3-1-1989

A Note on Roe's Characterization of the Sine Function

Ralph Howard
University of South Carolina - Columbia, howard@math.sc.edu

Follow this and additional works at: http://scholarcommons.sc.edu/math_facpub
Part of the Mathematics Commons

Publication Info
© 1989 by American Mathematical Society

This Article is brought to you for free and open access by the Mathematics, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.
A NOTE ON ROE'S CHARACTERIZATION OF THE SINE FUNCTION

RALPH HOWARD

(Communicated by George R. Sell)

ABSTRACT. Let $f^{(n)}(n, n = 0, \pm 1, \pm 2, \ldots$ be a sequence of complex valued functions on the real line with $(d/dx)f^{(n)} = f^{(n+1)}$ and satisfying inequalities $|f^{(n)}(x)| \leq M_n(1 + |x|)^k$ where as $n \to \infty$ the growth conditions $\lim M_n(1 + e)^{-n} = 0$ and $\lim M_n(1 + e)^{-n} = 0$ hold for all $e > 0$. Then $f^{(0)}(x) = p(x)e^{ix} + q(x)e^{-ix}$ where p and q are polynomials of degree at most k.

In his paper [1] J. Roe proves

Theorem (Roe [1]). Let $\{f^{(n)}\}_{n=-\infty}^{\infty}$ be a two way infinite sequence of real valued functions defined on the real line \mathbb{R}. Assume $f^{(n+1)}(x) = (d/dx)f^{(n)}(x)$ and that there is a constant M so that $|f^{(n)}(x)| \leq M$ for all n and x. Then $f^{(0)}(x) = a \sin(x + \phi)$ for some real constants a and ϕ.

This gives a rather striking characterization of the sine functions $a \sin(x + \phi)$ in terms of the size of their derivatives and antiderivatives. In this note we show that the bounds $|f^{(n)}(x)| \leq M$ can be relaxed to $|f^{(n)}(x)| \leq M_n(1 + |x|)^{k + \alpha}$ with $0 \leq \alpha < 1$ and where the constants only need to have superexponential growth. More generally:

Theorem. Let $\{f^{(n)}\}_{n=-\infty}^{\infty}$ be a sequence of complex valued functions defined on the real numbers with

\begin{equation}
(f^{(n+1)}(x) = \frac{d}{dx}f^{(n)}(x)
\end{equation}

and so that there are constants $M_n \geq 0$, $\alpha \in [0, 1)$, and a nonnegative integer k satisfying

\begin{equation}
|f^{(n)}(x)| \leq M_n(1 + |x|)^{k + \alpha}.
\end{equation}

If

\begin{equation}
\lim_{n \to \infty} \frac{M_n}{(1 + e)^n} = 0 \quad \text{all } e > 0
\end{equation}

Received by the editors July 28, 1986 and, in revised form, June 1, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 33A10; Secondary 42A38.
and

\[
\lim_{n \to \infty} \frac{M_n}{(1 + \varepsilon)^n} = 0 \quad \text{all } \varepsilon > 0,
\]

then

\[
f^{(0)}(x) = p(x)e^{ix} + q(x)e^{-ix}
\]

where \(p(x) \) and \(q(x) \) are polynomials of degree at most \(k \).

Remark 1. The conclusion of the theorem can be sharpened by giving a more precise description of the functions \(f^{(n)} \). If \(k = 0, 1, 2, \ldots \) and \(n = 0, \pm 1, \pm 2, \ldots \) then define

\[
p_{n,k}(x) = (1 + \frac{d}{dx})^n x^k
\]

\[
= \sum_{m=0}^{k} \frac{n(n-1) \cdots (n+m-k+1)}{(k-m)!} k(k-1) \cdots (m+1)x^m
\]

where for negative \(n \) we expand \((1 + d/dx)^n\) formally by use of Taylor's theorem. Then \(p_{n,k}(x) \) is a polynomial of degree \(k \) and

\[
p_{n,k}(x) + p'_{n,k}(x) = \left(1 + \frac{d}{dx}\right)p_{n,k}(x) = p_{n+1,k}(x).
\]

When \(n \geq 0 \) these are Laguerre polynomials. This is because

\[
(-1)^k p_{n,k}(-x) = \left(1 - \frac{d}{dx}\right)^n x^k = e^x \frac{d^n}{dx^n}(x^k e^{-x}).
\]

See for example [0, p. 204]. This last equation implies that if \(\lambda \) is a complex number and

\[
f^{(n)}_{k,\lambda}(x) = \lambda^n p_{n,k}(\lambda x)e^{ix}
\]

then \(\{f^{(n)}_{k,\lambda}\}_{n=-\infty}^{\infty} \) satisfies equation (1). Then if \(\{f^{(n)}\}_{n=-\infty}^{\infty} \) is a sequence of functions satisfying the hypothesis of the theorem then there are complex numbers \(a_0, \ldots, a_k, b_0, \ldots, b_k \) so that

\[
f^{(n)} = \sum_{m=0}^{k} (a_m f^{(n)}_{m,+i} + b_m f^{(n)}_{m,-i})
\]

where \((i)^2 = -1\). The proof of this from the theorem is done by induction on \(k \). The details are left to the reader.

