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ABSTRACT: Community respiration rates were measured in unfiltered seawater collected in the
upper 75 m of the water column along a transect in the Sargasso Sea and at the Bermuda Atlantic
Time-series Study (BATS) station (31°50"00 N; 64° 10" 00 W) during a cruise in June and July 2001.
Community respiration rates in the upper 75 m of the water column averaged 1.1 + 0.4 pM O, d"! and
exhibited significant spatial and temporal variability. Concurrent determination of the heterotrophic
and autotrophic community revealed no relationship between community respiration and the abun-
dance of any of the major metabolic groups. Addition of inorganic nutrients (NO3 and PO,) and
organic carbon (glucose) indicated that community respiration was P-limited in the surface mixed
layer. Size-fractionation experiments indicated that the abundance of heterotrophic bacteria in the
<0.6 pm fraction was ~80% of the abundance in unfiltered seawater, but respiration rates in the
<0.6 pm size fraction accounted for only 23 % of community respiration. Addition of P to the <0.6 pm
size fraction increased respiration rates ~2-fold, indicating bacterial respiration was P-limited. It
appears that the uncoupling of bacteria from nutrient regeneration in size fractionation experiments
resulted in a reduction of bacterial metabolism in the P-limited surface waters of the Sargasso Sea.
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INTRODUCTION

About half the marine primary production passes
through the reservoir of dissolved organic carbon
(DOC) and is processed by heterotrophic bacterio-
plankton (Cole et al. 1988, Ducklow 2000). A strong
spatial and temporal coupling between these pro-
cesses has been suggested by concurrent measure-
ments of phytoplankton and bacterial production and
biomass (Kirchman et al. 1991, White et al. 1991).
However, there is increasing evidence suggesting
that DOC may accumulate in the photic zone on both
daily and seasonal timescales (Copin-Montégut &
Avril 1993, Carlson et al. 1994, Zweifel et al. 1995).
This indicates that the processing of DOC by hete-
rotrophic bacterioplankton might be temporally lim-
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ited by the availability of nitrogen or phosphorus
(Williams 1995).

To determine the factors limiting the processing of
DOC, most previous studies have investigated hetero-
trophic bacterial production (Zweifel et al. 1993, Kirch-
man & Rich 1997, Rivkin & Anderson 1997), while a
limited number of studies have addressed the factors
limiting heterotrophic bacterial respiration (Pomeroy
et al. 1995, Smith & Kemp 2003). A large fraction of
community respiration is attributable to the oxidation
of DOC, making respiration measurements a relatively
straightforward and quantitative estimate of the bio-
logical processing of organic carbon (Williams 1984,
Hopkinson et al. 1989).

Limitation of heterotrophic bacterial production by
inorganic nutrients has been reported for both fresh-
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water (Currie & Kalff 1984, Vadstein et al. 1988,
Toolan et al. 1991) and marine systems. Several stud-
ies performed in the Atlantic Ocean (Cotner et al.
1997, Rivkin & Anderson 1997, Kuipers et al. 2000)
and in marginal seas (Pomeroy et al. 1995, Thingstad
& Rassoulzadegan 1995, Zweifel et al. 1995) indicate
that P is often the primary limiting nutrient for marine
heterotrophic bacterial production. In contrast, het-
erotrophic bacterial production in the Pacific Ocean
has been characterized by several authors as organic
carbon- or energy-limited (Kirchman 1990, Cherrier
et al. 1996, Kirchman & Rich 1997, Donachie et al.
2001). These studies show that the factors limiting
heterotrophic bacterial production vary spatially and
temporally. They further indicate that the degree to
which bacterial metabolism is limited by sources
other than carbon often influences the coupling
between primary production and the processing of
DOC.

