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THREE POINTS OF GREAT HEIGHT ON ELLIPTIC CURVES

ANDREW BREMNER AND DUNCAN A. BUELL

For D. H. Lehmer, and his love of numbers

Abstract. We give three elliptic curves whose generators have great height,

demonstrating along the way a moderately efficient method for finding such

points.

1. Introduction

Let p = 5 (mod 8) be a prime number. Bremner and Cassels have verified

that the rank of the Mordell-Weil group of the elliptic curve

Y2 = X(X2+p)

over Q is 1, for p < 1000 [2], and Bremner has extended this to p < 20000 [1].
For all p < 5000 except for p = 3917, 4157, and 4957, explicit coordinates
of a generator are known. In this paper we fill in these gaps by presenting the

coordinates of generators for the Mordell-Weil groups of the following curves:

For   y2 = X(Z2 + 3917)

1 3191326145 6422472921
5873290251 8863871195 1947136699 2233127128 9213974121

548834475 8892451852
7451707440 2156457012 3908977288 1880026829 0258264900

X =

7873470623 6958538698 4222606144 1026117548
8908260829 3814216233 8843167731 8301133130

422605
7546042859
4053463581

X =

7664123892 6034798978 3481163135 9345003535
1959049281 1437042584 0089183445 3200116260

For Y2 = X(X2 + 4157)

5332499248
1066356325 7642601861 0337363601 2044939282

44003585
9226472581 4648511569 0449920470 8057736801

1285
1077250240
9377357000

7599063389
4882088521
6451313819
3774720100

Received by the editor July 15, 1991 and, in revised form, April 23, 1992.

1991 Mathematics Subject Classification. 11G05, 14H52, 11-04.
Key words and phrases. Elliptic curves, Mordell-Weil group, descent.

© 1993 American Mathematical Society
0025-5718/93 $1.00+ $.25 per page

111



112 ANDREW BREMNER AND D. A. BUELL

Y =

Y =

44108
4155760469 7993705069 3168537280 6635440124 9847767197
2013041097 2556677066 6836701935 5981000014 3598411181

29
1898658996 7029975275 2870403348 9392140054 6948318468
1015324839 9597607540 4475037731 3582116884 4060801000

For Y2 = X(X2 + 4957)

2578 6593364983 8869943482 2726741534
8642803837 2862724530 1355555758 7191972747 6066494521

2 7544734678 8209581109 2823066215
4526375537 5984629139 2220985954 5339442186 6359716100

131315 4053999120 5952869312
1641825016 9330523130 1417335322 2596278362 4828231988
0210527534 7918347549 9579064513 0766126108 4369453931

4 5714912217 3449737242
8932870955 5522703332 6956396590 2104635417 4424919684
8609580514 6737003842 7423528188 6907027288 7875659000

The respective (canonical) heights of these points [1] are approximately

162.61, 160.83, and 192.10.

2. Computation

The method of descent outlined in [1] leads us to search for simultaneous

solutions r, s, t, u to pairs of equations.

For p = 3917:

(2.1) 2(r2 - s2) - lOrs - 3(ru + st) + 10(rt - su) + 3(t2 - u2) + 2tu = 0,

(2.2) 7(r2-s2)-   2rs + 2(ru + st)-   (t2 - u2) = 0.

For p = 4157:

(2.3) 32(r2 - s2) - 3S2rs - 27(ru + st) - \2(rt - su) - (t2 - u2) -2tu = 0,

(2.4) 203(r2-s2)+   26rs +   2(ru + st) - (t2 - u2) = 0.

For p = 4957 :

(2.5) 16rs - 3(ru + st) - 4(rt - su) + (t2 - u2) = 0,

(2.6) 4(r2-s2) +   6rs + 2(ru + st)-(t2-u2) + 2tu = 0.

We will illustrate the computational method using p = 3917 as an example.

For p = 3917 we are searching for simultaneous solutions r, s, t, u to the

pair of equations (2.1) and (2.2). From the known height of the generator (see

[1]) we expect a solution to exist in the approximate range

0< \r\, \s\, \t\, \u\ < 17000.

A brute force search over 344 • 1012 « 1.3 • 1018 possible quadruples would be

infeasible, so it is fortunate that it is not necessary.

We rewrite (2.2) in a manner more amenable to computation:

(2.7) (t - s)2 = (u + r)2 + 6(r2 - s2) - 2rs = (u + r)2 + K.
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Simplification 1: Symmetry. We need only search over r > 0, s > 0.

This is because under (r,s) -> (-r, -s) we have K -> K, and under

(r, s) —► (s, -r) or (r, s) —► (-s, r) we have K —> -K . We will search only

over nonnegative r and s and then solve (2.7) as N2 = M2 + \K\. We will

then let u + r = ±M and t - s = ±N or the reverse, whichever is appropriate.

Simplification 2: Congruences. Most r, s pairs can be eliminated by congruence

conditions.

By analysis or simply by enumeration, we find that only 9 of the 25 possible

pairs (r, s) modulo 5 can be completed to a quadruple (r, s, t, u) which solves

both (2.1) and (2.2) when treated as congruences and not equations. Further,

only 13 of 49 pairs modulo 7, 73 of 169 pairs modulo 13, and 129 of 289 pairs
modulo 17 can be completed. Working modulo 8, we find also that r and 5

must both be even.

