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ABSTRACT: Production and activities of cellular and extracellular proteolytic enzymes associated
with the marine bacterium Pseudoalteromonas atlantica were examined in response to physiological
state and changing environmental variables under laboratory conditions. Enzymes evidenced by
zymography were metalloproteases, as defined by substrate preference and susceptibility to inhibit-
ors (EDTA and 1,10-phenanthroline). Distinct bands (i.e., molecular-weight [MW] size classes) of en-
zymes were isolated from within cellular and extracellular compartments. Susceptibility of extracel-
lular enzymes to environmental stressors was related, in part, to the MW size classes of the enzymes.
While all bands of enzymes showed some degree of inhibition when pH was decreased, the very high
MW (103 to 93 kDa) and the very low MW (34 to 31 kDa) bands of extracellular enzymes were most
susceptible. Some mid-sized enzymes (75 to 69 kDa) were most resilient, and remained active at pH
as low as 4.4 and as high as 10.5—values which may occur in seawater micro-environments during
high levels of heterotrophic respiration and photosynthetic activities, respectively. Extracellular
enzymes retained activity in seawater (25 ppt) as long as 15 d after secretion. Finally, our data
strongly suggest that extracellular enzymes, which were recently secreted by cells, may be modified
post-secretion, as evidenced by changes in MW banding patterns over time (in presence of chloram-
phenicol). This study showed that P. atlantica produces a flexible array of extracellular enzymes. In
ocean systems the adaptive value of flexibility in enzyme activities may relate to changing micro-
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environments which bacteria may encounter over microspatial scales.
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INTRODUCTION

The uptake of most nutrients by heterotrophic bacte-
ria depends on osmotrophy, a nutritional strategy in
which soluble nutrients are absorbed through the cell
surface (Singleton & Sainsbury 1987). The outer mem-
brane of Gram-negative bacteria acts as a molecular
sieve. The nature of the amino acid residues is the
major factor that determines the hydrodynamic volume
of a protein or peptone, which in turn discriminates
between which molecules are fit for uptake (Payne &
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Gilvarg 1968). Therefore, only relatively small mole-
cules can be readily transported across the bacterial
membrane. Studies using mutant bacterial strains (no
longer capable of synthesizing individual amino acids)
(Gilvarg & Katchalski 1965) and gel filtration tech-
niques (Payne & Gilvarg 1968) suggested that the cut-
off point was between 4 and 6 amino acids (Cascieri &
Mallette 1976), or around 650 Da (Payne 1980).

It has been estimated that 65 to 80% of dissolved
organic matter (DOM) in ocean surface waters consists
of low molecular-weight molecules (below 1000 Da),
yet larger molecules seem to have higher nutritional
potential. Studies of bacterial utilization of natural
DOM pools have shown higher growth and respiration
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rates when cells were exposed to high molecular weight
DOM, than in the presence of low molecular fractions
(Amon & Benner 1994, Skoog et al. 1999). Bacteria
secrete enzymes that allow them to hydrolyze high
molecular-weight species outside the cells, prior to
uptake. Such compounds may be present either in dis-
solved form, or as particulate organic matter (POM).
POM in oceans includes marine snow (or water-col-
umn aggregates), which consists of phytoplankton,
detritus, bacteria and fecal pellets, embedded in a
mucous matrix (Alldredge & Cohen 1987). Bacteria
associated with marine snow display higher levels of
hydrolytic activities that recycle organic matter from
particulate into dissolved phase (Wetzel 1991, Smith et
al. 1992). Herndl (1988) examined depth profiles of
marine snow in the Adriatic Sea and found that while
the size of the aggregates increased, their organic con-
tent decreased with depth. This trend was attributed to
bacterial decomposition and biotransformation of ag-
gregate organic matter, as well as entrapment of resus-
pended inorganic material. Therefore, bacterial pro-
cessing of organic matter, especially high molecular
fractions, which requires cellular and extracellular
enzymatic hydrolysis, is an important biotransforma-
tion process of organic matter in oceans.

Bacterial proteolytic enzymes are generally classi-
fied according to 3 criteria: location with respect to the
cell, site of proteolytic attack and structural similari-
ties. Three classes of enzymes are generated based on
the location of the enzymes: ‘extracellular enzymes'
(those that occur ‘free’, dissolved in water, or attached
to surfaces other than the cell that produced them),
‘ectoenzymes’ (secreted enzymes that actively cross
the cytoplasmic membrane and remain associated with
the producing cell; this definition also includes the
periplasmic enzymes) and ‘intracellular’ enzymes (en-
zymes that are synthesized, located and act upon sub-
strates within the cytoplasm) (Chrést 1991). For the
purpose of the present paper the ectoenzymes and
intracellular enzymes will be collectively referred to as
‘cellular’ enzymes.