The bacterial contribution to community respiration
is commonly assessed by size fractionation (Williams
1981, Griffith et al. 1990, Danieri et al. 1994, Sampou &
Kemp 1994). However, separation of the microbial
community by size fractionation bears a major disad-
vantage. Interactions among microbial communities of
different size classes are inhibited by size fractiona-
tion, which in turn can affect their overall metabolic
activity (Sherr et al. 1988). The interaction of members
of different metabolic groups and size classes might be
particularly important in oligotrophic environments
that are characterized by low concentrations of sub-
strates and rapid cycling of inorganic nutrients (Legen-
dre & Rassoulzadegan 1995).

In the present study we report that community and
bacterial respiration is P-limited during the summer in
surface waters of the Sargasso Sea, and our results fur-
ther indicate that bacterial respiration could be under-
estimated in size-fractionation experiments due to the
separation of various functional groups of the microbial
community.

MATERIALS AND METHODS

The present study was carried out during a cruise
aboard RV 'Cape Hatteras' along a transect in the Sar-
gasso Sea and at the Bermuda Atlantic Time-series
Study (BATS) site between 20 June and 11 July 2001
(Table 1). Seawater samples were collected using 30 1
Niskin bottles mounted on a General Oceanics rosette
sampler equipped with a CTD (Seabird 911).

Respiration rate measurements. Community respi-
ration rates were measured in dark incubations of
unfiltered seawater in 300 and 60 ml BOD bottles. Sea-
water was collected from the upper 25 m at all stations

and from the surface to 75 m depth at BATS and Stns 4
and 5 (Table 1). The depth of the surface mixed layer
varied from 6 to 26 m. The depth of the surface mixed
layer was determined based on the temperature pro-
file. Seawater was collected within the surface mixed
layerin 10 out of 14 experiments. Except for Stns 1 and
3, water samples were collected between 07:00 and
10:00 h throughout the cruise, and on 2 consecutive
days water samples were additionally collected at
16:30 and 20:00 h.

The BOD bottles were filled directly from Niskin bot-
tles with unfiltered seawater using silicon tubing. Prior
to sampling, the BOD bottles were rinsed with 1N
HCL, Milli-Q water and seawater (3x) from the respec-
tive depth layer. Continuous water flow from the
Niskin bottle was allowed throughout the sampling
procedure. Respiration measurements were performed
in triplicate or quadruplicate in the dark at in situ tem-
peratures (+1°C). Except for 3 time-course experiments
(see below) all BOD bottles were incubated for 24 h.
The respiration rate was calculated as the difference
between initial and final concentrations of dissolved
oxygen. The concentration of dissolved oxygen was
determined by Winkler titration of a 50 ml subsample
with an automated potentiometric end-point detection
system (Biddanda et al. 1994). No statistical difference
in respiration rates between 60 and 300 ml BOD bottles
was observed (t-test, p > 0.05).

To evaluate the kinetics of respiration during a 48 h
incubation period, time-course experiments were per-
formed at Stns 1 and 3 and at BATS (Table 1). Unfil-
tered seawater collected at 25 m depth at Stns 1 and 3
and at 22 m depth at BATS was incubated in BOD bot-
tles as described above. The decrease in dissolved oxy-
gen concentration was determined at Stns 1 and 3 after
24 and 48 h and at BATS after 12, 24, 36 and 48 h, each
sample in triplicate BOD bottles. Respiration rates
were determined as the slope of a linear regression of
the time-course data.

Size fractionation. The contribution of bacterio-
plankton to community respiration was determined in
water samples that were passed through 0.6 pm pore-
size Nuclepore QR polycarbonate filter cartridges

Table 1. Location of sampling stations in the Sargasso Sea.
BATS: Bermuda Atlantic Time-series Study

Station Date (mm/dd) Lat (°N) Long (°W)
1 06/21 34°26'30 72°34'19
2 06/22 36°10'25 70°43' 07
3 06/23 36°46' 76 69°09' 00
BATS 06/27-07/07 31°50'00 64°10' 00
4 07/08 31°50' 07 66°14'73
5 07/09 32°16'71 69°00' 99
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using a peristaltic pump. The <0.6 pm filtrate was incu-
bated in 60 ml BOD bottles for 24 h as described above.

