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A Two-Dimensional Mathematical Model of a Porous Lead 
Dioxide Electrode in a Lead,Acid Cell 

E. C. Dimpault-Darcy,* T. V. Nguyen,* and R. E. Whi te* *  

Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122 

ABSTRACT 

A two-dimensional mathematical model is presented for a lead dioxide electrode in a lead-acid cell. It is used to simu- 
late the t ime dependent  behavior of the electrode during discharge. The model  contains six dependent  variables: the con- 
centration of the acid electrolyte, the  porosity, the electrical potentials of the solid and solution phases, and the two direc- 
tional components of the current density in the electrolyte. The effect of the electrode grid was included by varying the 
conductivity of the solid. Parameters such as electrode conductivity, electrode dimensions, and temperature are investi- 
gated to understand their effects on electrode discharge performance. 

The combination of low cost, versatility, and excellent 
rechargeability of the lead-acid battery makes it the single 
most widely used battery system worldwide. Its applica- 
tions vary from small sealed cells for consumer use to the 
large load-leveling systems for electric utilities. To com- 
plement the traditional trial-and-error approach, which is 
expensive and time consuming, mathematical models 
(1-10) have been developed to provide a better understand- 
ing of the cause-and-effect relationships and the phenom- 
ena involved. However, all earlier models, being one- 
dimensional, cannot account for the effects of nonuni- 
formity in the vertical direction along the height of the 
electrode (see Fig. 1) on the electrode discharge perform- 
ance. Uneven current density distribution has been known 
to lead to inefficient use of the porous electrodes and, sub- 
sequently, would lower the performance of each cell in a 
battery. 

A number  of factors could lead to nonuniform current 
distribution. In a typical lead-acid cell of a car battery, the 
distance between current collectors is approximately 3 
ram, while the height of the electrodes is close to 100 mm. 
This aspect ratio elicits doubts whether the current distri- 
bution is uniform in the y-direction due to electrical resist- 
ance effects, since the tab connections are placed near the 
center at the top of both electrodes and serve as the 
source and sink of current. Also, during high discharge 
rates and after deep discharge cycles, the changing con- 
ductivity of the solid electrode material could result in sig- 
nificant nonuniformity in the y-direction. Also, the inter- 
nal resistance of the electrodes increases with the number 
of cycles (11). After numerous deep cycles, the reforming 
of lead dioxide during charge does not reproduce a porous 
matrix with the exact same structure or electrical proper- 
ties (11). Therefore, it is the objective of this work to de- 
velop a two-dimensional model of a porous lead dioxide 
electrode that can be used as a tool by battery designers to 
study electrode performance under conditions where non- 
uniform current density distribution occurs along the 
height of the electrode. 

Figure 1 shows the six elementary parts of the lead-acid 
cell. A porous positive (PbO2) electrode and a porous nega- 
tive (Pb) electrode, both supported by lead current-col- 
lector grids, are separated by a reservoir of electrolyte and 
a porous separator. The current collectors are situated at 
the center of each electrode. These elements are repeated 
alternatively to form a monopolar stack of cells. The thin 
electrode plates are interleaved such that each positive 
plate is located between two negative plates. 

The porous structure of both electrodes is flooded with a 
binary aqueous acid electrolyte. Since the bisulfate ion, 
H S O ( ,  is a rather weak acid, the electrolytic solution con- 
sists essentially of three species: H +, H S O ( ,  and H20 (the 
solvent). The electrochemical half reaction at the positive 
electrode (PbO2) is 

discharge 
PbO2r + H S O (  + 3H § + 2e- ~ PbSO4~s~ + 2H20 

[i] 

*Electrochemical Society Student Member. 
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and the one at the negative electrode (Pb) is 

discharge 
Pb<~) + H S O (  ~-  PbSO4<~ + H § + 2e- [II] 

A reservoir of acid electrolyte adj acent to the positive elec- 
trode prevents the premature depletion of the acid within 
the PbO2 electrode due to reaction [I]. The performance of 
the positive electrode can be predicted by using a mathe- 
matical model for porous electrodes. 

The development  of the general equations describing 
the behavior of porous electrodes can be considered to 
date back to the work of Newman and Tobias (12). Their 
model  and Euler's model (13) deal primarily with current 
distribution and demonstrate that the polarization equa- 
tion and the mass transport of the reacting species play a 
major role in electrode performance. Dunning et al. (14) 
use numerical techniques to include the diffusional trans- 
port of the active species within the porous electrodes 
using a macroscopic approach and apply a Butler-Volmer- 
type polarization equation. 

Simonsson (1) and Micka and Rou~ar (2-5) concentrate 
their efforts on the porous electrodes of the lead-acid bat- 
tery. They use a macro-homogeneous approach to disre- 
gard the actual geometric detail of the pores and describe 
the porous electrodes as a superposition of two continuous 
phases, liquid and solid. Simonsson predicts that a reac- 
tion layer moves inward into the lead dioxide electrode 
due to gradual insulation of the surface by covering lead 
sulfate crystals. Micka and Roufiar modeled a positive 
PbO2 electrode (2, 3) and a negative Pb electrode (4) sepa- 
rately, and afterwards combined the equations to model a 
complete cell (5). They show that the theoretical discharge 
capacity of the cell is limited by the positive (PbO2) elec- 
trode at normal temperatures and discharge rates. 

A model by Gidaspow and Baker (6) is used to describe 
the transformation of one solid phase into another in a po- 
rous electrode. Their model predicts cell failure by 

tab connectors 

,~ /~z c urre at c~ t~ ~"--..~ __ 

II ~ .  _ _  ~ 

Hso~ 

H20 

H + 

Z ~////////////~///////f 
Pb PbO 2 separator 

Fig. 1. Schematic of a lead-acid cell 
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blockage of the pores by lead sulfate deposition. However, 
they use a linear polarization equation which is valid only 
at low current densities. 

