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Mechanism of Current Collapse Removal
in Field-Plated Nitride HFETs

A. Koudymov, V. Adivarahan, J. Yang, G. Simin, Senior Member, IEEE, and M. Asif Khan, Senior Member, IEEE

Abstract—An experimental study of the mechanism of RF
current collapse removal in high-power nitride-based HFETs is
presented. The results show that the conductivity of the dielectric
material under the field plate plays a crucial role in the current
collapse removal. Identical geometry field plated HFETs differing
only in the FP dielectric conductivity show varying degree of
current collapse removal. Devices with semiconducting dielectric
layers exhibit perfectly linear RF power – drain bias dependence
with the output powers of 20 W/mm at 55 V drain bias with
essentially no current collapse. A trapped charge discharging
model is presented to explain the removal of current collapse in
FPd devices.

Index Terms—Current collapse, field-plate (FP), GaN-AlGaN,
high-electron mobility transistors (HEMT), high field-effect tran-
sistors (HFET), metal–oxide–semiconductor heterojunction field-
effect transistor MOSHFET, microwave power.

I. INTRODUCTION

S INCE their first demonstration in 1991 [1] GaN-AlGaN
heterostructure field-effect transistors (HFETs) have been

extensively explored for solid-state high-power microwave de-
vices. However, until recently, the experimentally demonstrated
microwave powers were well below the values expected from
their dc parameters. The output RF powers were found to be se-
verely affected by the large signal RF dispersion, also referred
to as current collapse. Recently, using a field-plated (FP) de-
vice design Ando et al. [2] demonstrated microwave powers of
10 W/mm at 2 GHz (gate-length 1 m, source/drain opening
4.5 m, and V). Similar FP HFET devices were
later reported by Thompson et al. [3] (16.5 W/mm at

V) and Wu et al. [4] (12.4 W/mm at 48 V and 30 W/mm at
V). The increased output powers for the FP HFETs

in [2]–[4], were attributed to the higher breakdown voltage and
reduced trapping due to the lower gate peak fields as suggested
in [4]. However, to date no studies on the effect of FP dielectric
material on the device performance have been reported. In this
paper, we present the results of an experimental study showing
that the leakage current through the FP dielectric plays a signif-
icant role in the current collapse removal. HFET devices with
the “leaky” dielectric under the FP yielded output powers of

W mm at 55-V drain bias. To the best of our knowledge,
these are the highest reported power densities for this bias level.

II. DEVICE DESIGN AND FABRICATION

The device epilayer structures for this letter were grown by
low-pressure metal–organic chemical vapor deposition on in-
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sulating 4H-SiC substrates. All AlGaN/GaN layers of the struc-
tures were deposited at 1000 C and 76 torr. A 50-nm AlN buffer
layer was first grown at a temperature of 1000 C, followed by
a 1.5 m insulating GaN layer. The heterostructure was capped
with a 25-nm Al Ga N barrier layer, -doped with silicon.
The 2-D gas sheet resistance as measured by an on-wafer RF
probing system was sq.

HFET devices were fabricated using standard optical lithog-
raphy techniques. First a mesa structure was formed by using
chlorine and an inductively coupled plasma (ICP). The ohmic
contacts were then fabricated using Ti/Al/Ti/Afu. They were
annealed in a forming gas ambient. Subsequent to that 1.1

200 m Ni (100 Å)/Au (1000 Å) gates were fabricated.
The source/drain spacing was 8 m. The HFET devices from
the same wafer were then used to process four different de-
vice types for our letter. For the first type, a 1000 Å thick
silicon-oxynitride layer was deposited over the gate and the
access region using a plasma-enhanced chemical vapor depo-
sition (PECVD) process optimized to yield a highly insulating
dielectric layer. These devices will be referred to as device type
1. For the second device type, the PECVD conditions were
adjusted to yield a dielectric, whose isolation was significantly
lower than that for the dielectric 1. The thickness for the
dielectric 2 was kept identical to that for dielectric 1 (1000 A).
The dielectric permittivity of dielectric 2 as confirmed by –
measurements at 1 MHz and -parameter testing in the 1 – 10
GHz range was also nearly the same as that for dielectric 1.
These devices will be referred to as device type 2. For some of
the devices of the type 1 and 2, 2.1- m-long field-plates (FP)
overlapping the gate with an overhang of 1 m in the gate-drain
opening were deposited on top of the dielectric. The gate and
the field plates were connected at the gate-pad region. These
field plated devices will be referred to as device type 1FP and
2FP respectively. These four device types 1, 2, 1FP, and 2FP
formed the basis for the letter reported here.