Long-term experiments. In addition to 24 h incuba-
tions, respiration rates were also measured during
long-term experiments performed at BATS. Seawater
was collected from 50, 150 and 300 m and filtered
through 0.6 pm pore-size Nuclepore QR polycarbonate
filter cartridges and incubated in 60 ml BOD bottles at
20 + 1°C for 5to 10 d.

Nutrient enrichment experiments. The effect of
organic carbon (glucose) and inorganic (NO3 and POy,)
nutrient additions on respiration rates was determined
during short- (24 h) and long-term (5 d) experiments at
BATS and at Stn 5. Unfiltered seawater samples (24 h
incubations) were transferred to BOD bottles as
described above and subsequently spiked with nutri-
ents resulting in final concentrations of 1 pM glucose
and NOj3; and 0.1 pM PO,. Either single nutrients or a
combination of all nutrients were added to seawater
collected in the surface mixed layer, at 30, 40, 50 and
75 m. Additionally, at BATS, PO4-amended (0.1 pM
final conc.) 0.6 pm filtered seawater collected at 10 and
50 m was incubated for 1 and 5 d, respectively. All
nutrient stocks were prepared in deionized Milli-Q
water and kept frozen until used. Incubation of the
nutrient-amended treatments followed the protocol
described above.

Enumeration of the heterotrophic and autotrophic
community. For enumeration of the plankton commu-
nity in unfiltered seawater and the <0.6 pm size frac-
tion, duplicate 15 ml subsamples were fixed with 2%
formaldehyde (final conc.) and stored at 4°C for ~3 wk.
In the laboratory, 10 ml subsamples were stained with
DAPI (Porter & Feig 1980) and filtered onto black
Nuclepore filters (0.2 pm pore size). Subsequent enu-
meration was performed with an epifluorescence
microscope (Olympus BX) at 1250% magnification. The
abundance of heterotrophic bacteria and heterotrophic
protists was determined using an excitation filter of
365 nm, while an excitation wavelength of 480 nm was
used for the enumeration of autofluorescent cells
(Sherr et al. 1993). For bacterial abundance at least
300 bacteria per sample were counted and 60 fields
were enumerated for the abundance of heterotrophic
protists, cyanobacteria and autotrophic nanoplankton.

RESULTS
Community respiration rates
Time-course experiments with unfiltered seawater
revealed a fairly linear decrease in the concentration of

dissolved oxygen over a 48 h incubation period at
Stns 1 and 3 and at BATS (Fig. 1). The average respira-
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Fig. 1. Changes in dissolved oxygen concentration over time in
unfiltered seawater collected at (a) 25 m at Stn 1, (b) 25 m at Stn
3, and (c) 22 m at the Bermuda Atlantic Time-series Study
(BATS) station. Error bars represent the SD of 3 replicate bottles

tion rate derived from the 3 time-course experiments
was 0.7 + 0.2 tMO, d!. Based on these results, it
appears respiration rates were linear during the 24 h
incubations used in this study.

Community respiration rates averaged 1.3 =
0.5 uM O, d! (n = 8) in the surface mixed layer and
1.1 # 0.4 pyM O, d™! (n = 20) in the upper 75 m of the
photic zone of the Sargasso Sea (Table 2). The average
respiration rate in the upper 75 m at BATS (1.1 +
0.4 ptM O, d°!, n = 10) was similar to that determined
for the other stations sampled in the Sargasso Sea
(1.0 + 0.4 uM O, d°}, n = 10; Table 2). In the present
study, respiration rates <0.2 pM O, d"! were not signif-
icantly different from zero (Table 2; t-test, p > 0.05).
Respiration rates <0.2 nM O, d! are not included in
the average rates given above.
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Abundance of the major groups of the heterotrophic
and autotrophic community

Bacterial abundance in unfiltered seawater from the
surface mixed layer of the Sargasso Sea was 2.3 =+
0.5 x 108 cells I'! (n = 10). A similar average bacterial