Newman and Tiedemann (7) provide a comprehensive 
review of the development  of porous electrode theory 
prior to 1975. A material balance equation which includes 
porosity as a simultaneous variable is presented for the 
acid electrolyte. Tiedemann and Newman (8) and Sunu (9) 
apply the theory to develop complete cell models to de- 
scribe the discharge behavior of a cell. Sunu's model in- 
cludes the possibility of nonuniform concentration in the 
electrolyte reservoir, which Tiedemann and Newman (8) 
omit. Gu et al. (10) extend these models to predict cell be- 
havior during cycles of discharge, rest, and charge. The 
t ime-dependent  model  can be used to produce one-dimen- 
sional profiles of concentration of acid electrolyte, elec- 
trode porosity, electrical potentials of the solid and solu- 
tion phases, and current density. 

A two-dimensional model of the lead-acid cell which 
contains all the features of the model by Gu et al. (10) is not 
available in the literature. A two-dimensional model by 
Choi and Yao (15, 16) and a three-dimensional model by 
Lee et al. (17) are strictly thermal models of an individual 
cell and stacks of cells. These models are for determining 
temperature profiles to design an opt imum electrolyte-cir- 
culation process for efficient heat removal in a battery sys- 
tem. Two-dimensional models of a solid electrode by Choi 
and Yao (18) and of a simple cell configuration with an es- 
sentially porous electrode by Nishiki et al. (19) show the 
nonuniformities in the current and potential distributions 
which occur due to ohmic drop even with simple geome- 
tries. This is substantiated by two-dimensional models of 
current-collector grids by Sunu and Burrows (20, 21), 
which demonstrate the effect of grid design, tab position, 
and grid weight on current and potential distributions. 
However, in these models, the effects of concentration and 
porosity variations are omitted. The model presented here 
extends the equations of the Gu et al. model (10) to predict 
the time dependent, two-dimensional variations in con- 
centration, porosity, potentials of solid a n d  solution 
phases, and two components of the current density. 

A finite difference method was chosen to solve the 
model  equations. It consists of a combination of the im- 
plicit alternating direction (IAD) method (22) and New- 
man's Band (J) technique (23) for solving coupled, non- 
linear ordinary differential equations. This method, 
IAD-Newman, can be used to solve coupled, nonlinear 
partial diffferential equations (24-26). 

Model Description 
Figure 2 shows a porous solid lead dioxide electrode 

with a lead current-collector grid. The model domain is the 
area shaded in with small dots. The dashed line is the 
model  boundary which splits the current collector and 
electrode at its center to form an axis of symmetry. Hence, 
the horizontal dimensions of the grid/electrode region, xcr 
and the electrode region, xth, are described in terms of half- 
thicknesses. The solid part of the current collector pro- 
truding above the model boundary is the tab connector. 

In order to account for the essential features of a porous 
electrode without going into exact geometric detail, the 
pore system of the electrode is regarded as a homogeneous 
macroscopic region with distributed quantities. That is, 
each node (or dot) in Fig. 2 represents a small volume of 
solid matrix material with pore-filling electrolyte. This vol- 
ume element  is small with respect to the overall dimen- 
sions but large compared to the pore structure. Hence, for 
this volume element, the potentials in the solid, r and in 
the electrolyte, %, represent averaged quantities. These 
variables coincide spatially because the porous electrode 
outside of the grid is treated as a superposition of two con- 
tinua, solution and solid. 

The current collector is a nonporous lead grid (20, 21) 
which supports the porous lead dioxide material. This grid 
is assumed to change the electrical conductivity of the 
solid matrix in the grid/electrode region (the Xcc region in 
Fig. 2). The size and shape of the lead grid could alter the 
initial porosity of this region; however, in this study~ the 

l 
Y 
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Xth " 

n d a r y  

I 
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c u r r e n t  
I PbO 2 e l e c t r o d e  c o l l e c L o r  

gr id  [ Pb02  
I 
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Fig. 2. Schematic of a lead dioxide electrode with the model bound- 
ary shown by the dashed line. 

initial porosity in the grid/electrode region is assumed to 
be the same as in the other electrode region (Xth -- Xcc re- 
gion in Fig. 2), but this condition could easily be relaxed to 
account for different grid shapes. 

To simplify the model, convective flow of the electrolyte 
is considered negligible which eliminates velocity vectors 
from the governing equations. The behavior of the electro- 
lyte, which dissociates primarily into H § and HSO4 in wa- 
ter, is described by binary concentrated solution theory 
(23). Isothermal conditions are assumed, and the physical, 
transport, and kinetic parameters are treated as constants. 

The independent  variables are the two spatial coordi- 
nates, x and y, and the discharge time, t. The operating pa- 
rameters are the specified temperature, T, and the applied 
current, I. The geometric design parameters are the half- 
thickness of grid/electrode region, Xcc, the half-thickness of 
the electrode, Xth the heights of these, Yh, and the width of 
the electrode plates, z~. 

The mathematical  model consists of six independent  
governing equations for six dependent  variables. The six 
unknowns are: the concentration of the electrolyte, c, the 
potential in the solid phase, r the potential in the electro- 
lyte, (Pa, the porosity, e, and the two components of the su- 
perficial current density in the electrolyte, i2~ and i2y. From 
these unknowns, four quantities of interest can be calcu- 
lated for analysis of electrode behavior. These are: the lo- 
cal transfer current per unit volume, j, the state of charge 
per unit volume, Q, and the two components of the super- 
ficial current density in the solid phase, i~  and ity. 

