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A RANDOM DIFFERENIlAL EQUATION APPROACH TO THE 
PROBABILITY DISTRIBUTION OF BOD AND DO IN STREAMS* 

W. J. PADGElT,t G. SCHULTZt AND CHRIS P. TSOKOS? 

Abstract. In this paper a stochastic model for stream pollution is given which involves a random 
differential equation of the form 

(* Xt(t) =AX(t) +Y, t_:-0, 

where X(t) is a two-dimensional vector-valued stochastic process with the first component giving the 
biochemical oxygen demand (BOD) and the second component representing the dissolved oxygen 
(DO) at distance t downstream from the source of pollution. The fundamental Liouville's theorem is 
utilized to obtain the probability distribution of the solution of (*), X(t), at each t with various 
distributional assumptions on the random initial conditions and random inhomogeneous term. 
Computer simulations of the trajectories of the BOD and DO processes as well as the mean and 
variance functions are given for several initial distributions and are compared with the deterministic 
results. 

1. Introduction. Recently, it has become increasingly evident that the 
world's most valuable natural resources-air and water-are being endangered 
by the activities of civilized man. The water supply is being endangered by the 
disposal of organic (and other) waste materials into natural bodies of water by 
municipalities and industries. This pollution has become a major concern of the 
scientific community, and various regulatory agencies have specified minimum 
levels for dissolved oxygen (DO) in lakes and streams. These minimum levels of 
DO are extremely important since if DO falls below a certain threshold value, the 
fish and other living organisms in the body of water may die. 

Many organic compounds discharged into lakes and streams are effectively 
degraded into inoffensive components by the action of bacteria in the water. As 
the organisms in a body of water degrade the pollution, they require oxygen, and 
hence use the dissolved oxygen (DO) in the water. Oxygen-consuming pollutants 
are measured in terms of the amount of oxygen required by the bacteria to 
stabilize them, called the biochemical oxygen demand (BOD). It is generally 
accepted that the BOD and DO, measured in parts per million (ppm), are the 
primary indicators of water quality in a stream or river. Dissolved oxygen is 
obtained directly from the air by aeration and indirectly through the photo- 
synthetic process of aquatic plants. 

Beginning with the classical equations of Streeter and Phelps [9], various 
mathematical models have been proposed for describing the behavior of the DO 
and BOD profiles along a stretch of natural stream [l-{2], [4i-{7], [10]. Dobbins 
[1] obtained a pair of differential equations whose solution described the BOD 
and DO at downstream points from a pollution source. Thayer and Krutchkoff 
[10] used a generating function technique to obtain the approximate (discrete) 
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probability distributions for DO and BOD at each distance t downstream from the 
sou-rce of pollution. Also, Loucks and Lynn [4] used methods of Markov chains to 
predict the probability distribution of minimum DO levels. Both of these stochas- 
tic models assumed that DO or BOD concentration may be in only one of a finite 
number of possible states at any given time. More recently, Padgett [7] used the 
theory of random differential equations to obtain a model for stream pollution. 
The purpose of the present paper is to extend the results of Padgett [7] in that 
Liouville's theorem is utilized to obtain the joint probability distribution of the 
BOD and DO processes at each distance t downstream from a point source of 
pollution. The importance of this result is that the probability distribution may be 
used to obtain probability statements about the DO levels or to obtain the mean 
and variance of DO and BOD at each dist'ance t downstream from the major 
source of pollution. Hence, these results, are important in determining the 
possibilities of fish kills in the stream. Also, Padgett [7] assumed that the random 
variables involved were independent, whereas in this paper they may be assumed 
to be correlated. 

The general assumptions that will be made here are those made by Thayer 
and Krutchkoff [10] and by Padgett [7]. Thus, it will be assumed that there are fi,ve 
major activities in the strea,m: (i) The pollution (BOD) and DO are decreased by 
the action of bacteria. The rate,of decrease is assumed to be proportional,to the 
amount of pollution present with proportionality constant k1 in units of dissolved 
oxygen per day (ppm), and there is always some oxygen present. (ii) The dissolved 
oxygen is increased due to reaeration at ,a rate proportional to the dissolved 
oxygen deficit (which is the DO saturation concentration minus the actual DO 
concentration) with proportionality constant k2 in units of dissolved oxygen per 
day (ppm). (iii) The pollution only is decreased by sedimentation and adsorption 
at a rate proportional. to the amount of pollution present with proportionality 
constant k3 in. units of dissolved oxygen per day,(ppm). (iv) The pollution is 
increased from small sources along the stretch of stream with rate 1,a in ppm per 
day which is independent of the amount of pollution present. (v) The dissolved 
oxygen is decreased at a rate dB in ppm per day. The variable dB may have positive 
or negative values and represents the net change in dissolved oxygen due to the 
Benthal demand and respiration and photosynthesis of plants. 

