
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Faculty Publications Computer Science and Engineering, Department
of

2006

Concurrent Multiple- Issue Negotiation for Internet-Based Concurrent Multiple- Issue Negotiation for Internet-Based

Services Services

Jiangbo Dang

Michael N. Huhns
University of South Carolina - Columbia, huhns@sc.edu

Follow this and additional works at: https://scholarcommons.sc.edu/csce_facpub

 Part of the Computer Engineering Commons

Publication Info Publication Info
Published in IEEE Internet Computing, Volume 10, Issue 6, 2006, pages 42-49.

This Article is brought to you by the Computer Science and Engineering, Department of at Scholar Commons. It has
been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more
information, please contact digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/csce_facpub
https://scholarcommons.sc.edu/csce
https://scholarcommons.sc.edu/csce
https://scholarcommons.sc.edu/csce_facpub?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

Jiangbo Dang
and Michael N. Huhns
University of South Carolina

Concurrent Multiple-
Issue Negotiation for
Internet-Based Services

Negotiation is a technique for reaching a mutually beneficial agreement among

autonomous entities. In an Internet-based services context,multiple entities will

likely be negotiating simultaneously. The concurrent negotiation protocol extends

existing negotiation protocols, letting both service requestors and service

providers manage several negotiation processes in parallel. Colored Petri nets,

which have greater expressive power than finite state machines and offer support

for concurrency, represent the negotiation protocol and facilitate the analysis of

desirable properties.

Negotiation is a process by which
autonomous entities communicate
and compromise to reach agreement

on matters of mutual interest while max-
imizing their individual utilities. In
e-commerce, Web services, and online
supply chains, participants negotiate
about the properties of the services they
request and provide to enter into binding
agreements and contracts with each other.
To meet negotiation requirements, partic-
ipants must account for multiple issues,
including functionality and quality issues,
such as response time, cost, and price.

In an Internet-based service environ-
ment, multiple service requestors and
providers will likely be negotiating simul-
taneously. Concurrent negotiation is both
time efficient and robust when an entity
(a software agent) negotiates with mul-

tiple other entities to choose the best
offer, and essential when an agent
requests a service involving multiple
agents, as in a supply-chain problem.

In many-to-many negotiations, each
agent can be involved in multiple nego-
tiations with different participants at the
same time. However, each individual
negotiation involves only two agents, so
these negotiations are bilateral. Accord-
ingly, we call these many-to-many bilat-
eral negotiations. In this article, we
consider a competitive environment and
assume the agents are self-interested and
know only their own negotiation prefer-
ences. We present a protocol that supports
many-to-many negotiation in which
many agents negotiate with many other
agents simultaneously.1

Petri nets are a graphical and mathe-

42 NOVEMBER • DECEMBER 2006 Published by the IEEE Computer Society 1089-7801/06/$20.00 © 2006 IEEE IEEE INTERNET COMPUTING

A
ge

nt
 N

eg
ot

ia
ti

on

matical modeling tool applicable to many systems.
They’re a promising tool for describing and study-
ing concurrent, asynchronous, distributed, and
parallel information-processing systems.2 Because
colored Petri nets (CPNs) support concurrency and
have greater expressive power than finite state
machines (FSMs), we use them as a modeling lan-
guage for our concurrent negotiation protocol.

Negotiation Protocol
We combine the two-phase commit protocol3 from
database transaction theory and the extended con-
tract-net protocol (see the “Related Work in Service
Negotiation” sidebar) to introduce two phases of
accept and reject into the alternating-offers proto-
col4 and thus support concurrent multi-issue nego-
tiation. During a negotiation session, an agent can
use several messages to communicate with its oppo-
nent. Table 1 defines the negotiation performatives.

In multiple-issue negotiation, different agents
have different preferences over the negotiation
issues. Their preferences are usually represented as
utility functions with issues as variables. In alter-
nating-offer protocols, an agent makes an offer
that gives it the highest utility at the beginning of
the negotiation, and then incrementally concedes
by offering its opponent a proposal that reduces
the utility as the negotiation progresses.

