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Simplified calculation of the stability matrix for semiclassical propagation

Sophya Garashchuk and John C. Light
James Franck Institute, University of Chicago, Chicago, lllinois 60637

(Received 19 July 2000; accepted 7 September 2000

We present a simple method of calculation of the stabilibonodromy matrix that enters the
widely used semiclassical propagator of Herman and Kluk and almost all other semiclassical
propagators. The method is based on the unitarity of classical propagation and does not involve any
approximations. The number of auxiliary differential equations per trajectory scales linearly rather
than quadratically with the system size. Just the first derivatives of the potential surface are needed.
The method is illustrated on the collinear; Bystem. ©2000 American Institute of Physics.
[S0021-960600)01045-X

I. INTRODUCTION 1
Recently the initial value representatidvR) semiclas- KX, t;x,00= (27T)NJ f dpo dgg Ryqe'pat
sical propagation methods have been used for a variety of
problems from the photodissociationand reactive X g,(G;,Pt,X")g% (Ao, Po.X). (1)

scattering™ to complex molecular systems’ condensed

phase problem%;*? and nonadiabatic dynami¢&:1® Semi-  The function
classical propagators, with the propagator of Herman and
Kluk (HK)"~22 being the most widely used, are based on

propagation of classical trajectories that have phases and am
plitudes associated with them. This requires calculation of
the stability(or monodromy matrix M, that shows the sen- xexp(— 3(x—g)T(x—qy) +1p;- (X—qy)),
sitivity of the final position and momentum of a trajectory to )
the initial conditions. This matrix is usually calculated by

solving 4N’ additional differential equations for an is a complex Gaussian with the diagonal width matfix
N-dimensional system which require the second derivatives={y,}. All y; are positive real parameters. Vectogg

de(F) 1/4
y(qtvptix): 7TN

of the potential. . . _ =(qg, - - -,4y) andpo=(pg, - - - Py) are initial conditions
As applications of semiclassical propagation methodsf a classical trajectory at time zero and vectays
move towards large systems, the numerical effort of obtain=(q?, ... gM) andp,=(pl, ... p") are its coordinates and

ing M becomes an issue. The quadratic scaling Wthf the  momenta at timé. Spqt is the classical action,
number of differential equations per trajectory is avoided in
several recent works: through a decoupling approximation in
Ref. 12, through the harmonic approximation to a potential
in Ref. 23. The method of Ref. 11 avoids the calculation of
the stability matrix by introducing a momentum discontinu- The prefactor involving the stabilitfor monodromy matrix
ity. A different semiclassical propagattrpased on the co- elements is

herent state representation, also bypasses the stability analy-

sis. An integral over a swarm of classical trajectories, Rpq= Vdet(B), (4)
derived from the gnitary condition on the propagator, Weigh§Nith the matrix element8={b; } being

each classical trajectory. y

t .
Spqt= fo[pt"Qt'_H(pt’vqt’rt,)]dt,- )

In this article we present a simple way to calculate the 1 v ap " aqit
stability matrix with thelinear rather than quadratic scaling bj; =—( A\ /A=
with N of the number of auxiliary equationgithout approxi- 2 Yidpy Yi aqp
mations that does not require the second derivatives of the i i
potential. The method is described in Sec. Il and it is illus- — 1y, y_‘?_q_t+ : ﬁ) (5)
trated on the collinear Hsystem using the IVR propagator Yoplh, vy, od)

of Herman and Kluk. It can be used in any semiclassical

propagator that uses the trajectory stability analysis. Sectiohhe square root in Ed4) is chosen to mak®&,q; a continu-
Il concludes the work. ous function of time&° The HK propagator is unitary, i.e., it

preserves the normalization of the wave function, within the
Il. CALCULATION OF THE STABILITY MATRIX USING stationary phase approximatibhMost of the other semi-

UNITARITY OF CLASSICAL PROPAGATION classical propagators are also based on the propagation of
The HK propagator irN dimensions, generalized to in- classical trajectories with contribution of each trajectory be-
clude the width parameters as a matrix, is ing a function of the stability matrix elements.

0021-9606/2000/113(21)/9390/3/$17.00 9390 © 2000 American Institute of Physics
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The stability matrix,M(t,,t;), of a trajectory{q,,p} 8
evolving in time under the HamiltoniaH, is a function of
initial and final timest; andt,
6 I
Py, Py,
Py, 9, .
M(t,,t;)= . 6 5
2 dq;, dQ, 2
Py, 9,
The time evolution oM is described by a matrix equation of 2T
2N X 2N size,
2 . . .
0 ﬂ 0 2 3 4 5 6
dM(t,tl) an R, bohr
—r = M(t,ty), (7) . . . . . .
dt 9°H FIG. 1. A reactive trajectory for the collinearsHystem in Jacobi coordi-
— 0 nates.

ap?

