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AN APPLICATION OF THEOREMS OF SCHUR AND ALBERT 

THOMAS L. MARKHAM 

DEDICATED TO ALFRED T. BRAUER 

ABSTRACT. Suppose HIn is the cone of n x n positive semidefinite matrices, 
and int(IIn) is the set of positive definite matrices. Theorems of Schur and 
Albert are applied to obtain some elements of H,n and int(Hn,). Then an 
analogue of Albert's theorem is given for M-matrices, and finally a generali- 
zation is given for matrices of class P. 

I. Introduction. Suppose H-n is the cone of n X n positive semidefinite 
matrices over the complex field. The interior of Hn, denoted int(In), is the set 
of n X n positive definite matrices. 

If A and B are arbitrary matrices of the same size, the Hadamard product 
of A and B is the matrix A * B whose (i, j) entry is aijbi. A rather comprehen- 
sive account of this product is given in [9]. 

J. Schur proved the following theorem. 

THEOREM 1.1 [8]. If A, B E H,n, then A*B E Hn. Further, if A, B E 

int(II), then A *B E int(-In). 

This theorem is easily proved by noting A * B is a principal submatrix of the 
tensor product of A and B. 

Now suppose M is a matrix partitioned in the form 

(1.1) (~C D) 

In [2], the generalized Schur complement of A in M is defined as 

(1.2) MIA = D- CA+B, 

where A + is the Moore-Penrose inverse of A. Similarly, we define 

(1.3) MI D=A -BD+C. 

If M given in (1.1) is hermitian and is partitioned symmetrically, then 
C = B*. For this case, Albert [1] has proved the following theorem, which 
was generalized in [2, Theorem 2]. 

THEOREM 1.2. Suppose M is hermitian and partitioned symmetrically in (1.1). 
Then M E El,, if and only if A E uk' MIA E an-k and the null space of A is 
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contained in the null space of B* (i.e. N(A) C N(B*)). Further, M E int(Hn) 
if and only if A E int(Hk), M|A E int(Hnn-k), and MID C int(Hk). 

We shall utilize Theorems 1.1 and 1.2 to obtain some new results on 

positive semidefinite matrices. 

II. Some elements of Hn. As in ?1, N (A) will denote the null space of the 
matrix A. 

THEOREM 2. Suppose each of A, B, C, D is in FI and N(A) C N(B), 
N(C) C N(D). Then 

BA+B *DC+D-(B * D)(A *C)+ (B * D) E- F 

PROOF. Let 

M (B BA B D( DC +D 

Both M and N are in I2n by Albert's theorem. Then applying Schur's 
theorem, we get 

((B *D (BA +B) * (DC +D) 2n' 

Now we reapply Theorem 1.2 to (2.1) and obtain (BA +B) * (DC +D) - 

(B * D)(A * C)+(B * D) E I-n. wZ 
Note that as a consequence of Theorem 1.2, using the assumptions of the 

above theorem, we obtain that N(A * C) C N(B * D)*. 
One can obtain readily now a number of corollaries; we shall mention a 

few of these. 

COROLLARY 2.1. If A, C C int(Hn), then A1 * C1 - (A * C)1 E ln. 

PROOF. Let B = In = D in Theorem 2, and use the fact that A + = A1 if 

A is invertible. 

COROLLARY 2.2. Suppose A, B E int(rIn); C, D E rIn. Then (A * B1 + 
C) - (A-1 * B + D)-1 E ElIn. 

PROOF. As in the proof of Theorem 2, let 

M = I(A A-1) N (BI B) 

and put 

Then M * N + P CE H2n, and the result follows by the technique used previ- 

ously. 

From Corollary 2.2, one obtains immediately the result that if C, D E Eln, 
then (I + C) -(I + D)-1 E EIn. Simply choose A = B = In above. 

COROLLARY 2.3. Let A E int(Eln). Then 
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A *A -(A *I)(A-1 *A + I)1(A *I) 

is in H-n. 

PROOF. Let 

M=( A 1) N=(A A ) and P =(g 2) 

Then M * N + P C 112n, and the result follows as in the previous corollary. 

In fact, even more is known concerning Corollary 2.3. In [9, Corollary 4.3, 

p. 236], Styan shows that A * A - 2(A * I)(A -1 * A + I)-1(A * I) E Un 

using a technique based on probabilistic methods. 

We also would like to point out that Theorem 2 is an analogue for the 

Schur product of Theorem 5 of [2]. There it is shown that if A, C E 'In, and 

if B, D are chosen so that N(A) C N(B*), N(C) C N(D*), then 

B*A+B + D*C+D - (B + D)*(A + C)+ (B + D) E H,. 

From Corollary 2.2, if A, B C int(JIn), then it follows that A * B - 

(A - 1 * B - 1)- l E H,n. There is an analogue of this result for matrix addition, 

i.e. A + B - (A - 1 + B - l)- l E int(JJIn). This is a consequence of the previ- 

ously mentioned result of Carlson, Haynsworth and Markham [2]; we offer a 

simple proof of this fact. 