In ? 2 of this paper we will present the stochastic model in terms of random 
differential equations and discuss the solution processes. In ? 3, Liouville's 
theorem will be applied to obtain the joint probability distribution of the solutions 
to the random differential equations. Examples and computer simulations will be 
given in ? 4, indicating how the results of ? 3 may be utilized in studying the 
statistical properties of the BOD and DO processes. 

2. The random differential equations and their solution. Assuming, in addi- 
tion to the assumptions (i)-(v) in ? 1, that the stream flow was steady and uniform 
and that the conditions at every cross section were unchanged with time, Dobbins 
[1] obtained the deterministic differential equations for BOD and DO given by 

- ui(t) - (k1 + k3)l(t) + la = 0, 

-ue (t)+k2[c -c c(t)]- kl l(t)-d = 0, 
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where the dot denotes the derivative with respect to t, t is the distance downstream 
from the pollution source, I(t) is the (first stage) BOD in ppm at distance t, u is the 
average velocity along the stretch, cs is the saturation concentration for dissolved 
oxygen, and c(t) is the concentration of DO (in ppm) at distance t downstream. 
The initial conditions for the system (2.1) were 1(0) = 10 and c(0) = c0. Also, the 
longitudinal dispersion effect in the stream was negligible as shown in [1] and 
hence does not appear in (2.1). The assumptions (i)-(v) of ? 1 concerning the 
biological processes in the stream were made to simplify the complicated 
mathematical equations that necessarily would arise when a complex biological 
system is being modeled. However, as in the formulation of most mathematical 
models, the assumptions seem to be reasonable and realistic and do yield the 
workable model (2.1). 

Padgett [7] pointed out that the quantities k1, k2, k3, u, la, cs, dB, 1l and c0 are 
more realistically considered to be random variables which have certain probabil- 
ity distributions rather than as physical constants as they had been treated by 
Thayer and Krutchkoff [10] and Loucks and Lynn [4]. This means that some of the 
uncertainty in the modeling of the BOD and DO processes may be expressed in 
the form of randomness in certain of the variables involved in the model. 
Therefore, in [7] the system of random differential equations given by 

X(t) =AX(t)+ Y, t'- > *=dt. 

(2.2) X(t) = 
L 
C(t) ) ' Y = LalC-D)U 

A (-(ki+k3)/U k/) 
-k1lu - k2/U 

9 

and 

X(O)=X= (oLo 

was proposed as the stochastic model. Thus, the solutions of (2.2) are stochastic 
processes, L(t) and C(t), giving the BOD and DO concentrations, respectively, at 
each distance t downstream from the pollution source. 

Assuming that La, DB, Lo and C0 are random variables with finite second 
moments, the solution of the system (2.2) is given in [7]. According to Soong [8], 
the vector-valued stochastic process X(t), t - 0, is a mean sguare solution of (2.2) if 
X(t) is mean square continuous on [0, o6), that is, X(t + h) -- X(t) as h -> for each 
t 0; X(0) = XO with probability one; and AX(t) + Y is the mean square derivative 
of X(t) on [0, cx). Using the techniques in Soong [8, Chap. 7], the mean square 
solution of (2.2) may be represented as 

X(t) = 4(t)Xo + f 4(t - s)Y ds, t ' 0, 
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where 

exp [- (k1 + k3)t/u] ? 

-k-k +k3 [exp (- k2t/u)- exp (- (k1 + k3)t/u)] exp (- k2t/u) 

and the integral is a mean square integral. Thus, the mean square solution may be 
written as 

(2.3) (L(t) = (al(t)l I 0 \( Lo + (13(Lag DB; t) 
\ C(t)/ \ a2(t) a3(t) \ CO / 1,2(La, DB; t)f 

where t '0 

a1(t) = exp [-g1(t)], 

a2(t) = - k + k-[exp (- g1(t)) - exp (- g2(t))], 

a3(t) = exp [- g2(t)], 

/31(La, DB; t)= La +[1-aal(t)], 

.82LaDB;t)=-kiLa 
1-ai(t) 1-a3(t)] 

32(La,DB; t)= kl-k2+k3E kl+k3 k2J 

(k2cs-DB)_ 
k2 

and g1(t) = (k1 + k3)t/u and g2(t) = k2t/u. 
Thus, under various assumptions about the distributions of the random 

variables Lag DB, LO and C0, simulated trajectories of the BOD and DO processes 
given by (2.3) may be obtained. In addition, as the results of the next section show, 
it is possible to obtain the joint distribution of L(t) and C(t) at each value of t 0 O 
so that the statistical properties of the BOD and DO processes may be more 
completely determined. 

