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NORMS OF POSITIVE OPERATORS ON LP-SPACES 

RALPH HOWARD AND ANTON R. SCHEP 

(Communicated by John B. Conway) 

ABSTRACT. Let 0 < T: LP(Y, v) -+ Lq(X, ) be a positive linear operator 
and let HITIP ,q denote its operator norm. In this paper a method is given 
to compute 1Tllp, q exactly or to bound 11Tllp q from above. As an applica- 

tion the exact norm 11VIlp,q of the Volterra operator Vf(x) = fo f(t)dt is 
computed. 

1. INTRODUCTION 

For 1 < p < ox let LP[O, 1] denote the Banach space of (equivalence 

classes of) Lebesgue measurable functions on [0,1] with the usual norm HIfHI = 

(fll fldt)'1P. For a pair p, q with 1 < p, q < ox and a continuous linear 

operator T: Lp [0, 1] -i Lq[0, 1] the operator norm is defined as usual by 

(1-1) H1Tllp q = sup{ || Tf llq Ilf lip = 1} 

Define the Volterra operator V: LP[O, 1] -- L q 
[0, 1] by 

(1-2) Vf(x)= j f(t)dt. 

The purpose of this note is to show that, for a class of linear operators T 

between Lp spaces which are positive (i.e., f > 0 a.e. implies Tf > 0 a.e.), 

the problem of computing the exact value of 11 Tllp q can be reduced to showing 

that a certain nonlinear functional equation has a nonnegative solution. We 

shall illustrate this by computing the value of 1 Vllp q for V defined by (1-2) 

above. 
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We first state this result. If 1 < p < x0 then let p' denote the conjugate 
exponent of p, i.e. p' =p/(p- 1) so that 1/p+ 1/p' = 1. For a, i>0 let 

B(a, /3) = j C'(I - t)' ldt 

be the Beta function. 

Theorem 1. If 1 < p, q < x0 then the norm 1VVlp, q of the Volterra operator 
V: LP[O, 1] Lq[O, 1] is 

(1-3) IIVI1pq=(p qp(p+q)pqB 

In the case p = q this reduces to 

(1-4) (p D B p) 

p 5 

Special cases of this theorem are known. When p = q = 2k is an even 
integer, then the result is equivalent to the differential inequality of [H-L-P, 
?7.6]. This seems to be the only case stated in the literature. The cases that p 
or q equals 1 or 00 are elementary. It is easy to see that I VHIp 00 = IH VH I q = 1 
for 1 < p < ? and 1 < q < ?o. It is also straightforward for 1 < p < ? and 

1 < q < 0 that 11Vllp I = (1/(p' + 1))1/P and H1VllOOq = (1/(q + 1)) 
The proof of Theorem 1 is based on a general result about compact positive 

operators between Lp spaces. This theorem in turn will be deduced from a 
general result about norm attaining linear operators between smooth Banach 
spaces (see ?2 for the exact statement of the result). 

In what follows (X,, u) and (Y, v) will be a-finite measure spaces. If 
T: Lp(Y, v) -- Lq(X, u) is a continuous linear operator we denote by T* 
the adjoint operator T* Lq (X, 1u) - Lp (Y, v). For any real number x let 
sgn(x) bethesignof x (i.e. sgn(x)= 1 for x>0, =-1 for x<0 and =0 
for x = 0 ). Then for any bounded linear operator T: Lp(Y, v) -- Lq(X, 1u) 
with 1 < p, q < x we call a function 0O f E Lp(X, J) a critical point of T 
if for some real number A we have 

(1-5) T*(sgn(Tf)l Tf = A sgn(f) If lP 1 

(such a function f is at least formally a solution to the Euler-Lagrange equation 
for the variational problem implicit in the definition of IITIIp q ). In the case 
that T is positive and f > 0 a.e. (1-5) takes on the simpler form 

(1-6) T*((Tf)q-l) = fP-l 

For future reference we remark that the value of A in (1-5) and (1-6) is not 
invariant under rescaling of f . If f is replaced by cf for some c > 0 then 
A is rescaled to Cq-pA. Recall that a bounded linear operator T: X -- Y 
between Banach spaces is called norm attaining if, for some 0 $ f E X, we 
have IITfIIy = IITII I x . In this case T is said to attain its norm at f . The 
following theorem will be proved in ?2. 
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Theorem 2. Let 1 < p, q < oo and let T: LP (Y, v) Lq (X, ,) be a bounded 
operator. 