The processing and hydrolysis of high molecular-
weight DOC (by extracellular enzymes) and subse-
quent utilization of hydrolysis products by bacteria can
only be efficient if both enzymes and products are
localized close to cells. Enzymes, as well as the prod-
ucts of degradation that they generate, can be modi-
fied by chemical or physical factors present in the envi-
ronment. Also, extracellular enzymes and hydrolysis
products can be lost by diffusion into the surrounding
water. However, Engasser & Horvath (1974a,b) found
that the concentrations of substrates at cell surface are
lower than in the surrounding waters, due to bound-
ary-layer effects. Thus, the probability of enzymes
attached to the cell surface to encounter a substrate

molecule is less, compared to the enzymes in the
immediate vicinity of cells. It was estimated that as
long as substrate molecules are present within a 500 pm
radius, the energy balance favors the release of
enzymes and the extracellular degradation of the sub-
strate (Wetzel 1991).

In natural systems, parameters such as nutrients,
temperature, pH, and oxygen level fluctuate widely
and often become sources of stress for bacteria. Azam
& Amerman (1984) introduced the concept of a struc-
tured nutrient field, defined as 'a region in which there
are sharp gradients of bacterial nutrients’. The struc-
ture of such microdomains is subjected to changes dri-
ven by biological processes (such as uptake of nutri-
ents), as well as physical processes (e.g., molecular
diffusion, micro-turbulence). Various degrees of star-
vation are the normal state for wild-type microorga-
nisms, while short bursts of nutrient excess represent
exceptions. It is to be expected, therefore, that bacter-
ial communities may develop a range of adaptive
mechanisms to cope with the changing environment
(Morita 1985). As a result, natural communities exist in
a range of physiological states. One short-term re-
sponse of cells to starvation is the process of dwarfing,
which occurs in 2 phases. During the first phase, frag-
mentation generates increasing numbers of spheroids.
Throughout the second phase the spheroids undergo
continuous size reduction under constant cell density
(Kjelleberg et al. 1983). Longer-term responses include
induction of a vegetative state that requires minimal
energy expenditure, primarily for the maintenance of
the membrane potential. It was suggested that in such
cases endogenous metabolism should suffice to pro-
vide the energy (Dawes 1985). Microorganisms that
can readily utilize a variety of polymeric substrates
resume synthesis of cellular components, based on the
uptake of degradation fragments (Chrdst 1990). In
either case, persistence of proteolytic enzymes in the
surrounding waters, in close proximity to the cells, is
crucial.

Pseudoalteromonas (previously Alteromonas) is a
marine bacterium, which has the capacity to grow as
both free-living (planktonic) cells and as attached bio-
film to surfaces (Corpe 1970, Decho & Lopez 1993) and
adapt to wide ranges of temperature (10 to 30°C),
salinity (10 to 30 ppt), and nutrient regimes (Decho
unpubl. data).

The purpose of this study was to identify and charac-
terize the proteolytic enzymes produced by Pseudo-
alteromonas atlantica, and the influence of various en-
vironmental factors on the enzymatic activity. Though
traditionally the marine environment has been per-
ceived as a relatively continuous and constant system,
the effect of environmental factors on microbial metab-
olism in marine systems has attracted recent interest
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because of the microscale nutrient patchiness concept
(Herndl 1988, Azam 1998, Blackburn et al. 1998).

Specifically, the following questions were addressed:
(1) Is Pseudoalteromonas atlantica synthesizing enzymes
capable of degrading larger forms of DOM?; (2) What
classes of enzymes are produced by P. atlantica?;
(3) Where are the enzymes located, relative to the
cells?; and (4) What is the fate of the secreted enzymes
and how do environmental factors (such as divalent
cations, pH, temperature, nutrient availability) affect
the activities of enzymes?

MATERIALS AND METHODS

Bacterial strain and culture conditions. Pseudoalter-
omonas (formerly Alteromonas) atlantica (ATCC No.
43666) was purchased from the American Type Cell
Culture (Rockville, MD, USA). Bacteria were grown
in modified half-strength D-glucose-Peptone medium
(ATCC #268). Medium composition was D-glucose
10 g I, Bacto-Peptone 5 g I'!, in 25 ppt sterile-filtered
Gulf Stream seawater (Sigma Chemicals). After adjust-
ing the pH to 8.0, the medium was filtered (0.2 pm) and
autoclaved.

Bacteria (24 h cultures, Aggo = 1.0 absorption units)
were inoculated in duplicate in 250 ml flasks contain-
ing 125 ml sterile medium. Cultures were grown at
24°C on a shaker table at 100 rpm. Depending on the
experiments, the cells were allowed to grow for vary-
ing lengths of time. The Agy, was monitored on a Shi-
madzu UV/Vis spectrophotometer (model UV-2401PC)
as an indicator of cell density/physiological state.
Absorption values were recorded each time aliquots
were removed.

Extraction of extracellular and cellular enzymes.
The following experiment was designed to identify and
compare the cellular and the extracellular enzymes.
Stationary phase cultures were used to generate band-
ing patterns of maximum complexity. Cultures were
centrifuged (17000 x g, at 4°C, for 30 min) in sterile
Oak Ridge centrifuge tubes. Supernatants were trans-
ferred to sterile Oak Ridge centrifuge tubes and cen-
trifuged (27000 x g, at 4°C, for 30 min). One ml frac-
tions were transferred to sterile microfuge tubes, with
care taken not to disturb the cell pellet. These fractions
(containing the extracellular enzymes) and all aliquots
used in this study were frozen to —-70°C until subjected
to electrophoresis.