Let a and b represent the negotiating agents
and I a set of n negotiation issues, where I = {I1,
I2, … In}. Given Ob�a,k representing an offer from b
to a at negotiation round k, we define a’s utility as
Ua(Ob�a, k). We define agent b’s utility similarly.

Definition 1: In a negotiation in which agent a
negotiates with a set of agents B = {b1, b2, …, bn}
concurrently, agent bi’s offer Obi�a,k is better than
agent bj’s offer Obj�a,k if and only if Ua(Obi�a,k) >
Ua(Obj�a, k).

Definition 2: In a negotiation in which agent a
negotiates with a set of agents B = {b1, b2, …, bn}
concurrently, agent bi’s offer is acceptable to agent
a at round k if

Ua(Obi�a,k) ≥ Ua(Oa�bi, k+1) and
Ua(Obi�a, k) = argmax Ua(Obi�a, k) for bi � B ,

where the argmax function returns the max value
from a set.

As Figure 1 illustrates, a requestor agent a1

locates two provider agents, b1 and b2, and initi-

ates two negotiation threads simultaneously by
sending each agent its proposal. After evaluat-
ing the proposal, b2 sends its counterproposal to
a1. Although b1 is negotiating with another
requestor agent a2 when it receives a1’s propos-
al, b1 sends its counterproposal to a1, because b1

has not yet reached an agreement with a2. After
evaluating b2’s counterproposal, a1 finds it
acceptable and pre-accepts it, while prerejecting
other counterproposals at the same time. Agent
b1 receives the prereject from a1 and a pre-accept
from a2, so it sends the formal proposal to a2 and
prerejects all other requestors. While pre-accept-
ed b2 sends a1 its formal proposal, other prere-
jected agents send their counterproposals to a1.
If b2’s formal proposal is still acceptable, a1

accepts b2 and rejects all other providers. Simi-
larly, a2 sends the accept message to b1 and the
reject message to other providers.

Few existing protocols can handle this situa-
tion properly. In some protocols, for example, if b1

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2006 43

Negotiation for Internet-Based Services

Table 1. Negotiation performatives.

Messages Descriptions
Propose A requestor initiates the negotiation by proposing an offer

for a service.
Counterpropose An agent offers a new proposal in response to the previous proposal.
Formally propose An agent formalizes its pre-accepted proposal.
Pre-accept An agent temporarily accepts a proposal.
Prereject An agent temporarily rejects a proposal.
Accept An agent accepts a proposal.
Reject An agent rejects a proposal.

Figure 1. A concurrent negotiation sequence diagram. Requestor
agents a1 and a2 negotiate for services with two provider agents, b1
and b2. Negotiation continues among requestor and provider agents
until two agents reach an acceptable agreement and reject all other
proposals.

Propose

Counterpropose Counterpropose Counterpropose

Counterpropose

Counterpropose

Propose

Propose

Prereject

Prereject

Reject

Pre-accept

Accept Accept

Pre-accept

Formally propose Formally propose

Provider b2 Requestor a2Requestor a1 Provider b1

is one of the providers negotiating with a1 con-
currently, b1 must wait until all of a1’s negotiation
threads end. Even if b1 reached an agreement with
a1 earlier, a1 can still reject it; the agreement isn’t
finalized until a1 finishes all of its negotiation
threads. These protocols bind b1 to a one-sided
commitment and cause it to lose time and reduce
its chances of reaching a contract with other
agents. Such protocols are biased in favor of a1,
but still cause a1 the trouble of a likely decommit-
ment to the previously agreed proposals, and lead
to a loss of utility (decommitment penalty) and rep-
utation that would harm an agent interested in
long-term cooperation and gains.

Colored Petri Nets
To successfully negotiate in an Internet-based
environment, service requestors and provider
agents must comply with an interaction protocol.
The protocol should be correct, unambiguous,
complete, and verifiable. The ability to express cor-
rect protocols depends on the specification lan-
guage or tool used to model the protocol. FSMs
can express a variety of protocols in a conceptu-
ally simple and intuitive way. However, they aren’t

adequately expressive to model more complex
interactions, especially those with some degree of
concurrency. Petri nets were originally a response
to FSMs’ limited modeling power. They provide the
benefits of FSMs while allowing greater expres-
sivity and concurrency.