Table 2. Community respiration rates in the Sargasso Sea in

June and July 2001. Respiration rates + pooled SD of initial

and final dissolved oxygen concentration are given; n = 3 or

n = 4. SML: surface mixed layer; BATS: Bermuda Atlantic
Time-series Study

Study Date Time Sampling Depth Respiration
station (mm/dd) of depth  of SML rate
sampling (m) (m) [EMO,d™Y)
1 06/21 12:30 h 25 11 0.8+0.3
2 06/22  09:00 h 25 26 0.5+0.2
3 06/23 14:30 h 25 15 1.0+0.2
BATS 06/27  07:00h 2.5 10 1.5+0.6
06/28  07:00 h 5 10 1.4+0.3
06/28 16:30 h 2 6 1.2+0.2
06/29  07:00 h 10 10 1.9+0.3
06/29  20:00 h 10 7 0.8+0.3
06/30 10:00 h 10 10 0.1 £0.0°
06/30 10:00 h 50 10 0.6 £0.2
07/02 10:00 h 22 9 0.7+0.5
07/03 10:00 h 50 10 0.7+0.3
07/03 10:00 h 75 10 1.3+0.5
07/07  08:00 h 5 10 1.2+0.5
4 07/08 10:00 h 5 19 0.2 +0.2°
07/08 10:00 h 50 19 0.7+0.3
07/08 10:00 h 75 19 1.1+0.5
5 07/09  08:00 h 5 21 0.8+0.5
07/09  08:00 h 15 21 1.7+0.4
07/09  08:00 h 30 21 1.2+0.9
07/09  08:00 h 40 21 1.0+0.3
07/09  08:00 h 50 21 1.2+0.7
07/09  08:00 h 75 21 0.0 £0.2°
“Not significantly different from zero

abundance was observed for the upper 75 m of the
photic zone (2.4 + 05 x 108 cells I"!, n = 23). Cyanobac-
teria and autotrophic nanoplankton averaged 0.22 =+
0.19 x 107 cells I'! (n = 10) in the surface mixed layer
and 0.32 = 0.22 x 107 cells I'! (n = 23) in the upper
75 m of the photic zone. Heterotrophic protists aver-
aged 0.70 + 0.41 x 10° cells I'! (n = 10) in the surface
mixed layer and 0.63 + 0.41 x 10° cells I'! (n = 23) in
the upper 75 m of the photic zone. No correlation
between community respiration and abundance of
any of the major metabolic groups of microorganisms
was observed in the photic zone of the Sargasso Sea
(Fig. 2).

Size fractionation

Respiration rates in the <0.6 pm size fraction of
water collected in the surface mixed layer at BATS
exhibited minimal variability among 3 experiments
performed on separate days (0.3 to 0.4 pMO, d}
Table 3). Respiration in the <0.6 pm size fraction
accounted for 23 + 4% of community respiration. In
contrast, heterotrophic bacterial abundance in the
<0.6 pm size fraction accounted for ~78% of the
abundance in unfiltered seawater samples (Table 3).
Addition of P to the <0.6 pm size fraction from the
surface mixed layer (29 June) stimulated respiration
by a factor of 1.8, resulting in a respiration rate of
0.7 + 0.2 pM O, d™! (Table 3).

Long-term experiments

Respiration in 0.6 pm filtered seawater collected
from 50 m at BATS was 1.3 + 0.3 pM O, during the 10 d
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Fig. 2. Relationship between community respiration and the abundance of (a) heterotrophic bacteria, (b) cyanobacteria and
phototrophic nanoplankton, and (c) heterotrophic protists
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Table 3. Respiration rates and bacterial abundance in unfil-

tered seawater and in the <0.6 pm size fraction collected in

the surface mixed layer (SML) at the Bermuda Atlantic Time-

series Study (BATS) station. On one occasion (29 June) P was

added to the <0.6 pm size fraction (0.1 pM POy final conc.).