A modification of the protocol followed by Albertson
et al. (1990) was used to isolate cellular enzymes. All
procedures were carried out at 4°C (or on ice). Cell pel-
let fractions that resulted from the separation of extra-
cellular enzymes were resuspended in fresh sterile me-
dium, and centrifuged (17 000 x g, at 4°C, for 30 min).

The supernatant was discarded and the new cell pellet
resuspended in 1 ml sterile distilled water and placed
on ice. After 20 min the cell suspension was cen-
trifuged for 10 min. This procedure created an osmotic
shock that produced the lysis of the outer membrane of
a Gram-negative bacterium. The lysed cell pellets
were temporarily stored at 4°C, while the supernatant
(from here on referred to as lysis supernatant) was ster-
ile filtered through a 0.2 pm pore size membrane and
stored on ice.

The lysed cell pellets were further used for extrac-
tion of intracellular enzymes. Pellets were resuspended
in 2 ml of sterile distilled water and disrupted using a
sterile glass tissue grinder (Kontes Glass), then filtered
through a sterile membrane (0.2 pm pore size). This fil-
trate and lysis supernatant were combined as the cel-
lular enzyme fraction.

Enzyme activity assay. We used the technique of
substrate-incorporated polyacrylamide gel electropho-
resis (zymography) to separate and characterize the
enzymes produced by cultures of Pseudoalteromonas
atlantica, as well as to evaluate the effect of environ-
mental factors on the activity of these enzymes. The
composition of the gels (4 % stacking and 10 % resolv-
ing) was similar to that used by Laemmli (1970), except
that a substrate (gelatin, casein, or casamino acids) was
incorporated in the resolving gel mixture prior to cast-
ing (final concentration of 1 mg ml™!). Enzyme extracts
(10 pl) were incubated (at 24 + 2°C, for 20 min) with an
equal amount of non-reducing sample buffer (Bio Rad
Laboratories, Hercules) containing sodium dodecyl
sulfate (SDS). SDS was added to estimate the molecu-
lar weight of each protease in the absence of reducing
agents, which irreversibly decreased the enzymatic
activities reported in this study. SDS conferred all pro-
teins a net negative charge. Thus all enzyme mole-
cules present in the sample followed the same direc-
tion of migration. Fifteen pl of enzyme incubates and
10 pl prestained molecular-weight standards (Bio Rad)
were loaded on the gels. Electrophoresis was carried
out under constant voltage (180 V), starting at 40 mA
per gel, in a Mini-Protean II electrophoresis cell (Bio
Rad), using a Model 1000/500 Constant Voltage Power
Supply (Bio Rad). Constant monitoring was required to
prevent the gels from warming up. Gels were rinsed in
incubation buffer (50 mM Tris-HCI, 5 mM CaCl,, 1 pM
ZnCl,), pH 7.5. During the first rinse step, Triton X-100
(2.5%) was added to remove SDS from gels, thus
allowing the enzymes to refold and return to active
configuration. After 20 min the gels were transferred to
fresh incubation buffer for an additional 20 min.

The enzymatic digestion of gelatin was allowed to pro-
ceed in fresh incubation buffer, at 30 + 1°C, for 48 h. The
gels were briefly rinsed in deionized water to stop the
enzymatic reaction and stained with 1% (wt/v)



32 Aquat Microb Ecol 23: 29-39, 2000

Coomassie Blue G-250 solution (in 10 % acetic acid in
50 % methanol) for 15 min, under gentle rocking. The
stained gels were rinsed in the acetic acid/methanol
cocktail for 5 min. The removal of excess stain continued
in deionized water until the stacking gel was free of dye.

Enzymes were visualized using a light box (400 to
700 nm) as clear bands against a blue background. The
Coomassie-stained background did not show signs of
discoloration or layering, indicating that the substrate
(gelatin) remained incorporated in the polyacrylamide
matrix. The gels were recorded on a Kodak Digital
Camera (model DC-260). For publication purposes the
images were edited using the program Adobe Photo-
Shop 5.0. For long-term preservation, gels were dried
using a Gel Drying Kit (Promega).

Inhibition experiments. To determine what classes
of enzymes were produced by Pseudoalteromonas
atlantica, 10 pl inhibitors of various enzyme classes
were added to the enzyme extracts. The inhibitors and
their final concentrations are listed in Table 1. Ten pl of
each solvent used to dissolve the inhibitors were added
to controls and run simultaneously. After electrophore-
sis, in the case of EDTA (ethylendiaminotetraacetic acid)
inhibition experiments, the gels were incubated in
Ca*/Zn-free Tris-HCI buffer and compared to gels
incubated as described above.