III. DEVICE PERFORMANCE AND DISCUSSION

The fabricated HFETs exhibited peak currents of about 1.2
A/mm at zero gate bias, a threshold voltage of around V
and their gate-leakage current at V was A. The
large signal RF powers were measured at 2 GHz using Maury
automated tuning system. For device type 1 (highly insulating
dielectric without FP), the maximum RF output powers quickly
saturated as a function of the drain bias. The RF power/drain
voltage plot for a representative Type 1 device is shown in Fig. 1
by open circle symbols. The maximum RF power was limited
by a severe current collapse. The RF powers for FP devices with
the dielectric 1 (devices type 1FP) are shown in Fig. 1 by open
triangles. As seen, the deposition of the FP on top of the dielec-
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Fig. 1. RF power – drain bias dependencies for devices capped with different
dielectric (highly insulating – type 1, and semiconducting -type 2, with and
without FPs. Star symbols show the highest reported powers for different FP
devices.

tric layer 1 has no significant effect on the RF powers, which
remain relatively low.

For device type 2 (”semiconducting” dielectric 2), the output
RF powers are slightly higher (as compared to device type 1 or
1 FP) and they also saturate at a higher drain bias. The corre-
sponding RF power – drain bias dependence is shown in Fig. 1
by solid circles. The observed reduction in current collapse
is due to the “surface passivation” [5], [6] from dielectric 2.
Note that the dielectric type 1 does not provide the same effect
although its’ dielectric permittivity and composition are very
close to those of the dielectric 2. For FP device type 2FP the
RF output powers increase linearly with the drain bias reaching
20 W/mm at 55 V. The powers closely correspond to those
expected from the dc characteristics. This behavior clearly
indicates an absence of the RF-current collapse.

According to simulations, the deposition of FP reduces the
peak fields at the gate edges by a factor of two or less depending
on the FP design [7]–[9]. Since the FP definitely reduces the
peak-fields in device type 1FP as compared to the same de-
vices without FP, we can conclude that the peak field reduc-
tion does not lower the current collapse. The same conclusion
follows from comparison of the RF performance of devices 2
and 2FP. The RF powers for HFET type 2 saturate at the drain
biases of 25 V. Since the FP deposition reduces the gate peak
fields twice at the most, one might expect the same RF power
saturation in devices 2FP to occur at 50 V, as this voltage would
reproduce the same peak fields in the FP devices. However, this
does not seem to be the case for the type 2FP FP device. This
further supports our assertion that field plates remove current
collapse but not due to the reduction of peak fields. In order
to rule out the contribution of possible surface modifications in
the AlGaN/GaN heterostructures due to different dielectric de-
position regimes, we also fabricated and tested the structures
having a thin layer of dielectric type “1” sandwiched between
the FP and the leaky dielectric type “2” (which was deposited
directly on the AlGaN surface). The performance of this test de-
vice was nearly the same as that of the device type 1FP. Fig. 1
also shows that the RF powers for FP devices using dielectric
type 1 are lower compared to those reported recently by other
groups. However, for FP with the “semiconducting” dielectric
(type 2), the RF powers achieved in this study to the best of
our knowledge significantly exceed all the reported results at
the corresponding drain biases.

To further investigate the current collapse removal mecha-
nism in the devices of our study, their pulsed current–voltage

Fig. 2. Pulsed return current dependencies for different devices used in this
letter. The device width is 100 mm. A decrease in return current as compared
to the dc value at zero gate bias (120 mA for our devices) is indicative of the
current collapse.