The equations describing the physical phenomena o c -  
c u r r i n g  in the porous lead dioxide electrode during dis- 
charge are extensions of those presented earlier (1): 

M ate r ia l  ba lance . - -  

OC 
e -  - eeXDV2c - exe eX ID(Ve �9 Vc) 

Ot 

] + - -  - -  I c + 2 t ~  V ' i a = 0  [1 ]  

Poros i t y  ba lance . - -  

Oe 1 (MWpbso4 M W p b s ~  V - ~ 2  = 0  

Ot 2F ~ ~ PPbO2 / 
[2] 

Divergence  o f  cur ren t . - -  

V. ~ - V �9 (~seexmvr = 0 

Ohm's  l aw  in  so lu t ion . - -  

[3] 

i2 [ -2to+ 2Vo 1 
+ V ~ 2  - "-F-- + V c  = 0 [4 ]  

K e  ~ c 1 - CVe ' ]  
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Electrode kinetics.-- 

\Cref/ \ � 9  " e o /  

[ exp [ -~ -~  (O~ - q~2)] - exp  [ -a~F-~ (q~ - q~2)]} = 0 [5] 

Equa t ion  [1] states that  the  e lect rolyte  concent ra t ion  at 
any po in t  in the  e lec t rode  changes  wi th  t ime  due  to diffu- 
s ion and e lec t rode  reaction.  In  Eq.  [2], the  convers ion  of  ac- 
t ive  mater ia l  due  to e lec t rode  react ion dictates the  change  
in poros i ty  wi th  t ime. Equa t ion  [3], a charge  balance,  states 
that  the  d ive rgence  of  the  total  current  dens i ty  wi th in  the  
e lec t rode  m u s t  equa l  zero. In  the  electrolyte,  the  gradients  
in potent ia l  and in chemica l  potent ia l  de te rmine  the  cur- 
ren t  dens i ty  according  to Eq. [4]. Finally,  Eq.  [5] governs  
the  k inet ics  of  the  e lec t rode  reaction.  The  d e v e l o p m e n t  of  
these  equa t ions  is d iscussed  by Dimpaul t -Darcy  (27). 

Note  that  the  t e rms  of  Eq.  [4] are vec to r  t e rms  and no t  
scalar  t e rms  l ike in the  o ther  equat ions .  Consequent ly ,  for 
two-d imens iona l  analysis, Eq. [4] is spli t  into an x- 
c o m p o n e n t  equa t ion  

~2~ OOz RT[3-2t~  2Vo ]0~x 
+ - -  + = 0 [4x] 

K e  e x  0 X  F C 1 - CVe 

and a y - componen t  equa t ion  

~" OO2 RT[3-2 t~  2Vo ] oc 
~2~ + - -  + =O [4y] 
Ke ~x oy F c 1 -- cYeJ ~y 

Hence,  for the  finite d i f ference formula t ion  of  these  equa-  
t ions and boundary  condit ions,  there  are six equa t ions  
wi th  six u n k n o w n s  at each node. 

Initially, the  concent ra t ion  of the  e lec t ro lyte  and the  po- 
rosi ty of  the  mat r ix  can be set at any value. The  initial con- 
cent ra t ion  is labeled c .... and the  initial porosity,  �9 . . . .  The  
o ther  var iables  do not  requi re  initial values.  

An  ove rv iew of the  boundary  condi t ions  is g iven  nex t  
(more  detai ls  are p resen ted  in the  Numer ica l  Solu t ion  
T e c h n i q u e  Section). A choice  of  boundary  condi t ions  was 
m a d e  to s imula te  the  condi t ions  imposed  by the  neighbor-  
ing c o m p o n e n t s  of  the  PbO2 e lec t rode  in a lead-acid cell  
dur ing  discharge.  For  this two-d imens iona l  model ,  the  
four  boundar ies  are referred to as the center  boundary  for 
t he  center  of  the  electrode,  as the  reservoi r  boundary  for 
the  e lec t rode/ reservoi r  interface,  and as the  upper  and 
lower  boundary  for the  top  and bo t tom of the electrode,  re- 
spect ively.  

The  mater ia l  ba lance  equa t ion  is second order  wi th  re- 
spec t  to its derivat ives.  Consequent ly ,  two bounda ry  con- 
di t ions per  spatial  d imens ion  are needed  to obtain  a partic- 
ular  solution.  At  the  reservoir  boundary ,  the  concent ra t ion  
is main ta ined  at 

No boundary  condi t ion  is r equ i red  for the  var iable  e, and 
Eq. [2] applies  everywhere .  The  potent ia l  condi t ions  at the  
cen ter  bounda ry  are  

- 0 at x = 0 for all y [9] 
Ox 

0~P2 
- 0 at x = 0 for all y [10] 

Ox 

accord ing  to s y m m e t r y  principles.  At  the  reservoi r  bound-  
ary, the  potent ia l  in the  e lect rolyte  is set at 

(I)2 ---- (I)2 .... at x = xth for all y [11] 

wh ich  is analogous  to Eq. [6]. Equa t ion  [5] appl ies  for ~P i at 
t he  reservoi r  and lower  boundary .  S ince  the  e lec t ro lyte  is 
b o u n d e d  at the  uppe r  and lower  boundar ies  

0qb2 
- 0 at y = 0 and Y = Yh for all x 

Oy 
[12] 

k 

is the  condi t ion  at the  top  and bo t tom for q~2. 
At  the  top of  the  electrode,  a tab connec to r  serves  as a 

s ink of  cur ren t  dur ing  discharge.  Fo r  the  part  of  the  upper  
bounda ry  in contac t  wi th  the  tab, the  condi t ion  is 

0r I 
- - -  for 0 -< x-< xcc at y = 0 
Oy CrccXccZw 

[13] 

and for the  part  not  in contac t  wi th  the  tab, the  condi t ion  is 

0qbl -- 0 ~ for Xcc < x --< xth at y = 0 

Oy [ f o r 0 - - x - x t h a t y = y h  
[14] 

which  also applies  for the  bo t tom boundary .  
Curren t  enters  the  e lec t rode  mat r ix  at the  reservoir  

bounda ry  in the  e lec t ro lyte  accord ing  to the  condi t ion  

~. I 
*2x - at x = Xth for all y [15] 

YhZw 

At this boundary ,  all the  current  dens i ty  is in the  x-direc- 
tion, s ince the  gradients  in Eq.  [4y] are zero due  to Eq.  [6] 
and [11], which  leaves 

,2~ = 0 at x : Xth for all y [16] 

c = cr~ at x = xth for all y [6] 

whi le  at the  center  boundary ,  symmet ry  pr inciples  yield 

OC 
- 0 at x = 0 for all y [7] 

Ox 

as the  o ther  condi t ion  for the  cur ren t  density.  At  the  cen ter  
boundary ,  the  current  has Shifted to be paral lel  to the  y- 
direct ion,  resul t ing  in 

-2. 
t2x = 0 at x = 0 for all y [17] 

For  the  uppe r  and lower  boundar ies  

At  the  u p p e r  and lower  boundar ies ,  the  condi t ion  

cIC 
- 0 at y = 0 and y = y~ for all x 

Oy 
[8] 

appl ies  s ince they  are t rea ted as insula ted  boundar ies .  

z2y = 0 at y = 0 and  y = yh for all x 

[18] 

appl ies  s ince the  e lec t ro lyte  is b o u n d e d  there.  The  cur ren t  
paral lel  to the  top  and bot tom,  i2x, is governed  by  Eq. [4x], 
and similarly,  Eq. [4y] applies  for i2, at the  center  
boundary .  