where 9°H/99? is the Hessian matrix. The initial condition

of M is unitary, M(t;,t;)=1. Solution of Eq.(7) requires  where the number of terms i$,(~t,)/At. A more accurate

the second derivatives of the potential. central difference scheme fan;; requires 4 trajectories
Alternatively, we use the unitarity property of the stabil- with displacements- Aq; ,=Ap;. This was used in the ex-

ity matrix, that can be verified by applying the chain rule of ample below. The number of equations per trajectory will

differentiation, scale linearly with N, as 4\ for the central difference

scheme of numerical differentiation above, and faeond

M(ts,t2) =M(ts, L) M(tz, o), ®  Jerivatives of the potential are not requirelatrix multi-

to avoid the unfavorable quadratic scaling of Ef.with the  plication gives overalN® scaling to both, the present method

system size. Equatiof8) allows one to restart the matri¥ of Egs.(10) and(12) and to the standard method of E).

at some intermediate timtewith the unitary initial condition. However, the main computational effort goes into solving of

Extending this idea, we can use a unitary initial condition forthe differential equations and this is why the present method

M at every time stepdt and perform the partial differentia- might be advantageous.

tion numerically. Ateachtime step, following a “central” The multiplication time step\t of Eq. (12) can be the
trajectory same as the trajectory propagation time si¢pr larger, as
long as the numerical differentiation remains accurate. The
Zo(t) ={da(t),...,an(t),pPa(t),....pn(D)} ©) accuracy ofM can be monitored by the deviation of the

contributing to the propagator, we will propagatsl 2ddi-  determinant oM from 1. Since the multiplication of small
tional classical trajectories, whose initial conditions differ matrices is a minor numerical effort compared to the trajec-

from z,(t) by a displacement in one of the variables, tory propagation, and since small&at gives more accurate
numerical derivatives, we take the trajectory propagation

As an example we will look at the amplitud®, in
the HK propagator, which is a function of the stability matrix
Zy(t)={d1(1),....an(t) + Ay, Pa(t),....pn(D) ], elements, of a single reactive trajectory on the potential sur-
_ (100 face for the collinear K system. Figure 1 shows a typical
2+ 2(0={A2(V), - A0, PO T APy, PN(D reactive trajectory with initial conditiongy(0)={5.0,1.4,
—7.0,0.0 and which is the center of a Gaussian with
={12.0,18.7. Other details of the calculation are the same
Zon(D) ={02(),..an (1), P1(D)... PN(D) + APy} as in Ref. 2. The propagation time stepis the same for the
Then, the elementsy; of M are central and auxiliary trajectories and equalXt
' ‘ ‘ Rpqt Of the trajectory is given by Eg4). Ryq: found
_9Z(t+ A zj(t+ A —zy(t+ A with Eq. (7) and with Eqs(10) and(12) are shown in Fig. 2.
Mij = PR Az ’ 1D The two curves agree within»510" 4. The propagation re-

_ quired about 3000 time stepst=0.574 a.u. Figure 3 shows
with z; designating théth component of thgth trajectory.  the convergence dRR,,| with respect to the time step for
The elements for any initial timg and final timet, can thus  the present method. The accuracy of the determinant,
be found as a product |dei(M)—1|, was better than IC¢ at all times. Figure 4

_ _ _ _ shows the accuracy 0R, | for several initial displacements
Mtz 1) =M(to,t;— AL - M(t— At 1= 240) in Eq. (10. We obtgin?d| stable results for displacements
c Mt AL, (12 10 %-10° (the same in all coordinatesEquation (12)
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FIG. 4. Difference of the amplitudd,,q for initial displacement 10° with

FIG. 2. The amplitudéquJ of a trajectory in HK propagator found from anlglitudes for displacements 19 (solid line), 10 ¢ (dashed ling and
the matrix Eq.(7), shown with the solid line, and as a product from Eqgs. 10 ' (dot-dashed line
(10) and(12), shown with circles. Time step i8&t=0.574 a.u.

Only the first derivatives of the potential, that are often found

along with the construction of the potential surface, are
might be numerically inaccurate for long-time propagation ofneeded. The method does not involve any approximations.
chaotic trajectories requiring a very large number of steps. We illustrated it on the collinear Hsystem using IVR semi-
classical propagator of Herman and Kluk and showed that it
gives accurate amplitude, for a range of initial displace-

o ] . . ~ ments and converges with respect to the time step. Our
As initial value representation semiclassical propagationnethod may not be well-suited for chaotic systems that will

methods become widely used for large systems—complexequire many thousands of time steps, something that was
molecules and condensed phase systems, the computationgl tested in this work. However, we expect this way of
effort going into the calculation of the stabilignonodromy  finding the stability matrix to be useful for dynamics of large

matrix M becomes a concern. The typical way of findivg systems where its features will be an advantage.
requires a solution of M? auxiliary differential equations

and the second derivatives of the potential for anACKNOWLEDGMENT
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its unitarity. The number of differential equations per trajec-
tory scales linearly, asM for the central difference scheme.
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