(A) If T attains its norm at f E Lp(X, 1u), then f is a critical point of T 
(and so satisfies (1-5) for some real A). 

(B) If T is positive and compact, then (1-6) has nonzero solutions. If also any 
two nonnegative critical points f1, f2 of T differ by a positive multiple, 
then the norm 11 Tllp q is given by 

(1-7) 11 Tllp q = Aq Ilf 1pq 

where f $ 0 is any nonnegative solution to (1-6). 

In ?2 we give an extension of Theorem 2(A) to norm attaining operators 
between Banach spaces with smooth unit spheres and use this result to prove 
Theorem 2B. Theorem 2 is closely related to results of Graslewicz [Gr], who 
shows that if T is positive, p > q and (1-6) has a solution f > 0 a.e. for 

= 1, then 'ITllp q = 1. In ?4 of this paper we indicate an extension of this 
result. We prove that if there exists a 0 < f a.e. such that 

(1-8) T*(Tf)q-l <i fP-l 

then ITITP P < Al/p in case p = q and in case q < p we have HITIHP,q < 

jII FTfII q/ P under the additional hypothesis that Tf E L . Inequality (1-8) 
can be used to prove a classical inequality of Hardy. Another application of 
this result is a factorization theorem of Maurey about positive linear operators 
from Lp into L. 

It is worthwhile remarking that in case p = q = 2 the equation (1-5) reduces 
to the linear equation T* Tf = Af . In this case Theorem 2 is closely related to 
the fact that in a Hilbert space the norm of a compact operator is the square 
root of the largest eigenvalue of T* T. 

2. NORM ATTAINING LINEAR OPERATORS 
BETWEEN SMOOTH BANACH SPACES 

Let E be a Banach space and let E* denote its dual space. If f* E E* then 
wedenotethevalueof f* at f eE by f*(f)=< f f* > If 0$ f eE then 
f* E E* norms f if IIf*II = 1 and < f, f* >= IIfII. By the Hahn-Banach 
theorem there always exist such norming linear functionals. A Banach space E 
is called smnooth if for every 0 $ f E E there exists a unique f* E E* which 
norms f. Geometrically this is equivalent with the statement that at each 
point f of the unit sphere of E there is a unique supporting hyperplane. It is 
well known that E is smooth if and only if the norm is Gateaux differentiable 
at all points 0 :/ f E E (see e.g. [B]). If E is a smooth Banach space and 
0 $ f E E, then denote by eEE(f) the unique element of E* that norms f, 
note IIeE(f)II = 1. For the basic properties of smooth Banach spaces and the 
continuity properties of the map f | E)E(f) we refer to [B, part 3, Chapter 1]. 
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The basic examples of smooth Banach spaces are the spaces Lp(X, u) where 
1< p < oo. For O f E LP(X, ,) one can easily show that 

(2-1 E)OLP(f) = llfll- (P ) sgn(f) Iflp- I 

by considering when equality holds in Holder's inequality. 
The following proposition generalizes part (A) of Theorem 2 to norm attain- 

ing operators between smooth Banach spaces. 

Proposition. Let T: E - F be a bounded linear operator between smooth 
Banach spaces. If T attains its norm at 0 f f E E then there exists a real 
number a such that 

(2-2) T (eF(Tf)) = aE'E(f) 

and the norm of T is given by 

(2-3) IIT = a. 

Proof. Define Al, A2 E E* by 

Al(h) =< h, EE(f) > 

A2(h) = I <Th, eF(Tf) >= < h, T*(eF(Tf)) > 

Then IAIII = 1 (since IeIE(f)II = 1 ) and Al(f) = IIf 1, so Al norms f 
Similarly IIe)F(Tf)ll = 1 implies that IIA2l 1 , but using gTfH = -TIfH 
we have A2(f) = IIf I. Therefore A2 also norms f. The smoothness of E 
now implies that AI = A2. Hence (2-2) holds with a = 11 T as claimed. 

Theorem 2(A) now follows from the following lemma. 

Lemma. If E = Lp(X, 5u), F = Lq(y, v) with 1 < p, q < 0 and f is a 
solution of (2-2), then f is a critical point of f, i.e., 

T* (sgn( Tf )| Tf I q )-= i sgn(f) If lp I, 

where 

(2-4) aq= If llf P 

Proof. First we note that if f satisfies (2-2), then we have 

HITflIq = (Tf, EF(Tf)) = (f, T* EJF(Tf)) = (f, a6EE(f)) = l 

Substitution of (2-1) into (2-2) and multiplication by II Tf -lq1 gives 

T* (sgn(Tf)I Tflp') = aHl TfIlqI If (P 1) sgn(f)IfIP_ 

= a qllfllqpP sgn(f)Ifl' l 

This completes the proof of the lemma and of Theorem 2(A). 

