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A Virtual Environment for Remote Testing of
Complex Systems

Loredana Cristaldi, Member, IEEE, Alessandro Ferrero, Fellow, IEEE, Antonello Monti, Senior Member, IEEE,
Ferdinanda Ponci, Member, IEEE, William McKay, Member, IEEE, and Roger Dougal, Senior Member, IEEE

Abstract—Complex systems, realized by integration of several
components or subsystems, pose specific problems to simulation
environments. It is, in fact, desirable to simulate the complex
system altogether, and not component by component, since the
operation of the single part depends on the surrounding system
and an early verification can prevent damages and save time for
modifications. The availability of detailed and validated models
of the single parts is therefore critical. This task may be difficult
to achieve. In fact, in industrial applications, where a system can
be a mix of different devices produced by different manufac-
turers, the physical device may not be accessible to the modeler
for proprietary or safety concerns. Starting from this point, the
idea of creating a virtual environment able to test the real single
component remotely, employing simulators with remote signal
processing capability, has been considered. In this paper a method-
ology for remote model validation is presented. The effectiveness
of the approach is experimentally verified locally and remotely.
For the remote testing, in particular, the physical device under test
is located at the Politecnico di Milano, Italy, and the Virtual Test
Bed model is located at the University of South Carolina.

Index Terms—Cosimulation, distributed computing, electric
variables measurement, model security, remote testing.

I. INTRODUCTION

COMPLEX systems, realized by integration of several com-
ponents or subsystems, each of which can also be repre-

sented as a complex system, are increasingly employed in indus-
trial applications, health-care systems, environmental sensing
and monitoring, and military systems. The complexity of these
systems leads to difficulties in simulation and testing. Exhaus-
tive testing of such systems cannot be done by testing each com-
ponent or subsystem independently, since even when all of them
meet their own specifications, unpredictable interference and/or
malfunctions may appear when the whole system is assembled.
If these malfunctions could be detected with preliminary tests,
the economic benefits would be extremely great.

Moreover, several applications exist where the whole system
is realized with components produced by different manufac-
turers, often in competition with each other. Most of the tech-
nical information that each manufacturer makes available to the
final customer is strictly confidential, and is not supposed to be
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forwarded to other manufacturers, making it difficult to perform
exhaustive tests. When military systems are involved, this is re-
inforced by security concerns.

The availability of a virtual environment (VE) that would
allow testing the single components as if they were already part
of the whole system, before the system is actually assembled,
appears to be the best solution to the problems sketched above.
If the VE featured the capability of processing remote signals,
tests could be performed at the customer’s site, leaving the de-
vice under test (DUT) at the manufacturer’s site. This would
result in a dramatic reduction of time and cost of moving the
DUT from the manufacturer’s to the customer’s site for testing,
and back to the manufacturer’s site for modifications, if needed.
Moreover, no confidential information about the whole system
would need to be passed on to the manufacturer.

This paper presents an application based on the partnership
between a virtual instrument (VI) with remote signal processing
capabilities and a virtual test bed (VTB) that realizes the VE.
The described method allows model validation, use of validated
models for monitoring and diagnostics, and incremental com-
plex system design. This paper shows the application of the VE
to three scenarios: remote model validation of a filter and of a
single phase transformer, and design verification of a fuel cell
supplying a dc motor drive.

II. VIRTUAL TEST BED AND THE LABVIEW

ACQUISITION PLATFORM

The simulation of complex systems where many components
of different natures interact presents peculiar challenges. Dif-
ferent users might analyze an individual system focusing on dif-
ferent aspects of the system performance and having a different
metric for what is important. The complexity of the system may
bridge several areas of technical expertise, and users in each of
those technical areas traditionally work with their own set of de-
sign and simulation tools.

Suppliers of a particular subsystem may have already invested
significant efforts in the creation of a simulation model for that
subsystem, which encapsulates their in-depth knowledge of the
system. Exporting the model to the simulator of choice for the
overall system is difficult and time-consuming and results in a
duplication of efforts.

Moreover, some parts of the system may be already available
while other parts are still being designed. To the extent pos-
sible, one may wish to substitute real components for models
every time a new component becomes available. Such an ap-
proach would keep the design/simulation “alive,” promote iter-
ation, and allow an opportunity to validate models and to de-
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tect, at the earliest possible time, potentially complicating nu-
ances that were not originally accounted for in the component
models. The cost of this approach is that it would require a so-
phisticated capability for working with diverse modeling lan-
guages and with hardware in the loop [1].