A Petri net is a directed, bipartite graph whose
nodes represent a process’s possible states and
actions and whose arcs represent possible transi-
tions among states and actions. Multiple tokens
that move through the graph and indicate its cur-
rent status provide concurrency. In a CPN, each
token is extended with a value referred to as color,
which is a schema or type specification.

CPNs have great value for modeling a concur-
rent protocol because they provide a relatively
simple and precise formal model, an intuitive
graphical representation, full expressiveness with
explicitly represented states, support for concur-
rency, and a firm mathematical foundation for
investigating and verifying properties.

Negotiation Process
Figure 2 describes the concurrent negotiation pro-
tocol for services. For simplicity, we omitted some

44 NOVEMBER • DECEMBER 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Agent Negotiation

Figure 2. Colored Petri net for concurrent negotiation. Circles represent places, or colored Petri net (CPN) states; rectangles
represent transitions between states.

(p,s,r,c,k)

(p,s,r,c,k)

(p,s,r,c,k)

(p,s,r,c,k)

(p,s ,r ,c ,k)
(p,s,r,c,k)

(q,r,s,c,k)

(q,r,s,c,k) (q,r,s,c,k)

(q,r,s,c,k)

(q,r,s,c,k)

(q,r,s,c,k)

(q,r,s,c,k)

(q,r,s,d,k)

(q,r,s,d,k)

(q,r ,s ,d ,k)

(q,r,s,d,k)

(p,s,r,c,k)

(p,s,r,c,k)

(p,s,r,c,k)

(p,s,r,c,k)

(p,s,r,c,k)

(p,s,r,c,k)

(p,s,r,c,k)

Provider accepts

Success

1' (propose , a , b, v, 0) Requestor accepts

(q,r,s,c,k)(q,r,s,c,k)

(q,r,s,c,k)

(q,r,s,c,k)

(q,r,s,c,k)

(q,r,s,c,k) (q,r,s,c,k)[p = formally propose,
 acceptable(c) = false]

[p = formally propose,
 acceptable(c) = true]

[q = formally propose,
 acceptable(d) = true]

[q = formally propose,
 acceptable(d) = false]

[p = pre-accept]

[q = pre-accept]

Provider
pre-accepts

[p = propose,
 acceptable(c)

= true]

[p = counterpropose ,
 acceptable(c) = true]

[q = counterpropose,
 acceptable(d) = true]

[q = counterpropose,
 acceptable(d) = true]

Provider rejects Failure Requestor rejects

[q = prereject] [p = prereject]

(p,s,r,d,k)

(p,s,r,d,k)

(p,s,r,d,k)

(p,s,r,d,k)

(p,s,r,d,k)

(p,s,r,d,k)

(p,s,r,d,k)

Requestor
counterproposes

Requestor formalizes Provider formalizesProvider prerejects

Provider pre-accepts Requestor pre-accepts

Requestor counterproposes Provider counterproposes

Provider prerejects

Requestor prerejects

Requestor prerejects

Requestor proposes

Provider counterproposes

[p = counterpropose,
r.status = f2-,

acceptable(c) = false]

[p = propose | counterpropose,
r.status = f1,

acceptable(c) = false]

[p = counterpropose,
s.status = f2-,

acceptable(c) = false]

[p = propose,
r.status! = f1,

acceptable(c) = false]

[q = counterpropose,
s.status = f1,

acceptable(d) = false]

Requestor pre-accepts

[q = counterpropose,
s.status! = f1,

acceptable(d) = false]