To prove Theorem 2(B), we first make the observation that if T: E -- F is 
a compact linear operator and E is reflexive, then T attains its norm (since 
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every bounded sequence in E contains a weakly convergent subsequence and 
T maps weakly convergent sequences onto norm convergent sequences). Now 
if T is a positive compact operator from LP(X, u) into Lq(Y, v), then T 
attains its norm at a nonnegative f E Lp (X, u) (simply replace f by If I, if 
T attains its norm at f ). If the additional hypothesis of Theorem 2(B) holds, 
then any other nonnegative critical point fo is a positive multiple of f and 
therefore T also attains its norm at fo. Now the proposition and the lemma 
imply that 11 TIJ = a, where a satisfies (2-4). Hence (1-7) holds. This completes 
the proof of Theorem 2. 

3. THE NORM OF THE VOLTERRA OPERATOR 

In this section we shall prove Theorem 1. We first notice that the adjoint 
operator of the Volterra operator is given by 

1 

(3-1) V*g(x) = g(t)dt a.e. 

Since x f (t)d t and g g(t)d t are absolutely continuous functions, we can 
assume that V(f) , respectively V* (g) , equal these integrals everywhere. From 
Theorem 2(B) and the rescaling property of A we prove Theorem 1 by showing 
that 

(3-2) V*((Vf)ql) =fp I 

has a unique positive solution in LP[O, 1] normalized so that 
1 

(3-3) Vf(1)= j f(t)dt = 1. 

Since Vf is chosen to be absolutely continuous, we see that V* ((Vf)q I) can 
be chosen to be continuously differentiable on [0, 1]. Hence any nonnegative 
solution of (3-2) can be assumed to be continuously differentiable on [0, 1]. 
Also if f is a nonnegative solution of (3-2) normalized so that (3-3) holds, then 
Vf is nonnegative and Vf(1) = 1 so that Vf is positive on a neighborhood 
of x = 1 . From (3-1) we conclude that V*((Vf)q I) is positive on [0, 1). 
Hence any nonnegative solution of (3-1) and (3-2) can be assumed to be strictly 
positive and continuously differentiable on [0, 1). Assume now that f is such 
a solution of (3-1) satisfying (3-2). Take the derivative on both sides in (3-1) 
and then multiply both sides by f to get the differential equation 

(3-4) _(Vf)q-lf = ,(p - 1)fp-lf. 

Using that f is the derivative of Vf, we can integrate both sides to get 

(3-5) -q(Vf) = p 
q q p 

since Vf(1) = 1 and f(1) = 0 by (3-2). To simplify the notation we let 
v(x) = Vf(x). Then v(x) > 0 for x > 0, v'(x) > 0 for x < 1, v'(1) = 0 
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and (3-5) becomes 

(3-6) -(I _ (X)q ) = P ) v (x)p 
q p 

or 
v'(x) (3-7) Cpq = 1 - 

where 

(3-8) CP q =(q(p- 1)) 

Using v(0) = 0 we can integrate (3-7) to get 
fV(X) 1 

(3-9) cp qx= d 1 . 

Putting x = 1 in this equation we get 

(3-10) Cp q B ( 1 B 

The integral in (3-10) was reduced to the Beta function by the change of variable 
t = ul/q. The equations (3-9) and (3-10) uniquely determine the function v 
and therefore also f = v' and the number A. This shows that (3-2) and (3-3) 
have a unique nonnegative solution. Moreover starting with v and A given by 
(3-9) and (3-10) one sees by working backwards that f = v' is a nonnegative 
solution of (3-2) and (3-3). Therefore by Theorem 2(B) the norm of V is given 
by (1-7). From equations (3-10) and (3-8) we can solve for A to obtain 

(3-11) -q B, ( 
)? 

q p 

In case p = q this shows that II VIIp p = AI/p, which proves ( 1-4). In case p $ q 

we need to compute llv'llp = IlfIlp . To do this, multiply (3-7) by Vq raise 

the result to the power p - 1, and then multiply by v' to obtain 

(3-12) v'(x)P = cPq v (x)(1 - p 

Using v(0) = 0 and v(1) = 1 we can integrate (3-12) to obtain 

lIfH;p = lv llp = <p j (1 - tq) P dt 

- c qB (1 + 1) 

(3-13) = 
- 

cp q i/B(, - -Il 

~, q q 1 q 5p/ 
q p 

B(I, 1I/ )P q p 

qPl 1(p + q')' 
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(Here we used the identity B(a, fi + 1) = (/3/(a + /3))B(a, /3). ) Therefore 

qq 
(3-14) q - qp -)p-q) 

q pq (p + q ) Pq 

Using (3-11) and (3-14) in formula (1-7) now gives formula (1-3) and the proof 
of Theorem 1 is complete. 