All of these considerations suggest the desirability of a new
high-level interface that allows many types of users to be com-
fortable with the virtual prototyping tool. An attempt to develop
such a tool has been under way at the University of South Car-
olina (USC) for several years now under the program name Vir-
tual Test Bed [2], [3].

The VTB approach solves the traditional dichotomy in
modeling that universally plagues designers, allowing them
now to use a proper instrument for each part of the system
design problem. In contrast, classical simulators, where a single
specification language is available to the users, greatly limit the
analysis of complex systems. The VTB environment addresses
these challenges by choosing to support.

• Multiformalism: different languages can be used to build
models of the different components of a system. This al-
lows an individual to build models using the preferred lan-
guage within his or her discipline (mechanical, electrical,
chemical, etc.).

• Cosimulation: users can change the language and also use
other solvers together with the main VTB solver. This
means that any part can be solved with the most appro-
priate integration step and method without affecting the
solution of the rest of the system.

• High-level visualization: visualization models of the
system can be easily created and linked to live simulation
data. Visualization helps the user to rapidly compre-
hend the system performance. Visual outputs include
data-driven animation of the motion of solid objects,
imposition onto solid objects of novel representations
of abstract simulation data, or simply oscilloscope-like
graphs. Furthermore, a high-level visualization better sup-
ports the interchange of information among the designers
cooperating on the project.

• Hardware in the simulation loop: this is a rather new fea-
ture of the VTB environment.

The capability of VTB to integrate into its own simulation en-
vironment components modeled in different languages and en-
vironments has been extended to widely popular design tools, as
extensively described in [4]–[6]. The newest extension is Lab-
VIEW. This new cosimulation capability opens a whole new set
of possibilities related to the pretesting of VIs and the use of the
integrated environment for the training of the instrument itself,
if needed, and of the operator. Moreover, real signals coming
from the DUT can easily be acquired and processed by the VIs
within the LabView environment [7]. The real measured data
can hence be compared with those simulated in the VTB envi-
ronment, thus allowing assessment of whether or not the DUT
meets the design specifications. Conversely, the real measured
data can be supplied to the other blocks of the VTB simulator
for analysis of how the other components in the system react to
the presence of a real component.

Moreover, LabVIEW adds a new important feature to VTB:
the capability of including also remote testing facilities in the
Virtual Test Bed, due to extremely easy way it can handle remote

signal acquisition resources and interconnect to remote devices
through the Internet.

It is known that the use of the Internet as a flexible and
powerful interconnection media has been already exploited for
the implementation of distributed measurement systems. Sev-
eral applications have been proposed in the literature [9]–[17],
mainly for educational purposes, where the different units in
the distributed systems were connected through a local-area
network or also a wide-area network. However, to the author’s
knowledge, none of the proposed solutions has implemented a
true virtual environment, with hardware-in-the-loop capabili-
ties, such as shown in [8] and extended in this paper.

III. VIRTUAL INSTRUMENT AND VIRTUAL

TEST BED PARTNERSHIP

The process of interaction between VTB and LabView is
based on the dynamic link library (DLL). The LabView en-
vironment is able to export any VI project in the format of a
DLL. The DLL is also the basis for library management in the
VTB software. Thanks to the definition of a new model class,
the VTB software is now able to recognize, load, and execute
LabView DLLs.

To verify the effectiveness of the implemented interface, let
us focus on a very simple example. The case study features VTB
providing parameters to LabView that operates like a signal
generator and supplies the desired signal to VTB. The VTB
schematic in Fig. 1 shows the LabView VI wrapped in a VTB
block, the VTB blocks providing parameters to the LabView
block, and the scope allowing the visualization of the signal cre-
ated by LabVIew and passed on to VTB. The capture in the
upper left corner represents the LabView VI schematic. This
has been compiled and then imported into VTB, as shown in
the main central picture. Activating the VTB simulation, Lab-
View generates the desired sinusoidal signal as reported in the
upper right corner. With this procedure the VI designed to create
the desired signal was tested. This example shows a trivial VI
but the procedure can be applied to any level of complexity al-
lowing the virtual testing of any VI developed within LabView.
To perform the connection between the two environments, a set
of options were considered. The two most significant cases are
described in the following.

1) The whole process is performed by using virtual data. The
LabView environment can have input and output data ex-
change with VTB.