Respiration rates + pooled SD of initial and final dissolved
oxygen concentration are shown; n =3

Table 4. Respiration and changes in bacterial abundance dur-

ing long-term experiments with 0.6 pm filtered seawater from

different depths at the Bermuda Atlantic Time-series Study

(BATS) station incubated at 20 + 1°C. On 1 occasion P was

added to the <0.6 pm size fraction (0.1 pM PO, final conc.).

Respiration + pooled SD of initial and final dissolved oxygen
concentration are shown; n = 4

Date Respiration rate Bacterial abundance Depth Respiration Bacterial abundance Duration
(mm/dd) (M 0, d™? (x108 cells I'Y) (m) (in pM O,) (%108 cells I'") (d)

Unfiltered <0.6 pm size Unfiltered <0.6 pm size Initial Final

seawater fraction seawater fraction

50 1.3+0.3 2.1 2.1 10
06/27 1.5+0.6 0.3+0.2 2.2 1.9 150 21+05 1.0 1.9 10
06/28 1.4+0.3 0.4+0.2 2.6 1.7 300 2604 0.7 2.5 10
06/29 1.9+0.3 0.4+0.2 2.6 2.1 50 1.4+0.2 2.0 2.6 5
06/29 (+P) 0.7+0.2 2.6 2.1 50 (+P) 3.5+0.3 2.0 2.6 5
incubation (Table 4). An increase in bacterial respira- DISCUSSION

tion was observed with depth during the 10 d incuba-
tion. At 300 m, dissolved oxygen consumed during the
10 d incubation was 2-fold higher than at 50 m. Bacte-
rial abundance increased 2- and 4-fold in the 10 d
incubations from 150 and 300 m, respectively, while no
net increase in bacterial abundance was observed in
0.6 pm filtered seawater from 50 m. In a separate
experiment, the addition of P to the <0.6 pm size frac-
tion from 50 m increased respiration 2.5-fold during 5 d
as compared to the unamended control (Table 4). Bac-
terial abundance increased by a factor of 1.3 in the
unamended and P-amended <0.6 pm size fraction over
the 5 d incubation period.

Community respiration rates provide a direct measure
of catabolic activity and are therefore excellent integra-
tors of the cycling of organic carbon. Although the need
for respiration measurements was emphasized previ-
ously (Williams 1981, Biddanda et al. 1994, Jahnke &
Craven 1995), measurements of respiration in ocean wa-
ters are scarce. This is particularly true for the oli-
gotrophic regions of the open ocean that cover about
30 % of the Earth's surface. The current debate whether
the consumption of organic carbon exceeds its produc-
tion in the oligotrophic ocean, and subsequently whether
the open ocean can be considered net heterotrophic (del

Nutrient enrichment experiments SML

Addition of P to unfiltered seawater

from the surface mixed layer at BATS 22m —=
and Stn 5 resulted in a significant in-
crease (up to 2.8-fold) in respiration 30m
rates (paired t-test, p < 0.05, n = 5),
while no stimulatory effect was ob-
served upon addition of N or C (Fig. 3). 40m ==

However, stimulation of respiration
rates by P-addition was limited to the
upper 30 m (Fig. 3). At 40, 50 and 75 m
respiration rates were unaffected by the
addition of P. Similarly, neither N nor C

50 m

75 m

O + Phosphate
+ Nitrate

+ Glucose
|

+ All nutrients

alone resulted in enhanced respiration
rates at these depths. If unfiltered
seawater was amended with a combi-
nation of P, N and C, respiration rates
increased by a factor of 3 in the sur-
face mixed layer, and by factors of 1.3
and 1.4 at 50 and 75 m, respectively
(Fig. 3).

2.5 3 35

Ratio of respiration in
nutrient amended treatment : unamended control

Fig. 3. Ratio of community respiration rates in nutrient-amended seawater to

unamended controls at different depths at the Bermuda Atlantic Time-series

Study (BATS) station and Stn 5. The surface mixed layer extended to 10 and
21 m at these stations, respectively. SML: surface mixed layer
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Giorgio et al. 1997, Duarte & Agusti 1998, Williams
1998), further indicates the importance of understanding
the mechanisms controlling these processes.

