs the

Center for Information Technology.

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2003 93

Commitments Among Agents

Related Literature

Our theory of deadlines is similar to that
of Fornara and Colombetti,1 who

introduce the concept of a commitment life -
cycle,explaining how operations on commit-
ments create,modify,delete,and satisfy com-
mitments.Their work is a good first step
toward operationalizing commitments,but it
does not focus on developing semantics for
temporal commitments as we have done.

Our work lies in the middle ground
between two orthogonal streams of
research: the semantics of interaction pro-
tocols, and the implementation of business
processes. We have embodied desirable
properties of both streams in this theory.

Interaction Protocols
Dignum and colleagues describe a tempo-
ral deontic logic that helps specify obliga-
tions and constraints so that a planner can
take deadlines into account while generat-
ing plans.2 However, their approach is

based on the notion of obligations, and it
does not give operational methods for
obligations. Once a deadline has passed
and a certain rule has been violated, the
logic has nothing to say about the effects
on the system. Nevertheless, their
approach is semantically rich and detailed
in the kinds of deadlines and constraints it
allows agents to model. For example, the
deadline “as soon as possible,” which can-
not be modeled in our grammar, can be
modeled using theirs.However, our system
is closer to being implemented.

Business Processes
Grosof and colleagues’ courteous logic pro-
grams (CLPs)3 can be used to specify busi-
ness rules and instructions for deciding
which to use among a set of conflicting
rules.However, they do not provide seman-
tics for the grammar that a CLP uses.They
represent rules by if-then clauses, and all

concepts beyond the structure of these
clauses are domain-specific, including tem-
poral references.CLPs,however, are used in
actual business systems.

References
1. N. Fornara and M.Colombetti,“Operational Spec-

ification of a Commitment-Based Agent Commu-

nication Language,” Proc. Int’l Joint Conf. Autonomous

Agents and MultiAgent Systems, ACM Press, 2002,

pp. 535–542.

2. F. Dignum, H.Weigand, and E.Verharen,“Meeting

the Deadline:On the Formal Specification of Tem-

poral Deontic Constraints,” Foundations of Intelli-

gent Systems,9 Int’l Symp. (ISMIS ‘96), vol. 1079, Lec-

ture Notes in Computer Science, Springer, 1996, pp.

243–252.

3. B.N. Grosof,Y. Labrou, and H.Y. Chan,“A Declara-

tive Approach to Business Rules in Contracts:

Courteous Logic Programs in XML,” Proc. 1st Ann.

ACM Conf. Electronic Commerce (EC ‘99), ACM

Press, 1999.

	Commitments Among Agents
	Publication Info

	Commitments among agents - Internet Computing, IEEE