4. BOUNDS FOR NORMS OF POSITIVE OPERATORS 

In this section we shall consider a positive operator T acting on a space of 
(equivalence classes of) measurable functions and give a necessary and suffi- 
cient condition for T to define a bounded linear operator from Lp (Y, v) into 
Lq(X, u), where 1 < q < p < 00 and obtain a bound for H1Tllp q, similar 

to (1-7). Let L?(X, u) denote the space of a.e. finite measurable functions 
on X and let M(X, u) denote the space of extended real valued measurable 
functions on X. For some applications it is useful to assume that T is not al- 
ready defined on all of Lp . Therefore we shall assume that T is defined on an 
ideal L of measurable functions, i.e., a linear subspace of L?0(Y, v) such that 
if f E L and IgI < If I in L?, then g E L . By L+ we denote the collection of 

nonnegative functions in L. A positive linear operator T: L -- L0(X, u) is 
called order continuous if 0 < fn t f a.e. and fn, f E L imply that Tfn t Tf 
a.e. We first prove that such operators have "adjoints". 

Lemma. Let L be an ideal of measurable functions on (Y, v) and let T be 
a positive order continuous operator from L into L0(X, u). Then there exists 
an operator Tt: L0(X, u)+ -- M(Y, v)+ such that for all f E L+ and all 

g E L?(X,1u)+ we have 

(4-1) J(Tf)gdu = f (Ttg)dv. 

Proof. Assume first that there exists a function fo > 0 a.e. in L. Let g E 
L0(X, u)+. Then we define q$: L+ [0, oo] by q(f) = f(Tf)gdu. Since 
Tf0 < oo a.e. we can find X, c X2 c t X such that for all n > 1 we have 

f(Tfo)gd,u < 00. 

Let Lf = {h: IhI < cfo for some constant c} and define On : Lf -- R by 

)n (h) = j (Th)gd,u. 

The order continuity of T now implies (through an application of the Radon- 
Nikodym theorem) that there exists a function g,1 E L (Y, fodv) such that for 
all h E Lf( we have 

$, (h) = J hg,ldv, 
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see e.g. [Z, Theorem 86.3] . Moreover we can assume that g1 ? g2 ? a.e. 
Let go = sup gn . An application of the monotone convergence theorem now 
gives 

J (Th)gd, = J hgodv 

for all 0 < h E Lf. The order continuity of T and another application of the 
monotone convergence theorem now give 

(4-2) J(Tf)gd1u = J fgodv 

for all 0 < f E L. If we put Ttg = go, then (4-2) implies that (4-1) holds in 
case L contains a strictly positive fo. In case no such fo exists in L, then we 
can find via Zorn's lemma a maximal disjoint system (fn) in L+ and apply the 
above argument to the restriction of T to the functions f E L with support in 
the support Yn of fn . In this way, we obtain functions gn with support in Y 
so that for all such f we have 

J (Tf)gd, = J fgndv. 

Now define Ttg = sup gn and one can easily verify that in this case (4-1) holds 
again. This completes the proof of the lemma. 

The above lemma allows us to define for any positive operator T : L 
L0(X, u) an adjoint operator T*. Let N = {g E L?(X, u): Tt(Igl) E 
L0(Y, v)} and define T*g = Ttg+ - Ttg for g E N. It is easy to see that 
T* is a positive linear operator from N into L0(Y, v) such that 

(4-3) J (Tf)gd/ = Jf(T*g)dv 

holds for all 0 < f E L and 0 < g E N. Observe that in case T: Lp Lq is 
a bounded linear operator and 1 < p, q < 00 then T* as defined as above is 
an extension of the Banach space adjoint. The above construction is motivated 
by the following example. 