3. Probability distribution of the mean square solution. The random vector 
differential equation (2.2) is of the form 

(3.1) X(t) = h(X(t), B; t) 

with random initial conditions 

C = X(0), 

where B denotes a random vector. Let the joint probability density function of C 
and B be fo(c, b). The random solution of (3.1) has the form 

X(t) = g(C, B; t), 

where h and g are n-vector-valued functions. 
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We shall make use of the fundamental Liouville's theorem in the theory of 
dynamic systems to obtain the joint probability distribution of X(t). A proof of this 
theorem from a probabilistic point of view is due to Kozin [3]. 

THEOREM 3.1. Assume that a mean square solution of system (3.1) exists. 
Then the joint probability density function of X(t) and B, f(x, b; t), satisfies the 
Liouville equation 

(3.2) dt Y. = 0 

where hj and x, are the jth components of h and x. 
Thus, the problem of determining the joint probability density function 

f(x, b; t) using the Liouville equation (3.2) is an initial value problem for first- 
order partial differential equations, the initial value being the joint probability 
density function of C and B, fo(c, b). As developed in Soong [8], the solution (that 
is, the joint probability density function of X(t) and B) is given by 

(3.3) f(x, b; t) =fo(c, b) exp {-J V * h[x = g(c, b; t), b; T] dr} | 
O ~~~~~~~~~c=g '(x,b;t) 

where V - h is the divergence of h. Then the joint density function of X(t) can be 
found by integrating over B, 

f(x; t) = 1 f(x, b; t) db. 

Now, we apply the above theorem to the random vector differential equation 
(2.2). Then 

h 
-(kl + k3)L(t)/u +La/u h(X(t), B; t) = - k1L(t)/u - k2C(t)/u + (k2Cs -DB)/Uj 

C (h) and B=(ta). 

Also, 

v.h=( ad5h= k1+k3 k2 
ah\L'ac} u u 

1 
=--(kl +k2 +k3). u 

The mean square solution of (2.2) is given by (2.3) and is 

g(c, b t) = lal(t) O Lo + J,BI(Laq DB; t) 

(3.4) a2(t) a3(t) COL 02(La DB; t) 
= X(t). 
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If we let 

M= (aa(t) 0 
a2(t) a3(t)) 

(3.4) becomes 

X(t) = MC+ (813(La DB; t)) 

or 

MC= L /(t) - / I(Lag DB; t) 
M C(t)-132(La: DB; t)) 

Then 

/C(t) - 02(Laq DB ; t) 

1 /fta3(t) (L (t)-l(LagDB;t)\ 
atl(t)at3(t) 1-aA2t) atl(t)l C(t) -t82(La, DB; t)/ 

L -pi 

(a2(L->+1)+a(C-P2) 
a1a3 

=g1(X(t), B; t), 

if we suppress the arguments. Therefore, from (3.3) the joint probability density 
function of (L(t), C(t), La, DB) is given by 

f(l, C, la, dB; t) fo(lo, CO, la, db) exp [ f V h diT] 

- t 

(3.5) 
=fo(lo, co, la, dB) exp -f -(k + k2 + k3)/U dr 

1-j61 -a2(1-j6J+a1(c -J2), 
=fo g 9 lag dB f a ,' a1a3 

exp [(k1 + k2 + k3)t/u] 

since c = g-(X, B; t) = (LogCo)T. Then the joint density function of X(t)= 
(L(t), C(t))T is obtained from (3.5) by integration: 

(3.6) i(l, c; t) = f_ f(l c, la dB; t) dla ddB. 

The moments of L(t) and C(t) at each t ?0 ( may be evaluated using (3.6). 
To illustrate these results, in the next section we shall consider several 

distributions for Lo. CO, La and DB and obtain the joint probability density 
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functions of the BOD and DO processes. In addition, we shall present simulated 
trajectories of L(t) and C(t) obtained from the mean square solutions, and give 
the mean functions and variance functions obtained by numerical integration 
from the probability density function (3.6). 

4. Examples. The -data and the probability distributions of Lo, Co, La and 
DB which are used in the examples given in this section are consistent with the 
values that were used by Thayer and Krutchkoff [10] taken from a study of the 
Sacramento River. For comparison, the solutions of the deterministic differential 
equations (2.1) have been plotted in Fig. 1 using the values k1 = 0.35, k2 = 0.75, 
k3 = 0.20, lo = 6.8, co = 8.7 (ppm), la = 0.2, dB = 0.1, cs = 10, and u = 7.5 (miles 
per day) simnilar to those used in [10]. 