Quantitative evaluation of the inhibition of enzyme
activity by EDTA was performed using a fluorometric
assay. The levels of enzyme activity were measured
based on the proteolytic degradation of pig skin
gelatin labeled with Oregon Green*®® (Molecular
Probes), reconstituted in incubation buffer. Controls
consisted of cell-free enzyme extracts to which gelatin
Oregon Green*®® was added to 0.02 mg ml! final con-
centration. 1,10-phenanthroline and EDTA inhibit the
same class of proteases. The magnitude of the
inhibitory effect was measured using EDTA, since the
solutions were gentler on the fluorescent substrate
solutions compared to 1,10-phenanthroline solutions.
EDTA to 2.5 mM final concentration was added to inhi-
bition treatments. Two controls and triplicate treat-
ments were used in each experiment. The mean and
standard deviation were computed on 4 independent
experiments. Both controls and treatments were incu-
bated in the dark, at room temperature, for 20 h. The
fluorescence of the samples was measured (Ag/Aem =
488 nm/519 nm) at the beginning and end of the incu-
bation period, using a FluoroMax 2 instrument (Jobin
Yvon/SPEX).

Eifect of physiological state on enzyme activities.
The following experiment allowed us to investigated
the possibility that as cells change their physiological
states (e.g., lag, log, stationary phase) different en-
zymes may be produced, in response to changing
nutrient concentrations.

Cells were grown in batch cultures. One ml aliquots
were removed from duplicate flasks at 8 h intervals, for
the first 24 h, and then every 12 h until the termination
of the experiment. The aliquots were centrifuged at
17 000 x g, for 30 min. The supernatant was transferred
to sterile microfuge tubes, without disturbing the cell
pellet, and stored at —70°C. We compared the banding
pattern at different times and Agg values.

Eifect of pH on enzyme activities. Experiments were
conducted to examine the effect of pH on individual
enzyme activities. Following electrophoresis, the pH of
all buffers was adjusted in the range of 4.4 to 10.2,
using 1.0 pH unit increments. To avoid errors due to
electrophoresis, or subsequent manipulations, all gels
were run simultaneously. The gels were stained and
destained as described above, and observed using a
light box. The controls consisted of gels incubated at
pH 7.5. The absence or decreased intensity of a band
was considered to be indicative of enzymatic activity
inhibition.

Temporal stability of enzymes. To determine how
long secreted enzymes remained active in the absence
of protein synthesis, we followed the fate of extracellu-
lar enzymes for 48 h. A 24 h Pseudoalteromonas atlan-
tica inoculum was centrifuged at 27 000 x g, at 4°C, for
30 min. Chloramphenicol (150 pg ml! final concentra-
tion) was added to the supernatant, to inhibit protein
synthesis in case metabolically active cells were still
present. The supernatant was transferred to a sterile
250 ml flask and placed on a shaker table. Aliquots
were taken before and after addition of chlorampheni-
col (as controls for baseline and effect of chloram-
phenicol on enzymatic activities) and at 12 h intervals,
for as long as 48 h. The remaining cell-free medium
was observed for 72 h for cell growth.

Enzyme activities in natural seawater. The purpose
of these experiments was to determine if natural sea-
water could provide proper conditions for enzyme
activity development. Aliquots from the same sample

Table 1. Concentrations of protease inhibitors used to deter-
mine (on gelatin-incorporated gels) the classes of enzymes
produced in Pseudoalteromonas atlantica cultures

Protease inhibitor Final Class of protease

concentration inhibited
EDTA 50 mM Metalloproteases
1,10 phenanthroline 10 mM Metalloproteases
PMSF 3 mM Serine proteases
Antipain 50 pM Serine proteases
Thimerosal 5mM Thiol proteases
Pepstatin 50 ug ml! Aspartic proteases
Chymostatin 100 pg mi? Chymotrypsin
Elastinal 10 pM Elastase
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were run simultaneously on 2 separate gels. After elec-
trophoresis, one gel was processed as described. The
second gel was rinsed twice in 50 mM Tris-HCI, pH
7.5, with the addition of 2.5% Triton X-100 to the first
rinse. The activity of the enzymes separated on the sec-
ond buffer was allowed to develop in autoclaved, ster-
ile-filtered Gulf Stream seawater (Sigma), instead of
the regular incubation buffer.

RESULTS

Release of extracellular enzymes in different
physiological states

In all physiological states, supernatants from cultures
of Pseudoalteromonas atlantica were enriched in pro-
teolytic enzymes. The band pattern of gelatinolytic en-
zymes (Fig. 1) released by cultures at increasing times
after inoculation showed a consistent change and was
correlated with achievement of stationary growth
phase (constant Aggg).

The enzymes were active in experiments in which
incubation of post-electrophoresis gels proceeded in
seawater instead of buffer containing Ca?* and Zn?*,
and generated the same band patterns (results not
shown). The results indicated that the proteolytic pro-
cesses reported in the present paper can occur in nat-
ural environments.