Downloaded 13 Jun 2011 to 129.252.106.227. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp



Vol .  135, No .  2 T W O - D I M E N S I O N A L  M A T H E M A T I C A L  M O D E L  281 

Table I. Grid diagrams for the implementation of lAD-Newman method 

a. Implicit in the z-direction 

top 

i~ = 0) (o < �9 < ~ )  

( ~ = o 1  [~] , [21 

center (0 <y <y~) [4} , [5] 
: 

(~=~1 [~] , [6] - 

[3] 

[3] reservoir 

b. ImpJ lc i t  in t he  y - d i r e c t i o n  

iz = 0) 

(~ = 0) [~] 

center ] (0 < y < y~) [i ] 

t (y = y&) [3] 

top 

(o < : < z , , )  ( . . . .  ~ 

. . . . . .  [4] . . . . . .  [?1 

. . . . . .  [~1 . . . . . .  [~] . . . . . . .  ir 

. . . . . .  [~] . . . . . .  IS] 

Numerical Solution Technique 
The  finite d i f ference  m e t h o d  used  consis ts  o f  a combina-  

t ion of  the  impl ic i t  a l ternat ing-direct ion (IAD) m e t h o d  (22) 
and  N e w m a n ' s  Band  (J) t e chn ique  (23) for solving 
coupled,  non l inear  ordinary  differential  equat ions .  This  
me thod ,  IAD-Newman ,  can be used  to solve coupled,  non- 
l inear  part ial  different ial  equa t ions  (24-26). 

All spatial  der iva t ives  in the  equa t ions  are app rox ima ted  
wi th  three  poin t  di f ference approx imat ions  wh ich  are ac- 
cura te  to O(h2), where  h represents  the  spatial  d is tance  be- 
tween  nodes  (ei ther Ax or Ay). As wi th  all numer ica l  solu- 

Table II. Model equations solved in the x-direction 

[1] 

Oc/Oz = O 

Eq. [2] 

0O~/0z = 0 

i'~ = 0 

~'~ = 0  

0r  = 0 

[4] 
Oc/Oz = 0 

[2] 
Eq. [1] 

Eq. [2] 

Eq. [3] 

Eq. [4x] 

~'~ = 0 

Eq. [5] 

[~] 

Eq. [1] 

Eq. [2] Eq. [2] 

a+,/o~ = o Eq. [3] 

~'2. = 0 Eq. [4x] 

Eq. [4y] Eq. [4y] 

0r  = 0 Eq. [5] 

[1] 
Oc/Oz = 0 

Eq. [2] 

0 r  = 0 

~'~+ = 0 

i'~ = 0 

0 r  = 0 

[6] 
Eq. [1] 
Eq. [2] 
Eq. [3] 

Eq. [4x} 

~'2~ =0 

Eq. [5] 

{8] 

c = C~r~s 

Eq. [2] 

~ = (I)~,re , 

i'~ = 0 

Eq. [5] 

[3] 

C ---- CTes 

Eq. [2} 

O2 ---- 02xe, 

[2= = I/~, ,z ,~ 

~2v = 0 

Eq. [5] 

[3] 

Eq. [2] 

~'2. = I / y h z .  
~'2~= 0 

Eq. [5] 

t ions o f  t ime  d e p e n d e n t  problems,  the  accuracy  of  the  
resul ts  d e p e n d s  also on the  t ime  step size, At. Two-signifi-  
cant-digi t  accuracy  in the  resul t ing  solut ions was ach ieved  
by  add ing  more  nodal  points  in both  di rect ions  and reduc-  
ing the  t ime  step unt i l  there  was no change  in the  second 
digit.  With a conve rgence  cr i ter ion which  requ i red  four  to 
five i terat ions  and us ing  21 nodes  in both  direct ions,  each 
t i m e  step took an average of  near ly  1 min  of  C P U  t ime  on a 
DEC V A X  8800. 

The  I A D - N e w m a n  t echn ique  splits every  t ime  step into 
two half- t ime steps, At/2. Dur ing  the  first half- t ime step, all 
m o d e l  equa t ions  ( including boundary  condit ions)  are 
solved impl ic i t ly  in one direct ion (x), and dur ing  the  fol- 
lowing  half- t ime step, they  are solved in the  o ther  direc- 
t ion (y). The  in te rmedia te  va lues  of  the  var iables  obta ined  
f rom solving the  first step (labeled with  a superscr ip t  *) are 
subsequen t ly  used  in the  second step in solving for the so- 
lu t ion values  after a full t ime  step. 

The  grid d iagram shown in Table  Ia i l lustrates h o w  the  
first half- t ime step is implemen ted .  The  mode l  equa t ions  
and bounda ry  equa t ions  used  at each n u m b e r e d  locat ion 
are l is ted in Table  II. The  grid d iagram in Table  Ib is for the  
second  half- t ime step. The  equa t ions  and boundary  condi-  
t ions are l is ted in Table  III. Note  that  at posi t ions [3] and 
[6], the  condit ion,  02 = r was used  ins tead of  the  condi-  
t ion l is ted prev ious ly  in Eq. [12]. This Dir ichle t  condi t ion  
was necessary  to obtain  a par t icular  solut ion (25, 26). It  
states that  the  potent ia l  does not  change  dur ing  that  half- 
t i m e  step. The  N e u m a n n  condi t ion  des i red at the  bo t tom 
b o u n d a r y  is subs t i tu ted  in the  formula t ion  of  the  govern-  
ing  equa t ions  for the  first half- t ime step. However ,  a solu- 
t ion to the  equa t ions  could  not  be a t ta ined with  this condi-  
t ion i m p l e m e n t e d  in the  second half- t ime step. 