9.0 

8.5 

8.0D 

7.0 

6.0 

5.0 - 

ppm 

4.0 - 

3.0 - 

BOD 

2,0 - 

1.0 

0 5 10 15 20 25 30 35 
Distance (Miles) 

FIG. 1. Deterministic case 
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We now assume various distributions for the random variables Lo, CO, La and 
DB and obtain the joint density of L(t) and C(t) for each t ?. 

Case 1. Suppose Lo, CO, La and DB are independent random variables, La 
and DB are uniformly distributed on (0, OA) and (0, 0.2), respectively, and Lo and 
C0 have truncated normal distributions with respective means 6.8 and 8.7 (ppm) 
and variances 1.0 and 0.03. The values of kl, k2, k3, cs and u will be 0.35, 0.75, 
0.20, 10 and 7.5, respectively, as in the deterministic case. Then the joint 
probability density function of Lo, CO, La and DB is given by 

d1d2 [1 (68)2 (co- 8.7)2] 
2i,-V~763(0.08) 2 0.06 

fo(lo, co, la, dB) = 0<a<0.4, O<dB< 0.2, 

0?lo<O0, 0-co0cs, 
(4.1) 0, otherwise, 

where d, and d2 are truncation factors for the densities of Lo and C0, respectively. 
From equations (3.5) and (4.1) we obtain the joint probability density function of 
X(t) and B, 

f(x, b; t) = exp [(k1 + k2+ k3) 
t 

J 1?d2 u 21rb0(0.08) 

(4.2) .exp{~1{(l .8) 6.] 1 - a2(1-P13)+ai(c-132) 87] 
(4.2) P t 2[ ar ] 2(0.03)[ a1a3]} 

iffl1_1<0o, c*cc CC, 0<la<0.4, O<dB<0.2, 

where c =max{O,(a2!a1)(l-,la)+,32}, c* = minm{CS CSa3 +(a2/la)(l -P ) 
+P2}, and 

f(x, b; t) = 0, otherwise. 

The joint density function of L(t) and C(t) can then be found from (4.2) by 
integrating over la and dB. Then the mean functions, E[L(t)] and E[C(t)], and the 
variance functions, a 2(t) and o-(t), may be obtained by the usual integration of 
the joint density function of L(t) and C(t). Figs. 2(a) and 2(b) show simulated 
trajectories of the solution processes L(t) and C(t) using the assumed distribu- 
tions of Lo, C0, La and DB above and the equations (2.3). Also, the mean 
functions and variance functions were computed numerically (using Gauss quad- 
rature formulas for the numerical integration), and the results are shown in Figure 
2(c). 

Case 2. We now assume that Lo and C0 have a truncated bivariate normal 
distribution with correlation coefficient p. Under the assumptions (iv) and (v) in 
? 1, it is realistic to assume that La and DB are independent and also that they are 
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5.0 

4.0. 

3.0 

2.0 

1.0 
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Distance (Miles) 

FIG. 2(a). Simulated trajectories of BODfor Case 1 

independent of (Lo, CO). The joint probability density function of (Lo, CO) is given 
by 

g1(lo, co) d3 exp= 6 1 
{ 2 [(1o-6.8) 

- =(Io - 6.8)(co - 8)7) +} 

if Olo<ao, O'-cO-CS, 
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10.0 

9.0 

ppm 

7.0 - 
0 5 10 15 20 25 30 35 

Distance (Miles) 

FIG. 2(b). SimulatedtrajectoriesofDOforCase 1 

and is zero otherwise, where d3 is the truncation factor. Thus, the joint density of 
(LO, CO, La DB) is 

(4.3) go(lo, cO, la, dB) 0 08g1(10, cO), 0_la? 0.4, 0dB-0.2. 