Woa'  12h 48h 72h

139 —

325 —

Fig. 1. Gelatin zymography of the 3 major families of extracel-
lular proteases (by molecular weight) in different physiologi-
cal states. Lane 1: early exponential phase (12 h old cultures).
High molecular-weight activities are represented solely by
the 103 kDa band. The 75 to 69 and the 34 to 31 kDa double
bands are also present, at considerably lower intensity. Lane
2: exponential phase (48 h old cultures). Lane 3: onset of sta-
tionary phase (72 h old cultures). The 93 kDa band is by far
the predominant high molecular-weight enzyme activity. The
image represents the negative of the gel. Approximate posi-
tions of the molecular-weight standards are indicated at the
left of the gel, because both the standards and the substrate
stain blue

Mol wt
139 —

80 —

43 —
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Fig. 2. Effect of EDTA on the enzyme activities of different
molecular weights (for comparison, refer to Fig. 1 used as con-
trol). The response to the addition of 50 mM (final concentra-
tion) EDTA in the sample (activation) buffer was dependent
on the relative molecular weight of the extracellular enzyme
activities. EDTA considerably diminished the proteolytic activ-
ities situated around 75 to 69 kDa and inhibited the gelati-
nolytic activities that migrated to 34 to 31 kDa

Classes of extracellular enzymes produced by
Pseudoalteromonas atlantica

The study showed that Pseudoalteromonas atlantica
cells grown in batch cultures produced and exported a
battery of proteases that readily degraded gelatin, but
not casein or casamino acids. Among the inhibitors
used to determine the classes of enzymes present, only
EDTA and 1,10-phenanthroline showed an effect.
Comparison of the banding patterns in Figs. 1 & 2
shows that the enzymes demonstrated different sus-
ceptibility to inhibition. When EDTA was added prior
to the sample buffer, and the gels were incubated in 50
mM Tris-HCI (with the omission of cations), the degra-
dation of gelatin was totally inhibited. Inclusion of
divalent cations in the incubation buffer during the
incubation of the gels partly reversed the inhibitory
effect. Also, the inhibitory effect was time-dependent.

In the quantitative experiments, EDTA inhibited
85.57 % of the total enzyme activity of cell-free super-
natant samples (see Table 2, Fig. 3).

Location of enzyme activities

Proteolytic enzymes were detected in both fractions
(cellular, and extracellular). As shown in Fig. 4, there
are differences between the extracellular fractions and
their cellular counterparts. In the 103 to 93 kDa and the
34 to 31 kDa range the extracellular extracts generated
double bands of enzymatic, versus single bands in the
cellular extracts. Around 75 kDa the extracellular
extracts displayed one band of gelatinolysis, while
double bands (75 and 69 kDa) characterized the cellu-
lar extracts.
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Table 2. Fluorescent measurement of the inhibitory effect of
EDTA on enzymatic activity in cell-free extracts. Data repre-
sent means =+ standard deviation (n =4). cps = counts per second

Sample Fluorescence increase® (cps) % inhibition
Control® 18793.6 + 895.94 0
Treatment® 2386.73 + 962.55 85.57 + 7.37

#Fluorescence (as cps) increase over 20 h incubations, at
room temperature, in the dark

bControl: cell-free extract + 0.02 mg ml! gelatin Oregon
Green*%®

“Treatment: cell-free extract + 0.02 mg ml™! gelatin Oregon
Green*®® + 2.5 mM EDTA

Temporal stability of enzymes

To investigate whether post-export processing (pro-
teolysis) of enzyme molecules was responsible for the
shift toward lower molecular weights, we followed the
fate of exponential phase enzymes over a period of
48 h. As shown in Fig. 5, in the absence of protein syn-
thesis, the degradation of some of the high molecular-
weight bands resulted in the same sequence of pat-
terns as seen in Fig. 1, which reflected the evolution of
enzyme activities along a typical cell-growth curve.
Enzymes were still active as long as 15 d after removal
of cells and addition of chloramphenicol.

Effect of pH on the enzymatic activities

The extracellular enzymes produced by Pseudo-
alteromonas atlantica responded differently to pH vari-
ations, depending on their molecular weights (Fig. 6b).
As a general observation, all enzymes were more sen-
sitive to decreases, rather than increases in pH. Acidic

25000
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5000 -
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Fig. 3. Effect of EDTA on the proteolytic degradation of gelatin

Oregon Green*®®, A: Enzyme activity, as fluorescence increase

(Control); B: enzyme activity, as fluorescence increase, in the

presence of 2.5 mM EDTA (Treatment). cps = counts per
second

Mol wt Extracellular Cellular
139 —

- —
80 — -

—
43 —

e
35 _ | .

Fig. 4. Gelatin zymogram of enzyme activities separated in

different cellular fractions. Lane 1: extracellular; Lane 2:

pooled cellular compartments. Notice the absence of the 93

and 31 kDa activities bands in the cellular versus extracellu-

lar fractions and the different intensities of the bands (consid-
ered in each individual lane)

pH decreased gelatin hydrolysis in all bands, although
to various degrees (Fig. 6b). In contrast, increasing the
pH to 10.4 stimulated the proteolytic activity, as deter-
mined by the intensity and area of the gelatin degra-
dation. In view of the fact that natural seawater has pH
values between 7.5 and 8.4 we decided to adjust the
pH of the buffers used in the rest of experiments to 7.5.