2) LabView generates test cases for the VE after acquiring
data from a real plant. This process can be performed
sending one sample per simulation cycle or it can be based
on a buffer of acquired data. The second case easily al-
lows remote execution without any concern for the delay
introduced by the network connection, as long as hard
real-time operations are not necessary.

The availability of the described environment allows the ex-
ecution of critical activities that are here summarized.

• Validation of a VTB model: by acquiring system inputs
and outputs from the real device it is possible to vali-
date the simulation model available in the VTB environ-
ment. The procedure is performed imposing to the simu-
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Fig. 1. VTB and LabView cosimulating.

lated system the same input the real system experiences
and comparing real and simulated outputs

• Monitoring of a system whose validated model is avail-
able: once the model has been validated it is possible to use
the same procedure described above to periodically com-
pare real data and simulated data. Any deviation from the
standard behavior can be easily identified by continuously
comparing the validated model outputs with the acquired
data.

• Troubleshooting of a plant: once a validated model is
available and the deviation from the standard behavior
has been determined, it is possible to use the simulated
system to determine the cause for the deviation itself.

• Insertion of new equipment in a large plant: if new equip-
ment has to be inserted into a complex plant, it is possible
to use real data from the plant to test the sensitivity of the
new equipment to any kind of disturbance present in the
system.

In the following, two simple examples of application of the
proposed methodology for model validation are described. In
the first case the equipment under test was located in the same
building as the simulation platform, while in the second case the

Fig. 2. The filter under test.

TABLE I
VALUES ADOPTED FOR THE ELEMENTS OF THE CIRCUIT IN FIG. 2

equipment was located in Italy and the simulation platform was
located in the United States.
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Fig. 3. The VI adopted to handle the data sampling.

IV. EXAMPLE OF APPLICATION: ANALOG FILTER

MODEL VALIDATION

In this first example, a simple third-order active filter is con-
sidered, as reported in Fig. 2. The values adopted for the circuit
elements are reported in Table I. The filter has been connected
to an external signal generator and the input and output voltages
have been connected to a data acquisition board equipped with
eight input channels, 10 V range, with simultaneous sampling
up to 500 kHz sampling rate on a single channel. This board is
handled through the LabView VI reported in Fig. 3.

This VI is able to capture a buffer of data for the two channels,
acquiring the signals with a predefined sampling frequency. All
the acquisition parameters can be defined through the VI panel.

By exporting the VI to a DLL it is possible to create a suitable
function that makes the buffer available for every instance of a
function call. The VTB block designed to interface this kind of
LabView function is able to collect the buffer and to release the
samples to the virtual environment, emulating the correct time
evolution.

The target of this experiment is the comparison of the real
filter output with the output simulated by VTB using the theo-
retical transfer function of the filter. Fig. 4 illustrates the VTB
setup: the LabView block is parameterized to load the specific
DLL created by the VI in Fig. 3. By running the simulation, the
LabView-VTB block acquires the measured input and output of
the real system and creates two streams of signals available to
the rest of the simulated environment: channel 1, representing
the real input of the filter, is used as the input for the model,
while channel 2, representing the output of the real filter, can

Fig. 4. The VTB schematic for the filter example.

be compared with the output of the simulated filter. Applying
as input the signal reported in Fig. 5, the results of Fig. 6 have
been obtained. In order to create a measure of the quality of the
simulation, the following index has been defined:

where
generic sample of the measured quantity;
generic sample of the simulated quantity.

This index is a sort of relative rms deviation, over one period
of the considered signal, between the measured quantity and the
simulated one. In this specific example a value of 4.88% has
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Fig. 5. The acquired input signal (x-axis in seconds and y-axis in volts).

Fig. 6. Comparison between theoretical and real output signals for the filter case.

been calculated. Such a result can be considered a starting point
to evaluate the quality of the model and, if desired, as a reference
to improve the quality of the model. In this case, for example,
it has been estimated that part of the error was related to the
nonlinearity of the operational amplifier, working too close to
the saturation limit (the power supply was working at 5 V). To
verify this assumption, the experimental comparison has been
repeated with an input signal with a lower amplitude. The results

are reported in Fig. 7 and show an overall improved matching
of measured and simulated output.

Evaluating the quality index for this second experiment, a
value of 2.23% has been obtained, showing an increment in the
simulation accuracy of about 50%. Further improvement could
be easily obtained and verified by inserting the correct values
for the resistance and capacitance instead of the nominal values
given by the manufacturer.
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Fig. 7. A second experiment with the same filter model and input with smaller amplitude.