Results and Discussion 
The  uti l i ty of  the  mode l  in s imula t ing  the  behav ior  of  a 

lead d iox ide  e lec t rode  in a lead-acid cell  is de t e rmined  by 
analyzing the  resul ts  p roduced  under  var ious  condit ions.  
Ra ther  than  s tudy ing  all possible  parameters  and operat-  
ing  condit ions,  which  wou ld  be  an ove rwhe lming  task, a 
few impor t an t  case s tudies are p resen ted  to exhib i t  the  
m o d e l  predic t ions  of  the  d ischarge  behavior  of  a lead diox- 
ide electrode.  The  mode l  is used here  to p roduce  two- 
d imens iona l  profiles of  the  concent ra t ion  of  the  e lec t ro ly te  
(c), the  overpoten t ia l  @), and the  potent ia l  drop  across the  
e lec t rode  th ickness  

"l]PbO 2 = Ol(0,y) - ~ P 2 ( x t h , Y )  [19] 

Table III. Model equations solved in the y-direction 

[11 
&/% = o 

Eq {2] 
8~210y = 0 

~2, = 0 

:,~:o 

I4] 
0c/~ = 0 

Eq. [2] 

Eq. [4x] 

[7] 
C =ere, 

E+ [2] 
~2 = <I,2,~,+ 

i~= = l / y h z ~  

0r = -U(~=*=z+) 

[2] 
Eq [1] 
Eq. [2] 
Eq [3] 

Eq. [4y] 

Eq [5] 

[3] 
&/~  = 0 

Eq. [2] 

~ 2 . = o  

~:, = o 
E+ {s] 

o+,/0z = -z/C#=~=~) o~ (= 0) 

[5] 
Eq. [1] 
Eq. [2] 
Eq. [3] 

Eq. [~] 

Eq. [4y] 

Eq. [~] 

[6] 
&/0y = o 

E+ [2] 

Eq. [4x] 
:2~ = 0 

Eq. Is] 

Eq. Is} 

[7] 
C = at,, 

Eq. [2] 

G = I/yhz~ 

Eq. [5] 

Is} 

Eq. {2] 

:2, = I / y h z ~  
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Table IV. Parameter values studied 

Parameter Symbol Value 

Half-thickness of porous electrode 
Initial acid concentration 
Conductivity of grid/electrode region 
Temperature 

zth 0.10 or 0.05 cm 
c.:,~ 0.0049 mol/cm 3 * 
a,, 48000 or 4800 S/cm 
T 300 or 250 K 

* Also varied linearly with y 
from 0.0049 to 0.0039 moI/cm z 

The independent  parameters investigated were the half- 
thickness of the porous electrode (xth), the conductivitY of 
the grid/electrode region ((r~), and the temperature (T). The 
initial acid concentration (c~r which is also the concentra- 
tion maintained at the reservoir boundary during dis- 
charge, was varied to study the effects of concentration 
gradients due to an unmixed reservoir. The values of each 
parameter tested are listed in Table IV. 

The discharge behavior of a lead dioxide electrode at a 
constant applied current of -22.5A and at 300 K is pre- 
sented first. The current corresponds to a current density 
of -300 mA/cm 2 entering the electrode at the reservoir in- 
terface. The electrode half-thickness (xth) was set at 0.1 cm, 
and the half-thickness of the grid/electrode region (Xce) was 
set at 0.05 cm. Using values from Bode (2), the conductivity 
of the grid/electrode region, ~ee, was set to be one order 
magnitude greater than the conductivity of  the lead diox- 
ide region (~Pbo2). The other parameters are given in Table 
V. 

Figure 3 shows the distributions of concentration in the 
electrode after a 60s discharge. The concentration of the 
acid is reduced due to the electrode reaction since diffu- 
sion from the reservoir is not rapid enough to maintain c at 
c~s in the entire electrode. Note that concentration gradi- 
ents in the y-direction are negligible during the discharge 
of the electrode. The reason may be due to the fact that the 
initial porosity distributions in the electrode were as- 
sumed to be uniform; although, in reality it is very likely 
that they are not. Nonuniform porosity distribution gives 
rise to nonuniform electrode conductivity and unequal dif- 
fusion rate of the acid. Additionally, nonuniform porosity 
distribution may occur upon cycling. This effect has been 
observed experimentally (11) and has been demonstrated 
by the work of Gu et al. (10), in which it was illustrated that 
during discharge followed by rest and charge and depend- 

Table V. Parameter values held fixed 

Parameter (reference number) Symbol Value 

Acid Electrolyte conductivity at 25 ~ (2) ~2s 0.79 S/r 
Acid diffusion coefficient at 25 ~ (16) D2s 3.2 x 10 -~ crn2/$ 
Applied current I -22,5 A " 
Anodic transfer coefficient (16) ao 0.5 
Cathodic transfer coefficient a~ 1.5 
Density of lead-sulfate pebso~ 6.3 g/era s 
Density of lead-dioxide Pew= 9.7 g /cm s 
Exchange current density at c~r io,~r 0,002 A / c m  ~ 
Exponent for concentration dependence of io "/ 1.5 
Exponent for deposition coverage (16) ~ 1.0 
Exponent for tortuosity of pore system er 1.5 
Exponent for tortuosity of solid matrix ezra 0.5 
Half-thickness of current collector z~ 0.05 cm 
Height of electrode Yh 10.0 cm 
Lead dioxide conductivity aebo~ 4800 S /cm 
Maximum porosity e r ~  0.50 
Maximum specific surface area a r ~  100 cm2/cm a 
Partial molar volume for the electrolyte (2) ~ 45.0 cm~/mol 
Partial molar volume for the solvent (2) 17o 17,5 crnS/mol 
Reference concentration of the electrolyte (16) c ~  0.0049 real~era 3 
Time step At 0.1 $ 
Transference number (2) t~ 0.72 
Width of the electrode plates z~ 7.5 crn 