6 10

11

4 2 3 9

7

5 8

12

13

1

constraints such as time-out and exception han-
dling from the figure. The service requestor (state
1) initiates a negotiation process (place 1) by send-
ing an initial proposal to the service provider.
(Places represent the states of a CPN, and are
drawn as circles or ellipses. Transitions represent
the CPN’s actions, and are drawn as rectangles. We
will discuss them later.) The provider evaluates the
proposal (place 2) and pre-accepts it if it’s accept-
able (place 4); otherwise, it counterproposes (place
3). Two entities exchange counterproposals before
they find an acceptable offer (places 2 and 3). A
provider can prereject a proposal if it has pre-
accepted a counterproposal from another requestor
or another requestor has pre-accepted its proposal
(place 5). The pre-accepted requestor then sends its
formal proposal to the provider (place 6). If this
formal proposal is acceptable, the provider accepts
it (place 12). Otherwise, the provider prerejects this
proposal (place 5), and the requestor can send an
improved counterproposal (place 7), which the
provider could pre-accept (place 4) or reject final-
ly (place 13).

Agents need two-phase commitment (pre-
accept and accept) and the corresponding two-
phase rejection (prereject and reject) to deal with
concurrent encounters. Our protocol’s concurrent
negotiation process has two stages.

In stage one, service agents exchange counter-
proposals after service requestors initiate the nego-
tiations. When an agent receives an acceptable
proposal, it announces the start of negotiation
stage two by sending a pre-accept to the agent
who sent the acceptable proposal and a prereject
to the rest of the negotiating opponents.

In stage two, the negotiation enters a process
similar to a last-round first-price auction. The pre-
accepted entity returns its formal proposal while
prerejected agents send their counterproposals for
their final tries. If the former proposal is still
acceptable, the agent accepts it formally and
rejects other offers, ending the negotiation. Other-
wise, the agent will prereject it (we discuss this
later). In Figure 2, states 1, 2, and 3 belong to
negotiation stage one, and the remaining states
belong to negotiation stage two.

In this model, colored tokens have an attached
data value, which can be of an arbitrary complex
type. Color sets determine tokens’ possible values.
We use the CPN modeling language (CPN ML) to
make CPN declarations. Figure 3 defines the CPN
color set. The CPN ML descriptions in Figure 3 also
give us a formal way to express the system’s nego-

tiation process. We base the messages used on the
proposed negotiation performatives.

We define the type agentname as a string and
agenttype as an enumeration type containing two
possible values: requestor and provider. Status
indicates different negotiation statuses — that is,
f1 denotes the first negotiation stage, in which
none of the agents is prerejected or pre-accepted
yet; f2� denotes the status in which one agent has
prerejected other agents; and f2+ denotes the sta-
tus in which one agent has pre-accepted another
agent.

The type id is the product of the types agent-
name, agenttype, and status. The content type
represents the possible negotiation offer in a multi-
issue negotiation; we define it as a list of values of
integer, real, or string types. We also define sever-
al variables with the declared types and a Boolean
function acceptable(), which takes a content
variable as the argument and produces a true/false
value, as explained in Definition 2.

Each place, or CPN state, has an associated type
(color set) determining the kind of data that the
place can contain. A CPN’s colors can be arbitrar-
ily complex, such as a message with integer, real,
string, and list fields as in Figure 3. We write the
place type to the lower left or right of the place.
All places have the same type — message — so we
omit type definitions for them, as in Figure 2.

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2006 45

Negotiation for Internet-Based Services

Figure 3. Color set declaration. In the colored Petri net modeling
language, color sets determine possible values for each token.

color PERFORMATIVE = with propose | counterpropose | formally propose |

prereject | pre-accept | reject | accept;

color AGENTNAME = string;

color AGENTTYPE = with requestor | provider

color STATUS = with f1 | f2� | f2+

color ID = product AGENTTYPE * AGENTNAME * STATUS;

color VALUE = with float | int | string ;

color CONTENT = list VALUE;

color MESSAGE = product PERFORMATIVE * ID * ID * CONTENT * ROUND;

color ROUND = int

var m : Message;

var p, q : PERFORMATIVE;

var c, d : CONTENT;

var s, r : ID;

var k : ROUND;

fun acceptable(c: CONTENT);