In fact, we can sieve out the impossible (r, s) pairs for primes q as high as

we wish, provided we can store and access a q x q bit matrix to determine by

table lookup whether a pair is possible. Using the primes through 47, we find

that of the 289 million potential pairs (r, s) only 25153, or 87 per million,
pass all the sieve tests to generate values of K for which N2 = M2 + \K\ need

be solved. Our experience on these three curves is that, for most of the small

primes, between 30% and 60% of the potential pairs are impossible for each

prime. Even with bad luck, then, for every two primes used in the sieve, the

number of possible pairs is reduced at least by half.

A search for solutions to N2 = M2 + \K\ is especially simple. Given \K\,

the smallest choice of N is [-\/WLl + 1 > and we compute N2 by multiplication
only for this smallest N. As we loop on M from 1 to some limit, then, we can

update the values of the right- and left-hand sides without multiplying, using

the standard formula (x + 1 )2 = x2 + x + x + 1 . When we update M and

the right-hand side, if this is larger than the current left-hand side, we simply

update the left-hand side until it is no longer smaller. For large M and N

these will be alternating operations and thus will be very efficient. For two of
the three curves here, it can also be determined that M is even and TV odd.

This further limits the search.

With these simplifications, a C program running on the CRAY 2 at SRC tests

r in a block of 1000 integers and all s from 0 through 17000 in about 80 seconds

of CPU time (on one head of the CRAY 2). Our program was moderately

efficient but not extraordinarily so, and improvements in speed certainly could

have been made. Using this program, we find that

(r, s, t, u) = (2684, 7586, 5487, -21317)

is the desired solution.

The computation for p = 4157 is entirely similar, and we obtain the solution

(r,s, t, u) = (9940, 1222, -140939, -25343).

In this case, there were 68013 pairs  (r, s)  which passed the sieve, and the

program ran about 50% slower than for p = 3917.

For p = 4957 rewrite (2.6) as

(2t + r - s)2 = 2 • (u + t + r)2 + 7(r2 - s2) + lOrs.
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A first search, with r and s bounded above in absolute value by 17000 as

with the previous two curves, failed to find a point. We therefore increased the

bounds to 25000, and the bounds on N and M to 300000. At this point, only
92417 pairs (r, s) pass through the sieve, and we find the solution

(r,s,t,u) = (20147, 7406, 43588, -8808).

3. A GENERAL METHOD, AND THE "NEXT" CASE

The general method we have employed should be apparent. By manipulating

or combining the two quadratic polynomials in four variables, we create a single

equation of the form

(3.1) AN2 = BM2 + K.

In this equation, we have made K a function of only two of the variables and

arranged it so that the other two do not both appear in N and M. This allows
us, having solved (3.1), to extract the third and fourth variables without further

search. With a judicious choice of A and B in (3.1) ( A = B = 1 is clearly

best possible), the search for solutions to (3.1) can be made very efficient.

The limitations of our method become apparent, however, when we apply it

to the "next" hard curve, Y2 = X(X2 + 17477) ; see [1].
The descent argument leads to the pair of equations

(3.2) r2 - s2 + 11 (ru + st) - 3(rt - su) - 2(t2 -u2)-2tu = 0,

(3.3) r2-s2 + 6rs+  t2-u2 + 2tu = 0,

and (3.3) diagonalizes to the very simple

(3.4) (t + u)2 = 2u2 + s2-6rs-r2.

However, the estimated bounds on the variables are now on the order of

1010. Sieving with the 25 primes less than 100, we find that about 1.75 pairs
(r, s) per million pass through the sieve. If each of the next 75 primes had

a (pessimistic) sieve success fraction of .7, and we use exactly 1010 as a loop

bound, we would need to test only 422 pairs in the inner loop. This number

of pairs is not extraordinary, although the enumeration of the pairs could not

be done simply by counting but would require incorporating the sieve into the

loops. With the inner loop, however, now on the order of 1010 instead of 104 ,

the feasibility of this computation would depend very much on the number

of pairs to be tested staying small. The sieving can be expected to be more

successful, so that the estimate of 422 pairs is no doubt high, but this gain

could be offset if the estimate of 1010 for the loop bound is low by one or two

orders of magnitude in each variable. We strongly suspect that finding a solution

this way is out of reach, certainly without the expenditure of an estimated three

years of CPU time, which is clearly unwarranted.

With sufficient courage, a further descent could be carried out on the

pair of equations (3.2, 3.3) by looking for a linear combination of the two
quadrics which is singular (singular combinations in fact exist over the field

Q(\/106 - 79/) ). However, the details are sufficiently laborious that we have

not attempted to carry them through.
The referee has convincingly pointed out to us the merits of calculation using

Heegner points, where finding a point on a curve of rank 1 can be expected to
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be an operation which is polynomial in the conductor, as opposed to exhaustive

search, which can be exponential. For the family of curves Y2 = X(X2 + p) it

seems to be that the limits for exhaustive search are reached essentially by the
examples of this paper, and the only sensible way to search for a generator on

the curve Y2 = X(X2 + 17477) would be by means of Heegner points.
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