�9 Current is negative because it flows in the 
negative x-direction into the PbO2 electrode 
from the reservoir and in the negative y-direction 
out of the PbO2 electrode into the tab (see Fig. 2) 

0 . 0 0 4 9  

C 
0 
t3 
C 

I- 
t 
a 
t 
i 
o 
n 

( m e l / ~ r d )  

Ll/ / / 

/ / / ! / / / / / / / / / / / 7 ,  , ,~7, , 

I 
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, c e n t e r  ( x = O )  

Fig. 3. Concentration distribution after 60s discharge (x~, = 0.05 cm, 
X,h = 0.10 cm, ~cc 48,000 S/cm, and ~rPbo2 = 4800 S/cm). 

ing on the operating temperature the porosity distribution 
is not fully recovered to the original distribution. Also, to 
examine whether or not greater depth of discharge would 
result in nonuniformities, the electrode was discharged for 
120s, and it was found that the two-dimensional effects 
were still minimal as expected because of the uniform, ini- 
tial conditions employed. 

In Fig. 4, the distribution of the overpotential, as defined 
by 

n = q)l - r [20] 

shows that the absolute value of overpotential is higher 
near the reservoir boundary. Note that the viewpoint of the 
plot has been rotated for a clearer view of the contour. Due 
to the high conductivity of the solid, the gradients of q)l are 
small (Eq. [3]). Consec luently, changes in overpotential are 
due mostly to variations in the electrolyte potential, r 
Near the reservoir boundary, most of the applied current 
density exists in the solution 

Z2x -= and h~,zly ~ 0 [21] 
YhZw 

Therefore, the electrolyte potential and concentration gra- 
dients are highest there (Eq. [4x]). However, under these 
conditions the electrolyte potential gradients in the y- 
direc~on are not sufficient to produce a significant cur- 
rent, i2y, in that direction. This explains the uniform con- 
centration with respect to the y-direction. 

In Fig. 5, the electrode potential (~pbo2), as defined in Eq. 
[19], is shown to have a nearly planar contour relative to the 
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B O T T O M  

Fig. 4. Overpotential distribution after 60s discharge (Xcc = 0.05 cm, 
x,h =. 0 .10  cm, ~c, = 48 ,000  S/cm, and ~ 2  = 4 8 0 0  S/cm). 
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Fig. 5. Electrode potential vs. time and height (x,, = 0.05 cm, Xth = 

0.10 cm, Gcc = 48,000 S/cm, and ~Pm2 = 4800 S/cm). 

t ime of discharge and the vertical position. The electrode 
potential decreases with time due to electrode polariza- 
tion. The electrical resistance of the electrode material 
contributes to the voltage drop from the bottom to the top 
of the electrode. Remember,  that current flows up to the 
tab connector at the top boundary (y = 0) during discharge. 

To determine the effect the conddctivity of the solid Pb 
in the grid has on electrode behavior, G~c was set equal to 
~Pbo2. The electrode potential profile vs. t ime and y- 
position in Fig. 6 is steeper than in Fig. 5 due to the re- 
duced conductivity of the grid/PbO2 region. The result of 
reducing ~ by an order of magnitude is a twofold increase 
in the absolute value of the minimum electrode potential. 
However, with such conduct/v/ties, and even with much 
lower values (~100 S/cm), the previously presented pro- 
files are essentially unchanged. With the electrode dimen- 
sions studied, the ohmic losses due to the solid play a less 
crucial role in the performance of the electrode than losses 
due to the electrolyte because the solid conductivity is 
much greater than the electrolyte conductivity. 

In the manufacturing process of porous lead dioxide 
electrode plates, an expanded lead grid is coated with a 
"paste" of PbO2 which adheres to the grid (28). The paste 
can be constructed to extend beyond the volume of the 
grid, which is called overpasting (29). As shown in Fig. 2, a 
typical range of overpasting has the paste extended be- 
yond the grid by about 50% of the thickness of the grid (29). 
Conversely, the paste can be constructed with the paste as 
flush as possible along the sides of the grid, which results 
in min imum overpasting (29). 

In the previous analysis, the half-thicknesses of the po- 
rous electrode matrix, xth, and current collector grid, Xc~, 

/ / / / / / / / , / / / / /A// / / / /J 
/ / / I / / / / / / / / / / / f / / / / / _ /  

. ///////////////I////// 
/ i / t / l  l ; l l  l / l  t / I / l  l l l l /  / I / I /  

O / /  
N j 

i 

, C E N T E R  ( x = O )  

~ y  

Fig. 7. Concentration distribution after 60s discharge (x~ = xth = 
0 . 0 5  cm and ~c~ = 4 8 , 0 0 0  S/cm). 

are 0.1 and 0.05 cm, corresponding to maximum overpast- 
ing. For comparison, an electrode with min imum over- 
pasting is examined next by using the same grid dimen- 
sions and making x~ = xth = 0.05 cm. The resul t ing 
electrode is smaller and contains only one region. In this 
comparison, the conductivity of the grid/electrode region 
is the same as previously (i.e., ~c~ = 48,000 S/cm). Figure 7 
shows the distribution of concentration in the electrode 
after 60s of discharge for this case. The profile should be 
compared to Fig. 3, and is similar in contour except  that 
the depletion of acid concentration at the center boundary 
is more pronounced. This is because the same current is 
drawn from a smaller electrode. 

The next independent  variable considered is tempera- 
ture. The electrolyte conductivity and diffusion coefficient 
depend on temperature according to (10) 

/ 1 01 1:0 ) 
K = K25 exp \29--~-.15 [22] 

O = O..  exp  ~29--Ei-.1~ [23] 

where K and D are the conductivity and the diffusion coef- 
ficient of 1.280 sp gr H2SO4 at the absolute temperature, T. 
The conductivity and diffusion coefficient at 25~ are K25 
and D25. The temperature dependence of other parameters 
such as the exchange current density and the conduct/v/- 
ties of the solids were not included in the model. 