Variability in community respiration

An important observation of the present study is the
considerable variability in community respiration rates
in the photic zone of the Sargasso Sea. Spatial and
temporal changes were also observed in the abun-
dance of the major metabolic groups of the microbial
community; however, none of these changes was sig-
nificantly correlated with changes in community respi-
ration rates. Even though the biomass of the major
metabolic groups might provide a stronger relation-
ship to respiration than abundance, we assume that
the conversion of abundance to biomass would not
result in a substantial change of the observed spatial
and temporal variability within each of the major meta-
bolic groups.

Measurements of biological activity in bottle incuba-
tions are often criticized for a variety of possible arti-
facts. A major concern is the uneven distribution of
larger organisms or organic aggregates resulting in
large variability among replicate incubation bottles. In
the present study, the relative standard deviation of dis-
solved oxygen concentrations among replicates aver-
aged ~0.2 %, suggesting fairly uniform distributions of
organisms and particles in the incubation bottles. In ad-
dition, incubations in 60 and 300 ml bottles yielded sim-
ilar results, and a linear decrease in the concentration
of dissolved oxygen was observed over a 48 h incuba-
tion period. Thus, it appears that spatial and temporal
variability in community respiration rates was not an
artifact of bottle incubations, but resulted from in situ
shifts in the metabolic activity of the plankton commu-
nity. Shifts in bacterial metabolism have been shown to
be attributable to highly variable percentages of active
cells (Gasol et al. 1995, Zweifel & Hagstrom 1995).
Rapid stimulation of dormant or slow-growing cells was
observed upon the addition of nutrients (Sherr et al.
1999), indicating a wide range in the metabolic activity
of heterotrophic bacteria. In the present study, shifts in
community respiration were very sensitive to changes
in P-availability in the surface mixed layer, while co-
limitation of substrates prevailed at deeper layers of the
photic zone. Furthermore, the response of community
respiration to P-addition in the surface mixed layer re-
vealed substantial variability among days. The ob-
served spatial and temporal variability in community
respiration therefore appears to be related to changes
in nutrient and substrate supply and availability. We
therefore suggest that the availability of P, and possibly
other substrates, is variable on short temporal and spa-

tial scales, resulting in variable community respiration
rates.

The average community respiration rate for surface
waters of the Sargasso Sea determined in the present
study (1.1 = 0.4 pM O, d!) is somewhat lower than the
average rate for the upper 25 m of the Sargasso Sea
(1.7 £ 0.3 uM O, d!) reported by Williams & Jenkinson
(1982). Respiration rates reported for surface waters of
the oligotrophic North Pacific Ocean averaged 0.84 +
0.5 tM O, d™! (Williams & Purdie 1991). The commu-
nity respiration rates determined in the present study
are within the range of values reported for surface
waters of the oligotrophic ocean.

Size-fractionation and bacterial respiration

Estimating the bacterial contribution to overall
metabolism has often been studied using size fraction-
ation experiments (Azam & Hodson 1977, Williams
1981, Hopkinson et al. 1989). Respiration measure-
ments with size-fractionated water samples have
mainly been performed with coastal seawater, reveal-
ing that respiration is dominated by the heterotrophic
microbial fraction at low to moderate chlorophyll con-
centrations (Williams 1981, Kuparinen 1984, Iriarte et
al. 1991, Chin-Leo & Benner 1992). In a recent survey
of lakes of varying trophic status, bacterial respiration
(<1 pm size fraction) accounted for ~90 % of plankton
community respiration in the most oligotrophic sys-
tems (Biddanda et al. 2001). In the present study, bac-
terial respiration determined in size-fractionation
(<0.6 pm) experiments was on average 0.4 ptM O, d*
and contributed 23 % to overall plankton community
respiration at BATS. A similar respiration rate
(0.37 nM O, d') was determined by Kepkay et al.
(1990) in size-fractionated (2 pm filtered) water
collected at 10 m in the Sargasso Sea. Hansell et al.
(1995) measured carbon mineralization rates (0.45 ptM
C d™}) in size-fractionated (0.8 um pore size) water
from 20 m at BATS.