V. EXAMPLE OF APPLICATION: A TRANSFORMER MODEL

The aim of the second experiment is to prove the “hardware in
the loop” structure; this structure allows to verify the capability
of the VE to validate a model and perform remote testing at the
same time. For this reason the experiment has been conducted
adopting, as the test model, a transformer located in Italy, while
the acquisition process for the simulation was performed in the
United States. Since the aim of this experiment was the structure
validation, and not the transformer test, the transformer itself has
been supplied with a voltage much lower than its rated one, in
order to avoid the use of voltage and current transducers in the
test equipment.

The VI was executed within the VTB environment at the
University of South Carolina and accessed, through an Internet
connection, an analog-to-digital conversion acquisition board
(ADC). The ADC was located in Milan, Italy. The connection
was developed using the LabView Remote Device Access (RDA
server); this protocol allows the control, as a shared resource, of
an ADC device, plugged into a computer located on an Internet
node.

The board adopted for the data acquisition features the same
performance as the one used for the tests reported in Section IV,
so the same VI as that shown in Fig. 3 could be used.

The transformer under test is a single-phase transformer, with
100 VA rated power and 210 V/18 V rated transformer ratio. In
order to avoid the use of voltage transducers, the transformer
has been fed with a 6.72 V rms sinusoidal signal. The ADC
board channel dedicated to the acquisition of the transformer
secondary voltage was set to a gain value of ten.

The VTB model has been obtained by combining an ideal
transformer model and two suitable inductors to represent
leakage and magnetization effects.

The VTB schematic is reported in Fig. 8. The two gain
blocks connected to the LabView channels take into account
the channel gains and adapt the signals to the proper voltage
levels.

One channel is connected to the circuit simulation model
where a signal-controlled voltage source feeds the transformer
model with the same input signal as the one applied to the real
transformer. Actual and simulation outputs are available within
VTB and can be compared.

In this case the input signal is a sinusoidal voltage that is
applied to the system working at no-load conditions. The time
evolution is documented in Fig. 9. As reported in Fig. 10, the
correspondence between simulated and real data is extremely
close. Therefore, within certain constraints, the model could be
applied to monitor the system under different operating condi-
tions, in order to identify a possible malfunctioning.

VI. EXAMPLE OF APPLICATION: DYNAMIC BEHAVIOR OF A

FUEL CELL FED SYSTEM

The purpose of this example is to show an application of
the proposed approach that can be used in two perspectives:
model validation on one hand, design of complex systems on
the other hand. The scenario of the experiment is the following:
a dc motor drive with viscous friction load is operated through a
buck converter and supplied by a fuel cell. The VTB schematic
of the experimental setup is reported in Fig. 11.

As far as model validation is concerned, the purpose of the
experiment is to verify the accuracy of the fuel cell model with
respect to the physical device. During the experiment, the VTB
model of the fuel cell will be tested against the real device, pro-
vided that the real system is working under the same conditions
as the simulated one.
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Fig. 8. The VTB schematic for the transformer example.

Fig. 9. The transformer input voltage (x-axis in percentage of saved data, y-axis in volts).

As far as concerns the design verification, running the experi-
ment it is possible to evaluate if the fuel cell is able to match the
power demand and dynamic. The availability of the proposed
platform allows the designer to test the fuel cell dynamically
even if the real final load is not available.

A programmable load is forced to operate dynamically emu-
lating the power demand of the simulated load.

The designer can test the component (the fuel cell in this case)
under many different loading scenarios without having the real
loads available.

In this case for example, we analyze as load a dc motor fed
by a power converter.

During the experiment the simulation of the fuel cell loaded
with the buck converter and the dc motor drive runs together
with the physical system where the fuel cell supplies a pro-
grammable load whose power demand replicates that of the
buck converter and motor drive. In Fig. 12 the experimental
setup is shown to clarify the connections between the physical
and virtual system. This experimental setup allows design veri-
fication of the chosen fuel cell and, on the other hand, allows the
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Fig. 10. Comparison between simulated and real secondary voltages for the transformer (x-axis in percentage of saved data, y- axis in volts).

Fig. 11. VTB schematic of the system under test; notice the LabView interface block to control the hardware programmable load to demand the simulated power,
the fuel cell model on the left with thermal and fluid connections.
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Fig. 12. Scheme of the experimental setup.

Fig. 13. The programmable load on the right, the fuel cell on the left.

design of the load characteristic to fully exploit but not exceed
the power and dynamic characteristics of the fuel cell.