The profile of concentration after a minute of discharge 
at 250 K (-23~ is shown in Fig. 8. In comparison to Fig. 7, 

o l l  

-- "~ -~  y C E N T E R  ( x  O )  

Fig. 6. Eleclrode potential vs.  time and height (Xcc = 0.05 cm, x~ = Fig. 8. Concentration distribution after 60s discharge (xcr = x~ = 
0 .10 cm, and @co = @P~o2 = 4800 S/cm). 0.05 cm, G= = 48,000 S/cm, and T = 250 K). 
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Fig. 9. Concentration distribution after 60s discharge beginning with 
a nonuniform initial profile (x~ = x,h = 0 . 0 5  cm, and ~ = 4 8 , 0 0 0  
S/cm). 

the concentration gradients are steeper at the lower tem- 
perature. The slower diffusion at the lower temperature re- 
tards the acid electrolyte transport to the acid depleted 
center boundary. The minimum shifts to the middle of the 
electrode because the reduced porosity at the reservoir 
boundary impedes the acid transport. 

The previous results indicate that changes in the depen- 
dent variables are small in the y-direction relative to varia- 
tions in the x-direction. Since a two-dimensional model  of 
a complete cell has not been generated, it would be prema- 
ture to conclude that such a model would yield predictions 
with the same uniformity. Simulating discharge under 
nonuniform initial and boundary conditions produces re- 
sults which indicate the electrode's behavior to gradients 
caused possibly by the other cell components,  such as the 
reservoir or the separator. For example, nonuniform acid 
concentration in the reservoir occurs as a result of density 
stratification due to gravity during discharge and nonuni- 
form reaction rate in the electrode. 

Introducing an initial gradient in concentration in the 
electrode and maintaining it at the reservoir resulted in the 
concentration profiles shown in Fig. 9. The initial profile is 
superimposed over the profile after 60s of discharge for im- 
mediate comparison. The initial concentration was set 
with a linear gradient along the height of the electrode 
which was maintained at the reservoir boundary as c~ly). 
For this case study, the difference between the top and 
bot tom concentrations along the reservoir boundary was 
20%. The physical representation of this boundary condi- 
tion is difficult to justify in the presence of diffusion along 
the boundary, but it demonstrates the model sensitivity to 
nonuniform conditions in the y-direction. After 60s, the 
gradient introduced in the reservoir induced a 35% differ- 
ence in between the top and bottom concentration at the 
centerline. Figure 9 demonstrates that the model  can be 
used to predict significant gradients in the y-direction 
when nonuniform boundary conditions are used. 

Conclusions and Recommendations 
The model  presented here has been shown to be capable 

of predicting the discharge behavior of a porous PbO2 elec- 
trode in two dimensions. The model  predictions can be 
used to promote a cause and effect understanding of the 
complex t ime-dependent phenomena. The model provides 
a basis for building two-dimensional models of other elec- 
trodes and cells since the equations are fundamental to po- 
rous electrode modeling. 

The model predictions should be compared to experi- 
mental  data. Then, the model should be coupled with a 
negative porous Pb electrode model with a separator to 
produce a complete cell model to determine the degree of 
nonuniformity parallel to the electrode surfaces under cell 
conditions. Predictions of cycles of discharge, rest, and 
charge could be included by altering the kinetic equation 
to handle charge (Eq. [10b] in Ref. (10)). In addition, the sig- 

nificance of assuming that the convective flow is negligible 
should be reconsidered for a complete cell model. 

Manuscript submitted March 9, 1987; revised manu- 
script received ca. July 28, 1987. 
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LIST OF SYMBOLS 

maximum specific electroactive interfacial area, 
e r a - 1  

concentration of the binary (H § and H S O ( )  elec- 
trolyte, mol/cm 3 
reference concentration of the binary electrolyte, 
mol/cm 3 
concentration of the binary electrolyte at the res- 
ervoir, mol/cm ~ 
diffusion coefficient of the binary electrolyte, 
cm2/s 
diffusion coefficient of the binary electrolyte at 
25~ cm2/s 
tortuosity factor used in Eq. [t] and [4] 
tortuosity factor used in Eq. [3] 
Faraday's constant, 96,487 C/tool of electrons 
finite spatial stepping distance in finite difference 
algorithm, cm 
exchange current density at cref, A/cm 2 
superficial current density in the matrix phase, 
A/cm 2 
superficial current density in the solution phase, 
A/cm 2 
applied current, A 
local transfer current per unit volume, A/cm 3 (j = 
V. i2) 
molecular weight of species i, g/mol 
universal gas constant, 8.3143 J/tool �9 K 
time, s 
transference number  of H + relative to velocity of 
solvent 
absolute temperature, K 
partial molar volume of the electrolyte, cm3/mol 
partial molar volume of the solvent, em3/mol 
horizontal distance, em 
half-thickness of the grid/electrode region, cm 
half-thickness of the electrode, cm 
vertical distance, cm 
height of the electrode, cm 
width of the electrode plate, cm 

Greek Symbols 

~a transfer coefficient in the anodic direction 
cr transfer coefficient in the cathodic direction 

exponent  for the concentration dependence of 
the exchange current density 

At finite time step in finite difference algorithm, s 
hx finite stepping distance in x-direction, cm 
hy finite stepping distance in y-direction, cm 
e porosity or void volume fraction of solid 
�9 o electrochemical limiting porosity or final dis- 

charge porosity 
em~ maximum porosity of solid 

exponent  for the porosity dependence of the ac- 
tive interfacial area 
overpotential, V 

~PbO~ lead dioxide electrode potential, V 
K conductivity of the solution, l ] - ' cm-  i 
K~ff effective conductivity of the solution, ~-lcm-1 
K2~ conductivity of the solution at 25~ ~ - l cm 1 
Pi density of a solid phase of species i, g/cm 3 
~cc conductivity of the grid/electrode region, S/cm 
~PbO2 conductivity of the PbO2 matrix, S/cm 
~s conductivity of the solid, S/cm 
@, potential in the solid matrix, V 
aP2 potential in the solution, V 
aP2.r~ potential in the solution at the reservoir, V 

Subscripts 

e electrolyte 
0 solvent 
+ cation 
1 solid matrix phase 
2 electrolyte phase 
x horizontal direction normal to the electrode/ 

reservoir interface 
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y vertical direction parallel to the electrode/reser- 
voir interface 