DISCUSSION AND CONCLUSIONS

The separation of enzymes by substrate incorporated
polyacrylamide gel electrophoresis, followed by the
activation of the enzymes in the appropriate buffer and
the digestion of the substrate, is known as zymography
(Granelli-Piperno & Reich 1978). This technique was
used in the present study to determine the presence of
proteolytic enzymes in the compartments investigated
(extracellular, and cellular), assign them to the class of
metalloproteases, and determine the effects of various
environmental parameters on the activity of individual
enzymes.

In the arsenal of methods employed in enzyme stud-
ies, zymography holds some unique features that war-
ranted its use in this study. The technique requires rela-
tively small amounts of material (depending on the
individual enzymes, sometimes less than nanograms of
protein per band) and minimal manipulation of sam-
ples. The stained gels disclose the molecular weight of
the enzymes, the number of different enzyme entities
present in the sample, as well as the possibility of ob-
serving them individually. Substrates that generate flu-
orescent fragments, following enzymatic digestion,
have been used effectively in quantitative studies, or
for the purpose of comparisons (Hoppe et al. 1988, Tisl-
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Fig. 5. Temporal stability of extracellular enzyme activities secreted by
Pseudoalteromonas atlantica. Controls—lane 1: supernatant; lane 2: super-
natant + chloramphenicol; Temporal evolution—lane 4: enzyme activities
from supernatant (same treatment as lane 2) after 12 h; lane 5: enzyme
activities from supernatant (same treatment as lane 2) after 24 h; lane 6:
enzyme activities from supernatant (same treatment as lane 2) after 48 h.
Note that the banding pattern follows the same evolution as shown in Fig. 1

jar et al. 1990, Manafi et al. 1991, Hoppe 1993, Rattray
et al. 1995, Seeram et al. 1997, Shibata et al. 1997, Ar-
nosti 1998). Though highly sensitive, these methods
will only display a global picture of the system, without
providing information about the distinct enzymatic
components. Different classes of proteases have differ-
ent requirements for optimal activity. For these reasons
fluorometric quantitation could not be used extensively
in our study. In the present study, using zymography, it
was determined that even enzymes belonging to the
same class showed different levels of sensitivity to vari-
ous environmental factors. A comparison of the location
and intensities of the bands on a zymogram provided
information specific for individual enzymes. The tem-
perature/time conditions for the enzyme activity devel-
opment were chosen such as to yield useful, consistent
results in minimum time. Temperatures below 30°C re-
quired longer incubation times in order to
obtain sufficiently clear bands, while at
higher temperatures the bands of gelati-
nolysis typically lost the sharp contour
due to enzymes diffusing through the gel.

One question can be raised: Was
Pseudoalteromonas atlantica producing
additional enzymes, irreversibly inhibited
by the repeated use of SDS during the
electrophoresis step? The present study
did not intend to identify and characterize
the full range of proteolytic enzymes that
are, or may be produced by P. atlantica.
There are inherent advantages and disad-
vantages related to the choice of a specific
substrate, or technique. However, invari-
ably certain enzyme classes will be com-

Temporal evolution
lane 6

pletely missed. Also, natural substrates for the
enzymes secreted by wild-type bacteria are
generally not known. Admittedly, the natural
occurrence of gelatin (the chosen experimen-
tal substrate) in ocean water must be a rare
event. Nevertheless, for the purpose of intra-
and inter-laboratory comparisons of the re-
sults generated by studies on such enzymes, a
number of substrates had been adopted, e.g.
gelatin and casein.

Aerobic heterotrophic bacteria depend on
external organic compounds both for energy
and carbon requirements (del Giorgio & Cole
1998). In oceans, DOM covers a wide spec-
trum of origin, size, composition, chemical/
physical properties and nutritional value.
Spatial and temporal microscale variability
strongly influence the chemical identity,
bioavailability and the relative proportions of
DOM (Billen et al. 1980, Taylor et al. 1985,
Romankevich & Ljutsarev 1990, Lee & Hen-
ricks 1993, Sepers 1997). Extremely localized nutrient
domains (e.g., pm to mm) may occur, which typically
escape more conventional sampling techniques. For
example, the lysis of an algal cell, or excretion prod-
ucts generated by protozoa may create micro-domains
of high nutrient concentrations, which dissipate within
minutes as a result of nutrient diffusion. Such events
are thought to be relatively frequent in natural envi-
ronments and may last long enough to allow chemo-
tactic bacteria to reach them (Azam 1998, Krembs et al.
1998). Although the bulk chemistry of the water col-
umn does not change appreciably, localized domains
may, for a short time, produce conditions that become
optimal for bacterial growth (Blackburn et al. 1998).
Thus, bacteria must be able to swiftly adapt their phys-
iologies, in order to take advantage of fluctuating
nutrient conditions.