(C–V) characteristics using a “return current” technique pro-
posed earlier in [10] and [11] were also measured. For these
measurements, the drain bias was kept constant, while the gate
voltage was pulsed from a negative value up to zero volts.
The current measured immediately after the gate voltage returns
to zero is referred to as the “return current”. In devices without
the current collapse, the return current for any value of
is equal to the steady state dc current at zero gate bias .
The deviation of the “return-current” from is a measure of
the degree of current collapse. The return current dependencies
on the gate pulse amplitude ( ) for the devices used in this
study are shown in Fig. 2. For devices type 1 and 1FP, a strong
dispersion was observed. For devices of the type 2 (without FP),
there was no current collapse at 20-V drain bias, however, at a
higher drain bias of V the collapse was significant.
Field-plated devices type 2FP do not show any collapse at any
drain bias. To summarize, the highly insulating dielectric (type
1) does not remove the current collapse. The “semiconducting”
dielectric (type 2) without the field plate removes the collapse
at relatively low but not at the higher drain biases. The “semi-
conducting” dielectric capped with the FP completely removes
the current collapse for all drain biases used in this letter.

In the past, it has been reported that the deposition of FP on
top of “semiconducting” dielectric significantly improves the
performance of high-power Si devices by providing a leakage
path that effectively discharges the surface state charges [12],
[13]. The observed drastic difference in the performance of the
HFET devices with dielectrics type 1 and 2 can be attributed
to the following trapped charge discharging mechanism which
is somewhat similar to that observed in Si devices. Under high
bias and large-signal RF drive, surface and/or buffer trapped
charges accumulate mostly in the gate-drain high-field region.
Accumulated trapped charges prevent complete recovery of the
2-D gas density at zero or positive gate voltages thus causing
the RF current collapse. Semiconducting dielectric provides a
path to discharge the trapped charge. The high-field region width

, at a high drain bias can be estimated as [14]

(1)

where is the sheet electron density in the 2-D channel. Under
large input drive, the peak drain voltage, , where

is a quiescent bias point (for the large drain bias, we ignore the
contribution of knee voltage). Thus, is a linear function of the
peak drain voltage . For typical values of cm ,
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Fig. 3. I–V characteristics if the FP with different dielectrics. Inset: 1)
Discharge path for passivated devices without FP. 2) Additional discharge path
for devices with FP. Effective at high drain bias provided that L � X .

we find m for V ( V drain bias) and
m for V ( V drain bias).

The trapped surface charge concentration is a fraction of
the 2-D electron sheet density, : , where is the
trapping factor [15]. Total trapped charge is

, where is the device width. Using (1), the trapped
charge can be rewritten as

(2)

The trapped charge replenishes with the time constant that
can vary in a wide range [16], typical values lying from milli-
to micro-seconds. The current required to discharge the trapped
charges can be found as

(3)

For typical values of – s and maximal value
, the required discharging current – mm.

For our test devices without gate electrodes, the - character-
istics measured between the FP and ohmic contacts are shown
in Fig. 3. For the dielectric 1, the current does not exceed 1
nA, which was not sufficient for the complete discharging of the
trapped charges. For the dielectric 2, the current of
was sufficient for the discharging and thus completely removes
the current collapse in our devices.

At a relatively low drain bias, the width of high-field region is
small and the trapped charge, being strongly field dependent, is
relatively small too ( is low). For such a bias, a semiconducting
dielectric can provide a path for the trapped charge discharging
through the metal gate edges (shown as path #1 in Fig. 3). At
higher drain bias however, the high-field region under the gate
expands and the trapped charge density increases. The current
through the gate edge is not sufficient to provide a discharge
path. The field plate of an appropriate overhang, deposited on
top of semiconducting dielectric significantly shortens the re-
quired path (path #2 in Fig. 3). However, if the conductivity
of the dielectric under FP is too low, the current collapse is
only partially removed. According to (1), the required FP over-
hanging for the discharging mechanism to work is around 1 m
for 50 V drain bias.

IV. CONCLUSION

The conductivity of the dielectric material under the filed
plate plays a significant role in the current collapse removal.
HFETs with a highly insulating dielectric under the FP show
significant current collapse and premature RF power saturation.
Identical HFETs with semiconducting dielectric layer under the
FP exhibit perfectly linear RF power – drain bias dependence
with the output powers of 20 W/mm at 55 V drain bias and es-
sentially no current collapse. This improvement can be related
to the trapped charge discharging to the FP through the leaky
“semiconducting” dielectric.
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