Remark 2. The functions \(f^{(n)}_{k,\lambda}(x) \) just defined satisfy

\[
|f^{(n)}_{k,\lambda}(x)| \leq (k+1)!n^k \max(|\lambda|^n, |\lambda|^{n+k})(1 + |x|)^k e^{\text{Re}(\lambda)} x.
\]

By giving \(\lambda \) pure imaginary values close to \(i \) or \(-i\) we see that there is no obvious weakening of the growth conditions (2), (3), or (4).
Remark 3. It is impossible to replace the interval \((-\infty, \infty)\) by a half infinite interval. The functions \(f^{(n)}(x) = (-1)^n e^{-x}\) on \((0, \infty)\) yield a counterexample. (This observation is due to David Richman.)

Proof of the theorem. Let \(f(x) = f^{(0)}(x)\). The, following [1], we will show the support of the Fourier transform \(\hat{f}\) of \(f\) contained in the set \(\{1, -1\}\). As the integral defining the Fourier transform may diverge, we define it as a distribution, that is as a linear functional on the vector spaces \(\mathcal{S}\) of rapidly decreasing functions on \(R\). Explicitly the value of \(\hat{f}\) on \(\phi \in \mathcal{S}\) is
\[
\langle \hat{f}, \phi \rangle = \langle B, \phi \rangle = \int_{-\infty}^{\infty} f(x) \hat{\phi}(x) \, dx.
\]
Here we follow the notation of [2, Chapter 7].

Suppose it has been shown that the support of \(\hat{f}\) is contained in \(\{1, -1\}\). Then a standard result [2, Theorem 6.25, p. 150] implies there is an \(m \geq 0\) and complex numbers \(a_j, b_j\), \(0 \leq j \leq m\) so that
\[
\hat{f} = \sum_{j=0}^{m} a_j \delta_1^{(j)} + \sum_{j=0}^{m} b_j \delta_{-1}^{(j)}
\]
where \(\delta_1\) (resp. \(\delta_{-1}\)) is the delta function at 1 (resp. at -1) and \(\delta_1^{(j)}\) is the \(j\)th distributional derivative of \(\delta_1\). This Fourier transform can be inverted to give that \(f(x) = f^{(0)}(x)\) has the form given by (5) with \(p(x)\) and \(g(x)\) polynomials (of degree at most \(m\)). But \(|f(x)| \leq |f^{(0)}(x)| \leq M_0 (1 + |x|)^{k+\alpha}\). This implies the polynomials have degree at most \(k\).

This reduces the proof to showing

Lemma 1. The conditions (2) and (3) imply the support of \(\hat{f}\) is disjoint from \((1, \infty)\) and \((-\infty, -1)\).

Lemma 2. The conditions (2) and (4) imply the support of \(\hat{f}\) is disjoint from \((-1, 1)\).

Proof of Lemma 1. We will only show the support of \(\hat{f}\) is disjoint from \((1, \infty)\), the proof for \((-\infty, -1)\) being identical. Let \(\phi\) be a smooth function with its support, \(\text{spt}(\phi)\), in \((1, \infty)\). Then \(\text{spt}(\phi) \subseteq [r, \infty)\) for some \(r > 1\). We now need to show \(\langle \hat{f}, \phi \rangle = 0\). Let \(n \geq 0\) and
\[
\psi_n(t) = \frac{\phi(t)}{(-it)^n}.
\]
This is smooth as \(\phi = 0\) near \(t = 0\). Thus differentiating under the integral gives
\[
\psi_n^{(n)}(x) = \frac{d^n}{dx^n} \int_{-\infty}^{\infty} \frac{\phi(t)}{(-it)^n} e^{-itx} \, dx = \hat{\phi}(x).
\]
So

\[
\langle \hat{f}, \phi \rangle = \langle f, \psi_n \rangle \\
= (-1)^n \langle f^{(n)}, \psi_n \rangle \\
= (-1)^n \int_{-\infty}^{\infty} f^{(n)}(x) \psi_n(x) \, dx.
\]

By (2) this implies

\[
|\langle \hat{f}, \phi \rangle| \leq M_n \int_{-\infty}^{\infty} (1 + |x|^{k+\alpha} |\psi_n(x)|) \, dx.
\]

We now estimate \(|\psi_n(x)|\). First using that \(\text{spt}(\phi) \subseteq [r, \infty)\),

\[
|\psi_n(x)| \leq \int_r^{\infty} \frac{\phi(t)}{t^n} \, dt \leq \frac{1}{r^n} \|\phi\|_{L^1}.
\]