Example. Let T(x, y) > 0 be a ,u x v-measurable function on X x Y. Let L = 

{f E L?(Y, v) such that f T(x, y)If(y)ldv < 0 a.e.} and define T as the in- 
tegral operator Tf (x) = fJy T(x, y)f (y)dv (y) on L. Then one can check (us- 
ing Tonelli's theorem) that N = {g E L?(X, u) such that fiy T(x, y)lg(x)ldu 
< x a.e.} and that the operator T* as defined above is the the integral operator 

fx T(x, y)g(x)dul(x). 

We now present a Holder type inequality for positive linear operators. The 
result is known in ergodic theory (see [K], Lemma 7.4). We include the short 
proof. 
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Abstract Holder inequality. Let L be an ideal of measurable functions on (Y, v) 
and T be a positive operator from L into L0(X, u). If 1 < p < ox and 
p' =p/(p - 1), then we have 

(4-4) T(fg) < T(fP) 
I 

T(gP ) 

for all O<f,g with fgeL, fpeL,and gp eL. 
Proof. For any two positive real numbers x and y we have the inequality 
x"'y1"p < Ipx?+ Iy, so that if O < f, g with fg eL, fp eL and gp eL, 
then for any a > 0 

T(fg) = T ((af) (-)g) 

(4-5) < pT((af ) ) + p,T a ( 9g 

I 
i aT(fp) + 1 T(g ) 

Now for each x E X such that T(fp)(x) f 0 choose the number a so that 
acpT(fp)(x) = 1, T(gp)(x). Then (4-5) reduces to (4-4). 

Theorem 3. Let L be an ideal of measurable functions on (Y, v) and let T be 
a positive order continuous linear operator from L into L0(X, u). Let 1 < q < 
p < 0 and assume there exists fo E L with 0 < fo a.e. and there exists A > 0 
such that 

(4-6) T* (Tfo )q < A 
-1 

and in case q < p also 

(4-7) Tfo E L (X 

Then T can be extended to a positive linear map from Lp (Y, v) into Lq (X, ) 
with 

(4-8) H1Tllpq ? IITf0II1 

in case q < p and in case p = q 

(4-9) II THIP p < AP. 

If also fo E Lp (Y, v), then 

(4-10) HITIHp,q <? lIfOll' 

Proof. Define the positive linear operator S: Lp(Y, v) L0(X, u) by Sf = 

(Tfo)( P)/P * Tf, note that S = T in case p = q. Then it is straightforward 

to verify that S* (h) = T ((Tfo)(q-P)/P h). This implies that 

S (Sfo) = S ((Tf0) P) = T* (Tf0)o ?f 1o- 
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i.e., S satisfies (4-6) with p = q. Let Y, = {y E Y: I < fo(y) < n}. Then 
n- 

L??(Yn, v) C L. Let 0 < u E L?(Y,, zJ). Then we have 

J(Su)pdlu = fS(ufo P fOP7)Pd,u 

< S(uPf- P+ )(Sf0)f d,u (Abstract H6lder inequality) 

- J uPf;-P+ls*(sf1)(P-l)dv 

<J 
ufPf-P+I if?1 dv by (4-6) 

- R3ilull;. 
Hence 

(4-1 1) IISuIIP < AP Iluilp 

for all 0 < U E L?(Yn, dv). If 0 < u E L, let un = min(u, n)x . Then 
u n T u a.e. and (4-11) holds for each u n. The order continuity of T and the 
monotone convergence theorem imply that IISISP p < Allp. Note that in case 
p = q this proves (4-9). In case q < p define the multiplication operator M, 
by Mh = (Tfo )(pq)/p * h. Then (4-7) implies, by means of Holder's inequality 
with r = p/q, r' = p/(p-q), that llMIIp,q < jTfolll -qlP . The inequality (4-8) 
follows now from the factorization T = MS. Inequality (4-10) follows from 
(4-8) by using the inequality lITfolIq < IITlIpqIllfoIIp and solving for IITIlpq 
This completes the proof of the theorem. 

The above theorem is an abstract version of what is called the Schur test for 
boundedness of integral operators (see [H-S] for the case p = q = 2 and see 
[G], Theorem l.I for the case 1 < q < p < o ). 

Corollary. Let L be an ideal of measurable functions on (Y, v) and let T be 
a positive order continuous linear operator from L into L0(X, u). Let 1 < q < 
p <00 and assume there exists f0 E Lp (Y , v) with 0 < fo a.e. and there exists 
A > 0 such that 

(4-12) T* (Tfo )q-1 = A -1. 

