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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 94, Number 4, August 1985 

INEQUALITIES RELATING SECTIONAL CURVATURES 
OF A SUBMANIFOLD TO THE SIZE OF 

ITS SECOND FUNDAMENTAL FORM AND APPLICATIONS 
TO PINCHING THEOREMS FOR SUBMANIFOLDS 

RALPH HOWARD AND S. WALTER WEI 

ABSTRACT. The Gauss curvature equation is used to prove inequalities relat- 
ing the sectional curvatures of a submanifold with the corresponding sectional 
curvature of the ambient manifold and the size of the second fundamental form. 
These inequalities are then used to show that if a manifold M is 6-pinched for 
some 6 > 1, then any submanifold M of M that has small enough second 

fundamental form is EM-pinched for some bM > 1. It then follows from the 
sphere theorem that the universal covering manifold of M is a sphere. Some 
related results are also given. 

1. Introduction. This note is motivated by questions of the following type: Let 
M be a complete Riemannian manifold and M a compact immersed submanifold 
of M; how then is the topology of M affected by placing a sufficiently small upper 
bound on the size of the second fundamental form of M in M? For example, when 
M is isometric to a standard sphere, Lawson and Simons [L-S] show that if the 
length of the second fundamental form of M is small enough, then M is a homotopy 
sphere. If M is the product of two spheres, then the second author has shown in 
[Wei] that the submanifolds of M with sufficiently small second fundamental are 
homeomorphic to totally geodesic submanifolds of M. 

Here we will consider the case that M is S-pinched for some 6 > 1. That is, 

all sectional curvatures of M are in the closed interval [WKo, Ko] for some constant 
Ko > 0. In this case the well-known sphere theorem of Berger, Klingenberg, Rauch 
and Toponogov implies that the universal covering manifold of M is homeomorphic 
to a sphere. If M and M are both simply connected and M has codimension one, 
then Flaherty has given conditions (cf. ?3 below) on the second fundamental form 
of M which forces M to be a homotopy sphere. 

In this note we will extend this to higher codimensions and at the same time 
weaken the assumptions on the second fundamental form of M and drop the as- 
sumption of simple connectivity on M. 

Our method is to use the Gauss curvature equation to prove inequalities re- 
lating the sectional curvatures of a submanifold with the corresponding sectional 
curvatures of the ambient manifold and the size of the second fundamental form 
of the submanifold. These inequalities then imply that a submanifold of a pinched 
manifold is also pinched (with a slightly worse pinching constant) provided that 
its second fundamental form is small enough. The proofs of these inequalities are 
elementary; they only involve completing the square. 
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This note is an expanded version of a pleasant Saturday afternoon conversation 
between the authors and Professor Bang-Yen Chen whose help we wish to acknowl- 
edge. We would also like to thank the referee for his corrections and suggestions 
on improving the exposition. 

2. The inequalities. Let M be an n-dimensional (n > 2) submanifold isomet- 
rically immersed in the Riemannian manifold M. At each point x E M the tangent 
space to M at x will be written as TMx and the normal space to M at x as T'LMx. 
The second fundamental form hx of M in M at x is a symmetric bilinear form 
TMx x TMx to TLMx. If e1, ... , en is any orthonormal basis on TMx, then the 
length of hx is defined by 

(1) iihxii2 = E iIhx(ei, ej)II2. 
1<i,jr<n 

If P is a plane section of M at x, i.e. a two-dimensional subspace of TMx, then 
denote by K(P) the sectional curvature of M at P, by K(P) the sectional curvature 
of M at P and by hlp the symmetric bilinear from P x P to TLMx obtained by 
restricting hx to P x P. Let ei, e2 be any orthonormal basis of P. Then the Gauss 
curvature equation can be written as 

(2) K(P) = K(P) + (h(el, el), h(e2, e2))- IIh(ei,e2)112 

and the length of hIp is 

IIhIp II2 
- E lh(ei, ej) 112 

(3) 1<i,j<2 

= lIh(el, el)112 + 211h(ei, e2)I12 +IIh(e2, e2)112. 

Clearly IjhIpjj2 < llhxII2. Our estimates are 

PROPOSITION 1. If P is a plane section of M, then 

K(P) - 'IIhII2 < K(P) - jIhjp l2 < K(P) 
< K(P) + 11Ih1p1I2 < K(P) + 2IIhII2. 

PROPOSITION 2. If M is a minimal surface in M, then 

K(P) - 4IlhIl2 = K(P) < K(P). 

PROPOSITION 3. If M is a totally umbilic surface in M, then 

K(P) < K(P) = K(P) + 1 IIhI2. 

PROPOSITION 4. If M is a Kaehler manifold and M is a Kaehler submanifold 
of M, then for every holomorphic plane section P of M 

K(P) - 'IIhII2 < IK(P) - 'IhIpjj2 = K(P) < K(P). 

REMARKS. Propositions 2 and 3 show that the inequalities in Proposition 1 
are sharp in the case that M is two-dimensional. By considering cylinders over 
minimal surfaces or umbilic surfaces in Euclidean space it is possible to show that 
the inequalities in Proposition 1 are sharp in all dimensions. Proposition 4 is a 
restatement of Proposition 9.2 in Volume 2 of [K-N]. It is included here because of 
its relation to the other results. 
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PROOF. Let el,e2 be an orthonormal basis of P. Let X = h(el,ei), Y = 
h(ei, e2) and Z = h(e2, e2). Because of equations (2) and (3), to prove Proposition 
1 it is enough to show that 

-_(LXII2 + 211Y112 + IIZI12) < 2((X, Z) - IIYly2) < IIXI12 + 21IYI12 + IIZI12. 