Also if \(x \neq 0\) then integration by parts \((k + 2)\) times yields

\[
|\psi_n(x)| = \left| \int_r^{\infty} \left(\frac{d^{k+2}}{dt^{k+2}} \frac{\phi(t)}{(-it)^n} \right) e^{-ixt} \, dt \right|
\]

\[
\leq \frac{1}{|x|^{k+2}} \int_r^{\infty} \left| \frac{d^{k+2}}{dt^{k+2}} \frac{\phi(t)}{t^n} \right| \, dt
\]

\[
\leq \frac{1}{|x|^{k+2}} \sum_{j=0}^{k+2} \binom{k+2}{j} n(n+1) \cdots (n+j-1) \|\phi^{(k+2-j)}\|_{L^1} \int_r^{\infty} \frac{dt}{t^{n+j}}
\]

\[
= \frac{1}{|x|^{k+2}} \sum_{j=0}^{k+2} \binom{k+2}{j} n(n+1) \cdots (n+j-1) \|\phi^{(k+2-j)}\|_{L^1} \cdot \frac{n+1}{n+j-1} \cdot \frac{r^{n+j-1}}{r^{n-1}}
\]

where \(c_1(k, \phi)\) is a constant depending only on \(k\) and \(\phi\). This can be combined with (8) to give

\[
|\psi_n(x)| \leq \begin{cases}
1/r^n \|\phi\|_{L^1} & |x| \leq 1, \\
\frac{c_1(k, \phi) n^{k+1}}{|x|^{k+2} r^{n-1}} & |x| > 1.
\end{cases}
\]

Using this in (7) gives an estimate of the form

\[
|\langle \hat{f}, \phi \rangle| \leq c_2(k, \alpha, \phi) \frac{n^{k+1}}{r^{n-1}} M_n.
\]

Let \(\epsilon\) be so that \(1 < 1 + \epsilon < r\). Then for large \(n\)

\[
\frac{n^{k+1}}{r^{n-1}} < \frac{1}{(1 + \epsilon)^n}.
\]
Using this and the condition (3) and (11)

$$|\langle \hat{f}, \phi \rangle| \leq c_2(k, \alpha, \phi) \lim_{n \to \infty} \frac{M_n}{(1 + \varepsilon)^n} = 0.$$

Therefore $\langle \hat{f}, \phi \rangle = 0$ for all ϕ with support in $(1, \infty)$, i.e., the support of \hat{f} is disjoint from $(1, \infty)$ as claimed.

Proof of Lemma 2. The proof is very similar to the proof of Lemma 1. Let ϕ be a smooth function with support in $(-1, 1)$. Then for some $r < 1$ the inclusion $\text{spt}(\phi) \subseteq [-r, r]$ holds.

$$\langle \hat{f}, \phi \rangle = (f^{(0)}, \hat{\phi}) = \left(\frac{d^n}{dx^n} f^{(-n)}, \hat{\phi} \right)$$

$$= (-1)^n \left(f^{(-n)}, \hat{\phi} \right)$$

$$= (-1)^n \int_{-\infty}^{\infty} f^{(-n)}(x) \hat{\phi}(n)(x) \, dx.$$

By (2) this implies

$$|\langle \hat{f}, \phi \rangle| \leq M_{-n} \int_{-\infty}^{\infty} (1 + |x|)^{k+n} |\phi^{(n)}(x)| \, dx. \quad (12)$$

Differenting under the integral and using $\text{spt}(\phi) \subseteq [-r, r]$

$$\phi^{(n)}(x) = \int_{-r}^{r} (-it)^n \phi(t) e^{-itx} \, dt.$$

Thus

$$|\phi^{(n)}(x)| \leq \int_{-r}^{r} |t|^n |\phi(t)| \, dt \leq 2r^n \|\phi\|_{L^1}. \quad (13)$$

Also for $x \neq 0$, integration by parts $(k + 2)$ times and calculations similar to those of inequality (9) yield

$$|\hat{\phi}^{(n)}(x)| = \left| \int_{-r}^{r} \left(\frac{d^{k+2}}{dt^{k+2}} (-it)^n \phi(t) \right) e^{-itx} \, dt \right|$$

$$\leq \frac{1}{|x|^{k+2}} \int_{-r}^{r} \left| \frac{d^{k+2}}{dt^{k+2}} (t^n \phi(t)) \right| \, dt$$

$$\leq \frac{c_3(k, \phi) h^{k+2}}{|x|^{k+2}} r^{n-k-2}.$$

Putting the last two estimates together

$$|\phi^{(n)}(x)| \leq \begin{cases} 2r^n \|\phi\|_{L^1} & |x| \leq 1, \\ \frac{c_3(k, \phi) h^{k+2}}{|x|^{k+2}} r^{n-k-2} & |x| > 1. \end{cases} \quad (15)$$

Putting this in (12) gives an estimate

$$|\langle \hat{f}, \phi \rangle| \leq c_4(k, \alpha, \phi) M_{-n} h^{k+2} r^{n-k-2}. \quad (16)$$
The proof is now completed in the same manner as the proof of Lemma 1.

Acknowledgment

I would like to thank Charles Nicol, David Richman, and Anton Schep for some interesting discussions related to this paper. I would also like to thank the referee for the observation that the polynomials $p_{n,k}$ in Remark 1 are Laguerre polynomials.

References

0. E. D. Rainville, Special functions, Chelsea, New York, 1971.