A CPN state is called a marking, which consists
of several tokens distributed among the CPN’s
places. The tokens on a particular place are that
place’s marking. Each token carries a value (color),
which belongs to the type of the place on which the
token resides. For example, a possible marking of
place 1 is 1�(propose, a, b, v, 0). This marking con-
tains one token with value message = (propose, a,
b, v, 0), where propose is the performative, a is the
sender agent, b is the receiver agent, and v is a list
representing an offer at round k = 0. By conven-
tion, the prime symbol (�) denotes the number of
token appearances. An initial marking describes the
system’s initial state and is written on the upper left
or right of the place by convention. In our CPN,
place 1 has an initial marking consisting of a single
token with the value (propose, a, b, v, 0). Initially,
the remaining places contain no tokens.

To enable a transition in a marking, we must
be able to bind data values to the variables appear-
ing on the surrounding arc expressions and in the
transition’s guard such that

• each of the arc expressions evaluate to tokens
that are present on the corresponding input
place, and

• the guard (if any) is satisfied.5

As Figure 3 shows, the requester propose
transition has five variables:

• p of type performative,
• s of type id,
• r of type id,
• c of type content, and
• k of type round.

We assign data values to these variables by creating
the following binding: p � proposal, s � a, r �
b, c � v, k � 0. In addition to the arc expressions,
we can attach a list of Boolean expressions (with
variables) to each transition. This list of expressions
— or guard — specifies that we only accept bindings
for which all Boolean expressions evaluate to true.

For example, the provider counterpropose
transition uses a guard with three Boolean expres-
sions: (p = proposal|counterproposal, r.status = f1,
acceptable(c) = false). The result is true only if all
expressions are true. Except for the operator “.” —
which we use to extract status information from
a variable of type ID in the arc expression r. status
— the expressions’ meanings are straightforward.

An occurrence of the provider counterpro-

pose transition removes a token with value (propose,
a, b, v, 0) from place 2 and adds a token to output
place 3. We determine the values of the tokens
removed from an input place by evaluating the arc
expression on the corresponding input arc. Similar-
ly, we determine the values of tokens added to an
output place by evaluating the arc expression on the
corresponding output arc. After evaluating the
guard, the provider counterpropose transition
updates the token by changing the performative to
counterpropose, switching the sender and receiver,
updating its offer, and incrementing round k.

An occurrence sequence describes a CPN exe-
cution and specifies the markings that are reached
and the steps that occur. In the initial marking, the
requestor propose transition is enabled in a
binding. Hence, the occurrence sequence can be
continued. This leads to a new marking in which
evaluating the binding and guard values enables
one of the transitions (provider counterpropose,
provider pre-accept, and provider prere-
ject). An infinite occurrence sequence consists of
an infinite number of markings and steps and cor-
responds to a nonterminating system execution.

Figure 2 models concurrent pairwise negotia-
tion between a service requestor and a provider.
Our proposed protocol lets service requestors and
service providers manage several negotiation
processes in parallel.

Negotiation Algorithm
Figure 4 illustrates the proposed negotiation
mechanism for service requestors. Evaluating
CounterProposal deals with all counterpropos-
als in phase one. It evaluates the counterpropos-
als from the providers and sends a pre-accept,
prereject, or counterpropose regarding the evalu-
ation result. EvalutingCounterProposal2 eval-
uates all counterproposals in phase two. It sends
a pre-accept to the sender if its proposal is accept-
able; otherwise, it sends a reject. Evaluating-
FormalProposal evaluates the formal proposal
from the pre-accepted entity. It sends an accept if
the formal proposal is acceptable and a prereject
otherwise. The CPN diagram for a service provider
is similar to the diagram in Figure 4. However, it
starts with a ReceiveProposal transition that
leads to an Evaluating place, which is equiva-
lent to EvaluatingCounterproposal in Figure 4.