Then T can be extended to a positive linear map from Lp(Y, v) into Lq(X, ,u) 
with 

(4-13) 11 Tllp q = i''| Tfo ll' = A'llfo 0lli 

and T attains its norm at fo. 
Proof. If we multiply both sides of (4-12) by fo and then integrate, we get 

(4-14) f(Tfo)q dy = if (fo)Pdv. 
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This implies that Tf0 E L (X, ,u), so that by the above theorem the inequalities 
(4-8) and (4-10) hold. Equality (4-14) shows that 11FTf0 q = Al/fqllfo0plq, from 

which it follows that IITllp q > )1/qllfllplq-' . Hence we have equality in (4-10). 
From this it easily follows that (4-13) holds and that 11 Tfollq = 11 Tlp, q llfolip . 

Remark. In the above corollary one could hope that in case p = q the equation 
(4-12) without the hypothesis fo E Lp still would imply that JITIIP,p = -llp. 
Theorem 3 still gives inequality (4-9), but this is all that can be said as we see 
from the following example. Let X = Y = [0, ox) with ,u = v equal to the 
Lebesgue measure and define the integral operator T by Tf(x) = I fox f(t)dt. 
An easy computation shows that for 1 < p < oo the equality (4-12) holds for 
some constant A = A(a), whenever fo(y) = y" for all -1 < a < 0. One 
can verify that in this case a = - 1/p gives the best upperbound for 1 Tllp p, 
in which case A = (p/(p - 1))P. Inequality (4-9) is then the classical Hardy 
inequality. 

We now state a converse to the above theorem, which is essentially due to 
[G, Theorem 1.11]. For the sake of completeness we supply a proof, which is a 
simplification of the proof given in [G]. 

Theorem 4. Let 0 < T: Lp(Y, v) -- Lq(X, u) be a positive linear operator and 
assume 1 < p, q < 0. Then for all A with Al/q > 11Tllp, q there exists 0 < fo 
a.e. in Lp(Y, v) such that 

(4-15) T*(Tfo )q-1 < if P- 

Proof. We can assume that IITiip,q = 1. Then we assume that A > 1. Now 
define S: Lp(Y, v) -+ Lp(Y, v)+ by means of 

Sf = (T* ( Tf )- ) 

Then it is easy to verify that Ilf lp < 1 implies that ISf llp < 1 , also that 
0 < f1 < f2 implies that Sf, < Sf2 and that 0 < f, t f a.e. in Lp implies that 
Sfn T Sf a.e. Now let 0 < f1 a.e. in Lp(Y, v) such that lf1 I lp < (i-1)/iA. For 
n > 1 we define fn = f1 + ASfn1. By induction we verify easily that fn < f, + 
and that llfnllp < 1 for all n. This implies that there exists fo in Lp such 
that f, t fo a.e. and Il fo llp < 1 . Now Sf, I Sfo implies that f0 = f1 + A Sf0 . 
Hence Sfo < Afo, which is equivalent to (4-15) and fo > f1 > 0 a.e., so that 
fo > 0 a.e. and the proof is complete. 

Now we present an application of the previous two theorems. The result is 
due to Maurey [M] . 

Corollary. Let 0 < T: LP(Y, v) -+ Lq(X, u) be a positive linear operator and 
assume 1 < q < p < 00. Then there exists 0 < g a.e. in L'(X,,u) with 
1/r = l/q - 1/p such that l/g * T: LP(Y, v)- Lp(X, j). 
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Proof. From the above theorem it follows that there exists f0 E LP(Y, v) such 
that (4-6) and (4-7) hold. The factorization follows now from the proof of 
Theorem 3. 

We conclude with another application of Theorem 3. An ideal L of mea- 
surable functions is called a Banach function space if L is Banach space such 
that Igl < Ifl in L implies lIgIl < llfll 
Theorem 5. Let L be a Banach function space and assume that T and T* 
are positive linear operators from L into L. Then T defines a bounded linear 

2 2 operatorfrom L into L 
Proof. Let S = T* T. Then S is a positive operator from L into L, so S is 
continuous (see [Z] ). Let A > r(S), where r(S) denotes the spectral radius of 
S . From the Neumann series of the resolvent operator R(A, S) = (A -S) 1 one 
sees that for all 0< geL we have fo = R(, S)g> I g >0 and Sfo <? fo 
i.e. T*(Tfo) < Afo so (4-6) holds with p = q = 2. The conclusion follows now 
from Theorem 3. 

A result for integral operators similar to the above theorem was proved in [S] 
by completely different methods. 

Remark. With some minor modifications of the proofs one can show that The- 
orems 3 and 4 and their corollaries also hold in case 0 < q < 1. 
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