REFERENCES 

1. D. Simonsson, This Journal, 120, 151 (1973). 
2. K. Micka and I. Rou~ar, Electrochim. Acta, 18, 629 

(1973). 
3. K. Micka and I. Rou~ar, Collect. Czech. Chem. Com- 

mun., 40, 921 (1975). 
4. K. Micka and I. Rou~ar, Electrochim. Acta, 19, 499 

(1974). 
5. K. Micka and I. Rou~ar, ibid., 21, 599 (1976). 
6. D. Gidaspow and B. S. Baker, This Journal, 120, 1005 

(1973). 
7. J. Newman and W. Tiedemann, AIChE J., 21, 25 (1975). 
8. W. H. Tiedemann and J. Newman, in "Battery Design 

and Optimization," S. Gross, Editor, p. 23, The Elec- 
trochemical Society Softbound Proceedings Series, 
PV 79-1, Princeton, NJ  (1979). 

9. W. S. Sunu, in "Electrochemical  Cell Design," R. E. 
White, Editor, p. 357, Plenum Press, New York, 
(1984). 

10. H. Gu, T. V. Nguyen, and R. E. White, This Journal, 
134, 2953 (1987). 

11. H. Bode, "Lead-Acid Batteries," J. Wiley & Sons, New 
York, (1977). 

12. J. S. Newman and C. W. Tobias, This Journal, 1{}9, 1183 
(1962). 

13. K. J. Euler, Electrochim. Acta, 13, 1533 (1968). 
14. J. S. Dunning, D. N. Bennion, and J. S. Newman, This 

Journal, 118, 1251 (1971). 

15. K. W. Choi and N. P. Yao, ibid., 125, 1011 (1978). 
16. K. W. Choi and N. P. Yao, ibid., 126, 1321 (1979). 
17. J. Lee, K. W. Choi, N. P. Yao, and C. C. Christianson, 

ibid., 133, 1286 (1986). 
18. K.W. Choi and N. P. Yao, in "Battery Design and Opti- 

mization," S. Gross, Editor, p. 51, The Electrochem- 
ical Society Softbound Proceedings Series, PV 79-1, 
Princeton, NJ  (1979). 

19. Y. Nishiki, K. Aoki, K. Tokuda, and H. Matsuda, J. 
Appl. Electrochem., 16, 291 (1986). 

20. W. G. Sunu and B. W. Burrows, This Journal, 129, 688 
(1982). 

21. W. G. Sunu and B. W. Burrows, ibid., 131, 1 (1984). 
22. B. Carnahan, H. A. Luther, and J. O. Wilkes, "Applied 

Numerical Methods," J. Wiley & Sons, New York 
(1969). 

23. J. S. Newman, "Electrochemical Systems," Prentice- 
Hall, Inc., Englewood Cliffs, NJ  (1973). 

24. J. Van Zee, M. A. Edmund,  and R. E. White, Ind. Eng. 
Chem. Fund., 19, 438 (1980). 

25. T. V. Nguyen, C. W. Walton, R. E. White, and J. Van 
Zee, This Journal, 133, 81 (1986). 

26. T. V. Nguyen, C. W. Walton, and R. E. White, ibid., 133, 
1130 (1986). 

27. E. C. Dimpault-Darcy, M.S. Thesis, Texas A&M Uni- 
versity, College Station, TX (1987). 

28. C. A. Vincent, "Modern Batteries," Edward Arnold 
Ltd., London, UK (1984). 

29. D. C. Melnik, "Expanded Lead Grids for Batteries," 
Report on seminar, Lead Development  Association, 
London, UK (January 1981). 

I-BIEM. An Iterative Boundary Integral Equation Method for 
Computer Solutions of Current Distribution Problems with 

Complex Boundaries A New Algorithm 
I. Theoretical 
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Ohio 44106 

Margaret A. Reid* 

Case Center for Electrochemical Sciences and the Department of  Chemistry, Case Western University, Cleveland, Ohio 
44106 and NASA Lewis Research Center, Cleveland, Ohio 44135 

ABSTRACT 

A new algorithm for an iterative computation of solutions of Laplace's or Poisson's equations in two dimensions using 
Green's second identity is presented. This algorithm converges strongly and geometrically and can be applied to curved, 
irregular, or moving boundaries with nonlinear and/or discontinuous boundary conditions. It has been implemented in 
Pascal on a number  of micro- and minicomputers and applied to several geometries. Cases with known analytic solutions 
have been tested. Convergence to within 0.1% to 0.01% of the theoretical values are obtained in a few minutes on a micro- 
computer. 

The evaluation of current and potential distributions in 
configurations similar to those found in actual electro- 
chemical applications can be difficult at best. Those con- 
figurations for which analytic solutions exist often derive 
from the field of heat flow and almost universally invoke 
linear or linearized boundary conditions. A wide variety of 
techniques for computer  solutions of these problems can 
be found in the literature (1). Computer simulations often 
involve finite element or finite difference calculations over 
a regular grid, often rectilinear or square, although other 
grids have been used to match nonrectangular boundaries. 
Another technique which has been used for some geome- 
tries where it is applicable has been to find a Green's  func- 
tion for the problem. This involves finding a function 

*Electrochemical Society Active Member. 

[which may be analytic or a fitted polynomial in terms of, 
e.g., Bessel functions (2) or B-spline functions (3)] which 
satisfies Laplace's equation for a given set of boundary 
conditions. Finding this function often requires a good 
deal of mathematical intuition, and a separate function 
must  be derived or developed for each case. 

One of the more popular methods, the finite difference 
method (FDM), involves a relaxation network technique in 
which a domain is simulated with a discrete grid and the 
values at the points are systematically and repeatedly 
replaced with the average of their neighbors using a ver- 
sion of the mean value theorem that is discrete. For a reso- 
lution of i/n of the domain size, arrays of the orders of n 2 
points must  be used for a two-dimensional problem. The 
FDM is easily understood and can be readily implemented 
on a small computer  at low resolution. With even a moder- 
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