Because we assume that the agents are self-
interested, an agent can propose a good offer in
stage one to scare off its competition and then
send a lower formal proposal later. It won’t suc-

46 NOVEMBER • DECEMBER 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Agent Negotiation

ceed because other agents’ counterproposals will
likely beat this lower proposal. In addition, we
enforce a negotiation strategy that avoids this sit-
uation. Thus, the system peremptorily rejects any
formal proposals that are worse than their pre-
accepted proposals. In this case, the requestor will
pre-accept the best offer from the received coun-
terproposals as a replacement.

Theoretical Analysis
Any negotiation protocol should guarantee that a
negotiation process following it will eventually
terminate.

We define a termination property as follows:
given a set of service requestors A and a set of
service providers B, a negotiation process
engaged by the entities from A and B using our
concurrent protocol ends after a finite number
of steps.

Proof: From Figure 2, we can see that three loops
can occur during the negotiation process:

• a loop on states 2 and 3;
• a loop on states 5, 7, 4, and 6, and
• a loop on states 8, 11, 9, and 10.

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2006 47

Negotiation for Internet-Based Services

Figure 4. Colored Petri net for a service requestor. A service requestor initiates a negotiation, exchanges counterproposals
with its opponents, and then ends a negotiation through two phases of accept and reject.

R
ec

ei
ve

 d
at

a
Communication channel

Receive
pre-accept

Formally
propose

Counterpropose

Counterpropose

Prereject

Prereject

Reject

Pre-accept

Pre-accepted

Waiting response
to counterproposal

WaitingStart

Rejected

Accepted

Waiting response
to formal proposal

Waiting response
to prereject

Waiting response
to pre-accept

Prerejected

Evaluating
counterproposal

Evaluating
counterproposal2

Evaluating
formal proposal

Pre-accept

Accept

Propose

Receive
prereject

Receive
counterproposal

Receive
counterproposal

Receive
formal proposal

Receive
reject

Receive
accept

[q = pre-accept]

[q = prereject]

1' (proposal, a, b, v, 0)

(q,r,s,d,t)

(q,r,s,d,t)

(p,s,r,c,t) (p,s,r,c,t)

(p,s,r,c,t)

[q = counterpropose,
s.staus = f1]

[q = counterpropose,
s.status! = f1]

[q = formal propose]

[q = reject]

[q = accept]

[q = counterpropose, s.status = f1, acceptable(d) = false]

[q = formal propose, acceptable(d) = false]

[q = formal propose, acceptable(d) = true]

[q = counterpropose, s.status! = f1, acceptable(d) = false]

[q = counterpropose, acceptable(d) = true]

[q = counterpropose, acceptable(d) = true]

[q = counterpropose, s.status = f2-, acceptable(d) = false]

To prove that the protocol will end in a finite num-
ber of steps, we must prove that none of the three
loops could have an infinite number of steps.

In loop 2�3, service entities exchange coun-
terproposals through the alternating-offer proto-
col, in which an entity must concede to offer deals
that its opponents are more likely to accept if it
prefers an agreement to the conflict deal. These
principles apply to all concurrent negotiation
threads. Many existing mechanisms can guaran-
tee that agents will continue progressing during
the negotiation. With a predefined minimum hop,
one entity will eventually pre-accept the counter-
proposal from its opponents and exit from loop
2�3 or time out. Also, an agent can be prerejected
out of loop 2�3 when its opponent pre-accepts a
proposal from a peer in another concurrent nego-
tiation thread.

In loop 5�7�4�6, the prerejected requestor
sends its new counterproposal to the provider and
is pre-accepted; however, its formal proposal is
then prerejected and it must send a new counter-
proposal. Assume a service provider b negotiates

concurrently with a set of n service requestors: a
pre-accepted requestor a0 and a set A� {A – a0} of
n – 1 prerejected requestors. After the provider
receives the formal proposal from a0 and the coun-
terproposals from A�, let ai be the one with the best
offer from A�. By comparing the offers from a0 and
ai, we have two possible situations.

If , requestor a0 will
be accepted and reach state 12, all requestors from
A� will end with rejections and reach state 13, and
the negotiation will end.