Mol wt
a (kDa) b
. 103-93
B 75-69 8
34-31
pH7.5 pH 5.4
(Control)

Fig. 6. Gelatin zymography of enzyme activities at (a) pH 7.4 and (b) pH 5.4.
Note that in (b) the 75 to 69 kDa bands of enzyme activity are the only ones
readily observable, while the 103 to 93 and 34 to 31 kDa bands were severely

inhibited by the low pH value
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While the transport of nutrients and energy sources
inside the microbial cells is important, a greater neces-
sity is to produce and transport enzymes outside the cell
where larger substrates are located. Therefore, it was
expected that Pseudoalteromonas atlantica cells would
export proteases, which could hydrolyze molecules for
transport across the complex bacterial membranes.

Under the experimental conditions used in our study,
Pseudoalteromonas atlantica bacteria produced and
exported 3 major groups (by molecular weight) of
gelatinolytic enzymes (see Fig. 1): 103-93, 75-69 and
34-31 kDa. The pattern of the extracellular proteolytic
species produced by P. atlantica under long-term
experimental conditions (in most experiments for 3 to
7 d, but also for 15 d in one experiment) changed with
time, favoring lower molecular-weight fragments.

In general, seawater has a relatively narrow chemi-
cal (ionic) composition and pH range. However, more
significant variability may occur with regularity over
small (e.g., mm to pm) spatial scales. Since the en-
zymes under study belong to the class of metallopro-
teases we investigated the influence of pH and cation
concentrations (specifically Ca?* and Zn?') on their
proteolytic activity. The results showed that the en-
zymes respond differently to each of these environ-
mental factors, and the magnitude of the response
varies among the 3 major molecular-weight enzyme
species.

Open ocean seawater is slightly alkaline, generally
between 7.5 and 8.4 pH units (Nybakken 1993). Under
these conditions it was not surprising to find that an in-
crease in the pH of the activity development buffer had
very little effect on the activity (i.e., intensity of bands)
of the enzymes. Most enzyme activities remained un-
changed (if not slightly enhanced) up to pH 10.4. At
acidic pHs, however, the extracellular enzymes of
Pseudoalteromonas atlantica exhibited distinct differ-
ences in sensitivity. All bands of enzymatic activity
showed some degree of inhibition when the pH of the
activity development buffer was decreased under 7.5
units. However, the magnitude of the effect was not the
same. As illustrated in Fig. 6, at pH 7.5 (gel a) the 103 to
93 kDa bands of enzymatic activity are the most promi-
nent. The very high molecular-weight (103 to 93 kDa)
and the very low molecular-weight (34 to 31 kDa) en-
zymes are more susceptible to lower pH values than the
75 to 69 kDa species (gel b). Even at pH 4.4 the 75 to
69 kDa band(s) preserve(s) some gelatinolytic activity
(results not shown due to the low contrast of the zymo-
graphic gels).

Individual susceptibility of enzymes to pH change
may present an environmental advantage for the bac-
teria that synthesize such enzymes. While most ocean
water is slightly alkaline and has a good buffering
capacity, small microenvironments of acidity may be

encountered where fermentation processes occur,
such as in biofilm microenvironments or the phycos-
phere of a lysed microalgal cell. In the nutrient-limited
open ocean environment such enzymatic flexibility
represents a valuable adaptation.

Addition of EDTA to enzyme extracts prior the elec-
trophoretic run, as well as in all subsequent buffers,
resulted in total inhibition of digestion (i.e., enzyme
activity) bands. However, if EDTA was added before
electrophoresis, and divalent cations were provided in
the subsequent steps, some enzyme species mani-
fested partial recovery of enzymatic activity. Partial
recovery of enzymatic activity reinforced the classifica-
tion of the extracellular enzymes produced by Pseudo-
alteromonas atlantica as metalloproteases (Barrett
1994). The fluorometric measurement of the inhibitory
effect of EDTA (at 2.5 mM concentration) showed that
residual enzymatic activity was possible. During the
fluorometric quantitation of the inhibitory effect of
EDTA, addition of 50 mM EDTA to the samples caused
partial quenching of fluorescence. Therefore, we had
to decrease the concentration of EDTA to 2.5 mM.
Also, fluorometry is 2 to 3 orders of magnitude more
sensitive than staining techniques. Enzyme species
(molecular-weight species) that were not inhibited by
2.5 mM EDTA, but remained undetected by gelatin-
incorporated electrophoresis, could be present and
account for the residual enzymatic activity detected
with the use of a more sensitive technique.

Comparison of the gels presented in Figs. 1 & 3 indi-
cated that higher molecular-weight enzymes were less
affected by the initial addition of EDTA, as long as
cations were provided in the following steps. Divalent
cations participate in the correct folding of macromole-
cules, and in the present situation they may be respon-
sible for stabilizing the catalytic sites, recognition/
binding sites, and/or the overall 3-dimensional struc-
ture of the enzymes. Of course, until primary and ter-
tiary structures of bacterial enzymes are available, the
stability of higher molecular-weight versus lower mol-
ecular-weight molecules remains open to interpreta-
tion.

Pseudoalteromonas atlantica were cultivated in
nutrient-enriched, sterile-filtered Gulf Stream water,
at 25 ppt salinity. However, traditionally, enzyme activ-
ity is evaluated by substrate degradation in incubation
buffer, supplemented with cations. We considered it
essential to examine whether natural seawater can
offer the range of conditions (pH, divalent cations)
favorable for the activity of the enzymes under study.