Let 

( A -) N (-I B I1 M= A-) and N= ( 
2 

By Theorem 1.2, both M and N belong to int(J?2n). Now 

M + N (A + B I B ) cint(H2n) 

Apply Theorem 1.2 again. Then M + N A1 + B-1 c int(nn). But M + 

NIA-1 + B-1 = A + B-(A-1 + B-1)-1. F1 

III. M-matrices. Suppose A is a square matrix over the real field. Let Zn 
denote the class of n X n matrices whose off-diagonal entries are nonpositive. 

Assume A C Zn. A is called an M-matrix, see [6], if and only if A is invertible 

and A 1 is a nonnegative matrix (each entry is nonnegative). Let 

(3.1) (C 

A 

)' 

where A and D are square matrices of order k and n - k, respectively. 

If G is an M-matrix, then it is well known that A and D are M-matrices. 

Fan [5] proved that if D has order 1, then G ID is an M-matrix. Crabtree [3, 

Lemma 1] extended this result to D of arbitrary order. Watford [10], in turn, 

proved this result for generalized M-matrices with respect to a cone. 
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These results are useful in obtaining an analogue of Albert's Theorem 1.2 
for M-matrices. 

THEOREM 3. Suppose G is an n x n matrix partitioned as in (3.1), and G is in 
Zn Then G is an M-matrix if and only if A, D, GIA, and GID are M-matrices. 

PROOF. If G is an M-matrix, then A, D, GIA, and G ID are M-matrices by 
the comments preceding Theorem 3. 

Now suppose A, D, GIA, GID are M-matrices. Let 

(3-2) G= 0 ~~(GID)- -A -'B(G IA) (3.2) KD i G < A =G41 
t-D -'C (G ID )1 (GIA)-1 

It is easy to verify G G = I, so G 1 exists. Further, G is nonnegative 
since each of A -1, D -1, (GIA)-1, and (GID) is nonnegative, and B and C 
are nonpositive. Thus G is an M-matrix. n-1 

Theorem 3 offers a practical procedure for determining if a given matrix is 
an M-matrix. 

Now we will take a closer look at Albert's theorem. First, we need some 
additional notation. If a and /3 are strictly increasing sequences on { 1, 
2, ... , n) of the same length, then M(a /,3) will denote the minor of M with 
rows indexed by a and columns indexed by /3. If a = /3, then we write M (a). 
If M is partitioned as in (1.1), where A is nonsingular of order k, then 

MIA = (eij), i,j = k + 1, ... ., n., with 

M (1, 2, ... ., k, ijll, 2, ... ., k,j) M (1, 2, ... ., k, ijll, 2, . . . , k,j) 
eij = M(1, 2,... , k) det(A) 

see [4]. 
If M is hermitian, then M is positive definite if and only if the leading 

principal minors of M are positive. Hence we can rephrase Albert's theorem 
for this case. 

THEOREM 4. Suppose M is hermitian, and is partitioned symmetrically in 
(1.1). Then M E int(H,I) if and only if A E int(HIk) and MIA E int(Hf.-k). 

PROOF. It is well known that if M E int(H,I), then A and MIA are positive 
definite. 

Conversely, we need only show that the leading principal minors of M are 
positive. Consider an arbitrary minor, say M(1, . . . , ip). If ip < k, this minor 
is positive since it is a principal minor of A. Assume ip > k. Then, using an 
identity of Sylvester [7, p. 1011, we have 

MIA(k + 1,... i ) = (det(A))-M(l, .. . kk + ...p). 

The result now follows. [1 
If M E Z, then M is an M-matrix if and only if the leading principal 
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minors of M are positive. Thus, Theorem 3 could also be restated in the form 
of Theorem 4. 

DEFINITION [6]. Suppose M is an n x n matrix. Then M belongs to class P 
if and only if all principal minors of M are positive. 

We can generalize Albert's theorem to class P in the following manner. 

THEOREM 5. Let M be partitioned as in (1.1), where the submatrix A has 
order 1. Then 

(3.3) M E P if and only if A E P, MIA E P, and D E P. 

We omit the proof since the techniques are similar to those of Theorem 4. 
Observe the following concerning Theorem 5. On the one hand, to see if 

M E P, there are 2' - 1 principal minors to check. Applying the above 
result, we obtain a number and two matrices of order n - 1 to check the 
principal minors. Using this equivalence iteratively (to the right-hand side of 
(3.3)), there are 1 + 2 + * + 2` 1 numbers which must be verified to be 
positive. But 1 + 2 + * + 2n-1 = 2n - 1 for n a positive integer, so, in 
fact, the same number of elements must be verified. The obvious advantage 
of the right-hand side of (3.3) lies in the reduction of the order of the matrices 
at each iteration. 

It is possible to reduce the number of minors checked? For example, if M 
has leading positive principal minors, then M does not necessarily belong to 
class P. A simple example to illustrate is M = (1 -2). 

Does there exist an analogue to Theorem 3 for class P when M is 
partitioned as in (1.1), with A of order k? If M has order 2 or 3, the result 
holds. For larger orders, it need not hold. Consider 

1 2 0 1 A0 
M = =(. ) M = 2 3) 1 1 (C D) 

2 3 5 1 2j 

Here A, MIA, D, and MID are all in class P, but M(13) is zero. 
We conclude with the following query. Suppose M is an n X n matrix. 

What is the minimal number of principal minors of M that must be positive 
in order that M belong to class P? Is it necessary to verify that all 2n - 1 
principal minors, or related minors, are positive? 
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