If , requestor a0 will
be prerejected and reach state 5, requestor ai will
be pre-accepted and enter state 4, and all other
agents will be rejected and out of the loop. This
leaves only ai and a0. The negotiation ends if one
of them can overbid the other in two consecutive
rounds. An infinite loop occurs when ai and a0

keep overbidding each other by a tiny amount. We
can prevent this by defining a minimum incre-
ment � or enforcing a time constraint on the pro-
tocol. Because both sides would benefit from
reaching a contract earlier, the provider should

U O U Ob a b b a bi → →() > ()0

U O U Ob a b b a bi → →() ≤ ()0

48 NOVEMBER • DECEMBER 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Agent Negotiation

Related Work in Service Negotiation

Negotiation for services involves a
sequence of information exchanges

among parties to establish a formal agree-
ment among them, whereby one or more
parties will provide services to one or
more other parties.

Iyad Rahwan, Ryszard Kowalczyk, and
Ha Hai Pham consider negotiation as a dis-
tributed constraint-satisfaction problem.1

Their framework supports one-to-many
negotiation by coordinating several concur-
rent one-to-one negotiations and giving the
coordinator several possible negotiation
strategies. However, this framework can’t
handle the difficult issues arising in many-to-
many negotiation, such as consistency, coor-
dination, and decommitment risk.

Thuc Duong Nguyen and Nicholas Jen-
nings present a heuristic model for coordi-
nating concurrent negotiation and an
integrated commitment model, which lets
agents reason about when to commit or
decommit.2 However, their model is obvi-
ously biased in the buyer’s favor. To miti-
gate the problem, they let the seller
decommit, or stray from its commitment,

by paying a precomputed decommitment
penalty. Both the buyer and seller can then
renege on the previous deal. Incorporating
seller decommitment into their model has
no advantage, because in one-to-many
negotiation a seller has no other buyers, so
it has no incentive to decommit and will
never do so rationally. On the other hand,
breaking a commitment is always a hard
decision because it typically involves issues
beyond a decommitment penalty, such as
reputation and user feedback.

Sakir Aknine, Suzanne Pinson, and
Melvin Shakun present an extended ver-
sion of the contract-net protocol to sup-
port concurrent negotiation processes for
a task contractor.3 Their protocol is more
efficient and failure tolerant than the basic
contract-net protocol. However, it doesn’t
allow counterproposals, which are impor-
tant in negotiations involving time con-
straints, especially when multiple issues
are involved.

A conversation-based approach’s value
is largely determined by the conversational
model it uses. Petri nets are a well-known

graphical and mathematical modeling tool
that researchers have used to model agent
communication interactions.Wil van der
Aalst applies message sequence charts to
specify the interaction between organiza-
tions by using Petri nets to model the work-
flow inside the organization.4

References
1. I.Rahwan,R.Kowalczyk, and H.H.Pham,“Intelligent

Agents for Automated One-to-Many E-Commerce

Negotiation,” Proc. 25th Australasian Conf. Computer

Science,Australian Computer Soc., 2002, pp. 197�

204.

2. T.D. Nguyen and N.R. Jennings,“Reasoning about

Commitments in Multiple Concurrent Negotia-

tions,” Proc. 6th Int’l Conf. E-Commerce, ACM Press,

2004, pp. 77�84.

3. S.Aknine, S. Pinson, and M.F. Shakun,“An Extended

Multi-Agent Negotiation Protocol,” Proc. Int’l Conf.

Autonomous Agents and Multi-Agent Systems, Kluw-

er Academic, 2004, pp. 5�45.

4. W.M.P. van der Aalst,“Interorganizational Work-

flows:An Approach Based on Message Sequence

Charts and Petri Nets,” Systems Analysis, Modeling,

Simulation, vol. 34, no. 3, 1999, pp. 335�367.

consider the time factor for proposals received in
phase two. For example, before comparing two
proposals, we can apply a time discount function
�(k) < 1 (for example, a normalized function
whose value decreases exponentially with the
time) to the counterproposal that must evolve two
more states to be a formal proposal. So, the coun-
terproposal must overbid the formal proposal by
an exponentially increasing amount to overrule it
along the time, and negotiation will end in a finite
number of steps.