It is interesting to note that the initial size of the
enzymes dictated the order in which the lower molec-
ular fragments were generated. The first double bands
(34 and 31 kDa) of enzymatic activity appeared in the
medium as early as 12 h after inoculation and became
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the dominant species at longer incubation times. The
lower molecular-weight members of the double bands
are probably the result of the removal of a molecular
fragment that obstructs the catalytic site. This has been
previously documented as a common activation step of
some mammalian proteases (Nagase et al. 1990, Blaser
et al. 1991). In order to avoid unspecific degradation of
intracellular proteins, proteases are often synthesized
with an additional segment that obstructs the catalytic
site. This latent form (called either proenzyme, or
zymogen) displays up to 60 % of the activity of the fully
active molecule (Woessner 1995). Outside the cells, the
fragment is cleaved off and full activity is achieved.

We recognized the possibility that during handling,
or due to cellular death and loss of membrane integrity,
some intracellular enzymes could leak into the medium.
Fig. 4 represents a typical comparison of extracellular
versus cellular enzyme species. Although the enzyme
activities were localized at the same molecular
weights, the relative intensities on each lane and
between the lanes suggested that no significant leak-
age of cellular enzymes occurred. First, the enzymes
around 75 to 69 kDa were present as double bands
only in the cellular fraction (lane 3 vs lane 1). Second,
103 to 93 kDa double bands were considerably more
intense relative to the rest of the bands on the same
lane and only present as a pair in the extracellular frac-
tion (lane 1).

In the cellular environment, molecules are exposed
to fewer interactions that can result in partial degrada-
tion. The presence of active forms of enzyme in the
periplasm and cytoplasm has the potential for acciden-
tal cleavage of other proteins, not meant to serve as
substrates. On the other hand, the efficiency of com-
plete degradation of larger molecules would increase if
hydrolysis of oligomers could occur inside bacterial
cells. Once inside the outer membrane, oligomeric
fragments are safe from diffusional loss and/or uptake
by competing microorganisms. Since in our study the
cells and supernatant were processed at the same
time, stored and run under the same conditions and
using the same reagents, the possibility of artifact was
considered negligible. Furthermore, enzyme banding
patterns were consistent in similar samples generated
across different experiments.

The gradual accumulation of the lower molecular-
weight species prompted the investigation of the events
that followed the transport of proteolytic enzymes out-
side the cells. A change in the gelatinolysis pattern was
observed during the course of the initial experiments
that followed the fate of enzymatic activities along dif-
ferent physiological states. As shown in Fig. 5, super-
natants in which protein synthesis had been inhibited
displayed the same sequence of banding patterns as
observed in Fig. 1. The 2 controls (lanes 1 and 2) gen-

erated the same bands of gelatinolysis, demonstrating
that chloramphenicol had no effect on either the mole-
cular weight (structure), or the activity of the secreted
enzymes. Also, the constant Agy value for 72 h after
the experiment was performed indicated that there
was no bacterial growth continuing and affecting the
enzymatic composition of the samples. It was con-
cluded, therefore, that the extracellular proteolysis
accounted for the molecular-weight change. Compar-
ing Figs. 1 & 5, we suggest the following sequence of
events may occur: While cells were in exponential
phase, enzymes were produced, exported and gradu-
ally hydrolyzed. When the degradable nutrient levels
decrease the synthesis of new enzyme molecules (103,
75,34 kDa) is discontinued, or at least decreased below
the detection limits of the substrate incorporated elec-
trophoresis. Nevertheless, the previously externalized
enzymes (in the form of the 93, 69, and 31 kDa species)
remained active in the medium for at least 15 d (al-
though showing a decreasing activity).

The present study showed that the metalloproteases
produced by Pseudoalteromonas atlantica displayed
different susceptibility to variations of the environmen-
tal factors considered. This should create a consider-
able advantage for P. atlantica response to changing
nutritional conditions, and allow the bacteria to remain
enzymatically active under a range of oceanic condi-
tions. Extensive temporal stability of some extracellu-
lar enzymes may explain the rapid response of micro-
organisms to the sporadic nutrient fluctuations that
characterizes most marine environments. Cell-free en-
zymes in seawater have been previously reported (Kim
& ZoBell 1974, Hollibaugh & Azam 1983). Pre-existing
active enzymes, in the vicinity of bacteria, could gen-
erate amino acids and energy sources that would
enable the cells to restart their metabolism in short
order. It could be argued, however, that active en-
zymes would not benefit the exporting cells for long.
While inside the cell, molecules are influenced by
physical parameters (pH, ionic strength) that reflect
the cell's physiology. The external environment is to a
large extent independent from cellular control. The
chemical integrity, hence biological activity, of extra-
cellular enzymes could be adversely affected. Further-
more, diffusional losses and micro-currents, waves or
temperature gradients would ultimately disperse the
extracellular enzymes. Exopolymer capsules and bio-
film microenvironments can potentially localize and
protect the enzymes as well as substrates, extending
their usefulness for the bacteria (Pedrés-Alié & Brock
1983).
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