Thus, from the results of ? 3 and (4.3), the joint density function of X(t) and B is 
given by 

g(x, b; t) (OO8)2 3 - exp - 2(1 p2)[( a l 6.8) 

2p (I-0 - 1 )(2(3 ) + al(c- 2) _87 

(4.4) 

-c/0.0( -6 

a1a3 
a(2(i1-1) 

+al(c P2) 
-8.7) 

2/003] 

exp [(ki + k2+ k3)t/u],0 _ la <0.4, 0 ' dB '0.2, 

'1-<1<00, C*-_C_C*, 

and g(x, b; t) =0, otherwise. Hence, as before the joint density function of L(t) 
and C(t) at each t?0 may be obtained. Figs. 3(a)-(b) and 4(a)-(b) show simulated 
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9.0 E[C(t)] 
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3.0 - E[L(t)] 

2.0- 
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FIG. 2(c). Mean aitd standard deviation functions of BOD and DO for Case I 

trajectories of L(t) and C(t) obtained by generating random numbers la, dB and 
(la, co) from the assumed distributions with p = ? 0.5, respectively, and using the 
same values of k1, k2, k3, Cs and u as were used in Case 1. Also, -Figs. 3(c) arid 4(c) 
show the mean and variance functions of C(t) as computed by numerical integra- 
tion from the joint density function -(4.4) with p = 0.5 and - 0.5, respectively. The 
mean and variance functions of L(t) in this case are similar to those for Case 1 and 
hence are not plotted. 
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FIG. 3(a). SimulatedtrajectoriesofBODforCase 2 (p-0.5) 

We remark that if p = 1, Lo and C are linearly related by Lo = rC0 + s, where 
r = or/o/ac = 1//I7O 0 and s = 6.8- A0.03 x (8.7). Hence, in this case, we need 
only the joint probability density function of (C0, La, DB) which simplifies the 
joint density of L(t) and C(t). 

Case 3. Finally, suppose the random vector Y (LO, Co, La, DB) has a 
truncated multivariate normal distribution with mean vector P and covariance 
matrix V. Then the joint density function of (LO, C0, La, DB) is 

d4JPJ112 
go(y; L, V)= (21T)2 [2(Yp)TP(yp)], o-l0, 4,4 <o, 0?c0-c, 

(0, otherwise, 
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FIG. 3(b). Simulated trajectories of DOfor Case 2 (p 0.5) 

where d4 is the truncation factor and P = V-1. As before, it is easy to find the joint 
density function of X(t) and B from go, 

g(x,b;t)=exp [(k+k2+k3)] exp -2y'- ) P(y'-I)], 

where 
y-=(1-f31)/a1-O, 0-O-y 

=[a2(f1-1)+a1(C-32)]/a1a3<Cs, OCY- 

la < ?? and 0 = y4 = dB < ?? and g(x, b; t) = 0, otherwise. 

5. Discussion. The results of ?? 3 and 4 allow probability statements to be 
made concerning the value of DO at each distance t downstream from a pollution 
source. Hence, the probability that, for given initial variables Lo and Co, the DO 
level will be below a specified amount can be computed. The minimum DO level is 
of great importance since the fish population and other aquatic life would be 
endangered if DO falls below a certain value for even a short period of time. 
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FIG. 3(c). Mean and standard deviation functions of DO (p = 0.5) 

The particular distributions used in ? 4 seem to be reasonable since DO and 
BOD can be measured at the source of pollution to yield at least an approximate 
probability distribution for Lo and C0. The normal distribution is a reasonable one 
even if no randomness other than measurement error is assumed. The unifo'rm 
distribution on La and DB may be regarded as simply placing values of la anddB in 
an interval with ignorance of the exact probability distributions. 

The mean function and variance function of DO shown in Fig. 2(c) for Case 1 
support the contention of Thayer an'd Krutchkoff [10] that the variance of 
dissolved oxygen is greater in the "oxygen sag" region of the DO profile than in 
the other regions. Hence, our results agree with the experimental results of 
Thayer and Krutchkoff [10]. It is also interesting to note that if Lo and C0 have 
correlation coefficient p = 0.5 the variance at each t ? 0 is smaller than for the 
uncorrelated case, whereas if p = - 0.5 the variance at each t is larger than it is for 
p 0. This is also evidenced in -the simulated trajectories of BOD and DO shown 
for the three values of p = 0, 0.5 and - 0.5 in Figs-. 2(a)-(b), 3(a)-(b) and 4(a)-(b), 
respectively. Hence, it seems that if the correlation coeffic-ient of L0 and'C'0 could 
be estimated efficiently, then it would yield valuable in'formation concerning the 
behavior of L(t) and C(t) for t > 0. It should also- be noted that in Figures 2(c), 3(c) 
and 4(c) the mean functions coincide with the deterministic trajectories given in 
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FIG. 4(a). SimulatedtrajectoriesqfBODforCase2 (p = -0.5) 

Fig. 1 since the solution of the random differential equation is linear in the random 
variables. 

Obviously, other distributions for Lo, C0, La and DB may be handled as easily 
as those in ? 4. Also, with obvious modifications, the quantities K1, K2 and K3 
could be considered as random variables instead of (or in addition to) La and DB. 
The Liouville equation (3.2) may also be applied in this case. 
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