As R. Scott Cost and his colleagues describe, we
can check CPNs for a variety of properties.6 Given
a CPN, we might be interested in reachability: Does
the initial marking result in the correct negotiation
result? We can also perform a liveness test: Does
the negotiation process enter a “dead” state in
which no further activity can occur? CPNs offer
several techniques and tools for formal analysis
and verification of such properties.

Related Issues
in Concurrent Negotiation
We can use our protocol to perform the concurrent
negotiation process at two levels:

• The upper level (a coordinator) coordinates all
of the threads and solves conflicts among them.

• The lower level (negotiation threads) deals
directly with the various opponents and decides
which counterproposals to send and which pro-
posal to pre-accept.

In each round, the threads report their status to
the coordinator, and the coordinator updates the
other threads’ status and uses one thread’s
progress to alter the agent’s behavior in the
other threads.

A commitment is a symmetric relationship
that binds the participants in a negotiation. One-
sided commitment problems occur when, for
example, a service requestor reaches an agree-
ment with one provider but continues negotiat-
ing with other providers, reneging on the earlier
agreement if it receives a better offer later. As
Figure 2 shows, our protocol is neutral to both
service requestors and service providers. There-
fore, it can eliminate the decommitment situa-
tions that arise in one-sided commitment.

In negotiation phase two, a service agent hosts
a procedure that is similar to a last-round first-
price auction. Because it’s the prerejected agents’
final try to stay in the negotiation, it makes truth-

telling about the reserve offer the dominant strat-
egy for agents whose counterproposals are close to
their reserve offers. At this time, they don’t want
to lose by providing an offer worse than the
reserve offer, and they don’t want to win the nego-
tiation with negative gains by providing an offer
better than the reserve offer. Our protocol makes
the negotiation more efficient.

Several possible directions exist for future work.
First, we’ll further investigate our protocol’s

effect on an agent’s negotiation strategy and
develop a precise commitment model. Second, we
can extend the protocol to support negotiation for
a composed service with different service agents
under constraints such as quality-of-service and
interagent dependency issues.

References

1. J. Dang and M.N. Huhns, “An Extended Protocol for Mul-

tiple-Issue Concurrent Negotiation,” Proc. 20th Nat’l Conf.

Artificial Intelligence (AAAI), AAAI Press, 2005, pp. 65�

70.

2. T. Murata, “Petri Nets: Properties, Analysis and Applica-

tions,” Proc. IEEE, IEEE Press, 1989, pp. 541�580.

3. J. Gray, “Notes on Data Base Operating Systems,” Operat-

ing Systems, An Advanced Course, vol. 60, Springer-Ver-

lag, 1978, pp. 393�481.

4. M.J. Osborne and A. Rubinstein, A Course in Game Theory,

MIT Press, 1994.

5. K. Jensen, Coloured Petri Nets, vol. 1, 2nd ed., Springer, 1996.

6. R.S. Cost et al., “Using Colored Petri Nets for Conversation

Modeling,” Issues in Agent Comm., F. Dignum and M.

Greaves, eds., Springer-Verlag, 2000, pp. 178�192.

Jiangbo Dang is a technical member at Siemens Corporate

Research. His research interests include multiagent systems,

service-oriented computing, business process and work-

flow management, knowledge discovery, data mining, and

machine learning. Dang has a PhD in computer science

from the University of South Carolina. Contact him at

dangj@engr.sc.edu.

Michael N. Huhns is the NCR professor in the Computer Science

and Engineering Department at the University of South

Carolina, where he also directs the Center for Information

Technology. His research interests include information

technology, including distributed artificial intelligence and

multiagent systems, machine learning, enterprise model-

ing and integration, and distributed database systems. He

is a fellow of the IEEE and a member of the ACM and

AAAI. Contact him at huhns@sc.edu.

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2006 49

Negotiation for Internet-Based Services

	Concurrent Multiple- Issue Negotiation for Internet-Based Services
	Publication Info

	untitled