The low bacterial contribution to plankton commu-
nity respiration in the Sargasso Sea is surprising given
that ~80% of heterotrophic bacteria pass a 0.6 pm
pore-size filter. A similar observation was reported
from the Gulf of Mexico, where respiration rates in the
<1 pm size fraction were ~10-fold lower than rates in
unfiltered seawater, although bacterial abundance
was similar in both treatments (Biddanda et al. 1994).
This pattern was only evident at the more oligotrophic
site on the continental slope, whereas on the shelf bac-
terial respiration accounted for ~50% of community
respiration based on size-fractionation experiments
(Biddanda et al. 1994). In the oligotrophic Mediter-
ranean Sea, large seasonal variations in the contribu-
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tion of bacteria (<0.8 pm size fraction) to community
respiration (16 to >100%) were observed in size frac-
tionation experiments in the euphotic zone (Lemée et
al. 2002). The relative contribution of the bacterial
abundance in the <0.8 pm size fraction, however, did
not vary substantially during the year, accounting for
~80 % of the bacterial abundance in unfiltered seawa-
ter. These results clearly indicate that size fractionation
can substantially impact bacterial metabolic activity.
Similarly, rates of bacterial carbon production can be
dramatically reduced in size-fractionation experiments
(Carlsson & Caron 2001). These authors report a 70 to
90% decrease in bacterial production (measured as
®H-leucine incorporation) in 0.8 um filtered water as
compared to unfiltered lake water, while size fraction-
ation removed only ~20 % of the bacterial abundance.

Previous studies indicate a tight coupling among the
various members of the microbial loop (e.g. Sherr et al.
1988), and we considered the potential consequences of
the separation of these microorganisms in size-fraction-
ation experiments with oligotrophic waters. Hetero-
trophic protists are known to efficiently regenerate in-
organic nutrients which are essential for maintaining
biological activity in oligotrophic environments (Ander-
sson et al. 1985, Caron 1994). However, size fractionation
separates heterotrophic protists from bacterioplankton,
thereby uncoupling processes that regenerate inorganic
nutrients. We therefore suggest that the absence of het-
erotrophic protists in size-fractionated samples, particu-
larly from the P-limited surface mixed layer, is responsi-
ble for the low bacterial respiration rates in 0.6 pm
filtered seawater. Addition of P to <0.6 pm filtered water
resulted in a ~2-fold increase in bacterial respiration
rates in the present study.

Several other possibilities could, at least to some
extent, contribute to the low bacterial respiration rates
observed in the present study. Even though only ~20 %
of bacterial abundance was retained by 0.6 pm filtra-
tion, this fraction of the bacterioplankton could account
for more than 20 % of bacterial respiration. Likewise,
heterotrophic protists, cyanobacteria and phototrophic
nanoflagellates could be responsible for a greater frac-
tion of community respiration than previously recog-
nized. In terms of biomass, these members of the
microbial community have been reported to account
for up to 60 % of the overall microbial biomass in sur-
face waters of the Sargasso Sea (Caron 1994). If com-
munity respiration in the surface mixed layer is pre-
dominantly attributable to these metabolic groups, a
relationship between their abundance and community
respiration would be expected. However, no such rela-
tionship was observed in the present study.

The determination of bacterial growth efficiency
combines measurements of bacterial production and
respiration to better understand the flow of carbon

through heterotrophic bacterioplankton (del Giorgio &
Cole 2000). The experimental approaches commonly
used in growth efficiency experiments, namely size
fractionation and dilution, are designed to minimize
the contribution of other microorganisms to metabo-
lism. The present and previous studies (Biddanda et al.
1994, Carlsson & Caron 2001, Lemée et al. 2002) raise
the question of whether heterotrophic bacterial metab-
olism determined in size-fractionation and dilution
experiments is representative of bacterial metabolism
in unfiltered water. The complex structure of the
microbial community and the interactions among the
various members of the community are disrupted in
these experiments. Our results indicate the potential
for experimental artifacts when microbial groups are
separated for measurements of activity in oligotrophic
aquatic environments.