The power source is a 50 W proton exchange membrane
(PEM) fuel cell with a no-load voltage of 24 V. The pro-
grammable load is a 300 W Chroma 63 103.

Coming to the simulated load, we adopted a dc motor with
a rated voltage of 15 V, loaded with viscous friction of 0.002
Nms/rad. The buck converter is an averaged model with equiv-
alent loss resistance of 1 .

The hardware setup is shown in Fig. 13.
The experiment is performed as follows. The VTB simulation

is executed. The calculated current and power at the interface be-
tween fuel cell and dc drive are the input of the LabView block
(see Fig. 11) that performs the interaction between VTB and the
physical world. The LabView block sends the power require-
ment to the programmable load via the general-purpose inter-
face bus (GPIB). The programmable load drains power from the
PEM fuel cell. The fuel cell current is measured and compared
with the simulated current. The simulated motor load and speed
(duty cycle of the buck converter) are subject to step changes,
to check the dynamic behavior of the system.

The results reported in Figs. 14 and 15 allow the designer to
evaluate the performance of the system. First, we notice that the
measured and simulated fuel cell current satisfactorily match;
therefore the model used for the fuel cell is reliable. Conversely,
the hardware fuel cell matches the expected design behavior.

Fig. 14. Profile of the motor speed during testing; the system goes though
a number of step changes, consequently varying the power demand and
highlighting the transients.

Fig. 15. Measured and simulated current of the fuel cell.

The experimental system operation can be clearly seen
looking at Figs. 14 and 15. At times s and s a
step is imposed on the duty cycle of the buck converter with no
change in the motor load. This results in step changes of the
fuel cell current with local considerable peaks. The motor load
undergoes step changes at s (decrement), s (in-
crement), and s (decrement). This result in step changes
of the fuel cell current, but this time no local current peaks are
visible. The result is particularly significant from the design
point of view, since fuel cells are sensitive to high currents.
The simulated peak could faithfully provide information about
the feasibility of speed changes in the motor that may result
in dangerous current peaks. Notice that the simulated current
peak is larger that the actual current peak. This is due to the
controlled programmable load that replaces the actual drive in
the physical experiment.

From Fig. 14 we can also verify that the fuel cell is keeping up
with the dynamic of the load. From the point of view of the de-
signer that relies on incremental prototyping, the simulated fuel
cell represents the desired characteristic; therefore a mismatch
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Fig. 16. Measured and simulated voltage of the fuel cell.

between simulated and measured current during this dynamic
performance would lead the designer to the conclusion that the
physical fuel cell can not sustain the dynamic of the load.

Finally Fig. 16 shows the fuel cell voltage dynamic. This is
a very significant quantity for the specific application. The de-
signer can appreciate how the load is going to affect the output
voltage of the fuel cell under the real dynamic conditions.

This experiment, in particular, was carried out with the elec-
trical drive operating in open loop to allow for slow dynamics.
The maximum dynamic performance that can be tested with this
experimental setup is limited due to the internal programmable
load control dynamic and the GPIB communication, which is
the actual bottleneck. These limitations are related to the spe-
cific experimental setup used here, not to the approach itself,
which is independent from the actual implementation.

From the designer standpoint, the experimental results in
summary indicate:

• the value of viscous friction that can load the motor drive
without damaging the fuel cell or interrupting the service;

• the effects of the drive control strategies on the fuel cell
current local peaks;

• the dynamic compatibility of the power source and the
load.

VII. CONCLUSION

A first realization of a VE able to acquire real signals from a
remote DUT has been proposed and tested for model validation
and complex system design purpose.

The preliminary results show the feasibility of this solution
and are extremely encouraging toward further developments of
the VTB-LabView partnership. In particular, this paper detailed
the application of the approach to model validation for two
simple example systems. The results obtained from the two
simple case studies indicate that the approach is promising.
The results obtained from the complex system of the fuel cell
supplying a dc motor drive show that the approach is particu-
larly suitable for incremental prototyping of complex systems.

The described approach can be extended to systems with much
faster dynamic behavior and more complex setup. The only
limitations that were highlighted in Section VI are not due to
the VE approach itself, but are due to the bandwidth of the par-
ticular experimental setup adopted in this work. To overcome
these limitations and to create the most suitable environment
for the described approach, the authors are currently designing
and building in-house a platform for incremental rapid virtual
prototyping and testing. The new platform will allow for much
higher bandwidth and will be dedicated to high-performance
multisource power source systems, which is a major area of
interest in the research group of the authors at USC.
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