This follows at once from the identities 

11xI12 + 211YI12 + 11ZI12 - 2((X, Z) - 11YJ12) = IIX - Z112 + 411Y 112 > O, 

2((X, Z) - llY112) + IIXI12 + 211YI12 + IIZI12 = IIX + Z112 > 0. 

If M is a minimal surface and x c M, then let el, e2 be an orthonormal basis 
of TMx. Because M is minimal the mean curvature vector of M is zero so 0 = 

h(el, el) + h(e2, e2) = X + Z (X, Y, Z as above). Using Z = -X in (2) yields 
K(P) K(P) - IIXI2 - 11Y12 and in (1) it yields 11hJ12 - 211XI12 + 211Y 112. These 
two equations imply Proposition 2. 

If M is a totally umbilic surface, then by definition Y = h(el, e2) 0 O and 
X = h(ei,el) = h(e2,e2) = Z. Thus K(P) = K(P) + IIXI12 and lh 112 = 211X112. 
This proves Proposition 3. 

3. Submanifolds of pinched manifolds. If M is a Riemannian manifold and 
O < 6 < 1, then M is said to be S-pinched if and only if there is a positive constant 
Ko such that 6Ko < K(P) < Ko for all plane sections P of M. It is clear that 
the above results can be used to relate pinching (or holomorphic pinching) of a 
manifold to pinching (or holomorphic pinching) of its submanifolds. For example, 
Proposition 1 easily implies 

PROPOSITION 5. Let M be a Riemannian manifold with 6 < K(P) < 1 for all 
plane sections of P of M and let M be a submanifold of M so that llhlp 12 < B2 
for all plane sections P of M. Then all the sectional curvatures of M are in the 
interval [6 - ' B2, 6 + 2 B2]. Thus if B2 < 26, then M is EM -pinched with 

6 S-B2/2 256-B2 
S 

1+B2/2 2+B2 

COROLLARY. If 6 > 4 and M is complete with |lhip 112 < (86-2) /5 for all plane 
4~~~~~~~~~~~~~ sections P of M, then M is SM -pinched for some EM > 4 and thus its universal 

coviring manifold is homeomorphic to a sphere. 

We now give a statement and an elementary proof of the theorem of Flaherty 
mentioned above. 

THEOREM [F]. Let M be a complete, simply connected, Riemannian manifold 
of dimension at least three that has all its sectional curvatures in the interval [5, 1] 
with 6 > I (this implies M is homeomorphic to a sphere). Let M be a simply 
connected hypersurface of M such that the second fundamental forms of M with 
respect to one of the two outward unit normals have their eigenvalues in [0, B], 
where B < cot(ir/(4V6_)). Then M is a homotopy sphere. 

To prove this theorem we first note that if all of the eigenvalues of the second 
fundamental form of a hypersurface M are in the interval [0, B] for one of the two 
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choices of the outward normal, then for all plane sections P of M, 

(A) K(P) > K (P), 
(B) llhlpfll2 < 2B2 

(The first follows from the Gauss equation and the assumption that the eigenvalues 
are > 0. For the second use that eigenvalues of hl p are also in the interval [0, B] 
and so 11h1p 12 - A2 + A2 < 2B2.) The conditions (A) and (B) make sense for 
submanifolds of any codimension. 

Proposition 1 now implies 

PROPOSITION 6. Let M be a Riemannian manifold with all its sectional curva- 
tures in the interval [6, 1] with 6 > 0. Let M be a complete submanifold of M that 
satisfies the conditions (A) and (B). Then the sectional curvatures of M are in the 
interval [6, 1 + B2] and thus M is SM-pinched with 6M = &/(1 + B2). 

COROLLARY. If 6 > 4 and B2 < 46 - 1 in the last proposition, then M is 4 
EM-pinched for some SM > 4. Therefore the universal covering manifold of M is a 
sphere. 

To show that this corollary implies Flaherty's theorem, it is enough to show that 
1< 6 < 1 implies cot2 (7r/(4V'F)) < 46 - 1. Since 0 < cot(7r/(4v'6)) < 1 for 6 in the 
given interval, the required inequality is implied by cot(7r/4v'4) < 46 - 1. Letting 
x = 16 we want f (x) = 4x-2 -cot(wrx/4)-1 > 0 when 1 < x < 2. It is enough 
to show f has no zero on [1, 2). At a zero of f, we have 4x-2 1 = cot(7rx/4) < 1. 
This inequality implies x > /2. Thus we only need to show f (x) : 0 on [, 2). 
On this interval 

8 71 2(iF\ 8 iF c2(fx' 
PM = - 3 + - cscy (x < - 3 k4+ 4 1 

X 4 4 X x~=2 4 4 X=v 

- -1.0 + .978262725 < 0. 

Therefore f is decreasing on [A/2, 2) and f (2) = 0. Consequently, f (x) > 0 on [1, 2) 
as claimed. 
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