P-limitation of community and bacterial respiration

Nutrient enrichment experiments performed in the
present and previous studies (Cotner et al. 1997,
Rivkin & Anderson 1997, Caron et al. 2000) support the
idea that specific biological processes in surface waters
of the Sargasso Sea are P-limited during the stratified
summer period. In addition to bioassay experiments
that suggest P-limitation, P-limitation is also indicated
by high dissolved N:P (60:1) ratios (Wu et al. 2000) and
short P turnover times (5 h) in planktonic biomass in
surface waters of the Sargasso Sea (Cotner et al. 1997).
Soluble reactive phosphorus (SRP) concentrations are
below the limit of detection (0.03 pM) throughout the
upper 100 m water column during summer at BATS
(data available at www.bbsr.edu/cintoo/bats/bats.
html). P is a vital nutrient for all living organisms and is
rapidly assimilated to form compounds that have criti-
cal structural (e.g. lipid membrane) and metabolic
functions, such as protein synthesis, cell production
and energy transport. Thus, P is an essential nutrient
for energy production and biosynthesis, and P likely
limits both growth and respiration. In the present
study, P was the primary factor limiting community
respiration in the surface mixed layer of the Sargasso
Sea. Bacterial respiration was also P-limited during
size fractionation experiments with Sargasso Sea sur-
face water. These results suggest that phytoplankton
production is also likely P-limited in the surface mixed
layer. Carlson et al. (2002) observed that bacterial car-
bon production and DOC mineralization were co-lim-
ited by P, N and C in dilution experiments with water
from the surface mixed layer of the Sargasso Sea. Dif-
ferences between these studies could result from tem-
poral and spatial variability or differences between
size fractionation and dilution culture experiments.
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Bacterial respiration was also P-limited in long-term
experiments from 50 m at BATS. The overall respira-
tion in 0.6 pm filtered seawater incubated for 5 to
10 d was similar to respiration measured in unfiltered
seawater during 24 h incubations (~1 pMO, d).
P-addition to the long-term experiments from 50 m
resulted in a 2.5-fold increase in bacterial respiration.
Based on results obtained from time-course and nutri-
ent addition experiments we estimate that bacterial
respiration in the unamended treatments probably
decreases dramatically after 3 d due to P-limitation.
The present study therefore confirms previous
suggestions (Cotner et al. 1997, Rivkin & Anderson
1997) that P-limitation could in part be responsible
for the observed accumulation of DOC in the surface
Sargasso Sea during summer (Carlson et al. 1994,
Michaels 1994).

Bacterial respiration in the mesopelagic zone is
likely limited by bioavailable C, as the concentrations
of nutrients increase and concentrations of DOC
decrease rapidly below ~125 m. The relatively high
bacterial respiration rates at 150 and 300 m indicate
the potentially important contribution of mesopelagic
metabolism to overall water-column metabolism, as
has been pointed out by Biddanda & Benner (1997).

Implications for the oligotrophic ocean

The oligotrophic ocean is often considered a stable
and uniform environment. In contrast, these open
ocean environments are characterized by a diverse
and heterogenous plankton community (Giovannoni &
Rappe 2000, Sherr & Sherr 2000). The present and pre-
vious studies further indicate that rates of metabolic
activity of the plankton community exhibit substantial
temporal and spatial variability in the euphotic zone of
the oligotrophic ocean. This relatively fine-scale vari-
ability in biological processes likely reflects the spatial
diversity of the open ocean (Azam 1998). Metabolic
and spatial diversity appear to be important in open
ocean environments and should be considered in
future studies. Discovering the factors influencing fine-
scale variability in biological processes will enhance
the understanding of the dynamics of C cycling and
the balance between the production and mineraliza-
tion of C in the upper ocean.
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