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Simplified calculation of the stability matrix for semiclassical propagation
Sophya Garashchuk and John C. Light
James Franck Institute, University of Chicago, Chicago, Illinois 60637

~Received 19 July 2000; accepted 7 September 2000!

We present a simple method of calculation of the stability~monodromy! matrix that enters the
widely used semiclassical propagator of Herman and Kluk and almost all other semiclassical
propagators. The method is based on the unitarity of classical propagation and does not involve any
approximations. The number of auxiliary differential equations per trajectory scales linearly rather
than quadratically with the system size. Just the first derivatives of the potential surface are needed.
The method is illustrated on the collinear H3 system. ©2000 American Institute of Physics.
@S0021-9606~00!01045-X#

I. INTRODUCTION

Recently the initial value representation~IVR! semiclas-
sical propagation methods have been used for a variety of
problems from the photodissociation1 and reactive
scattering2–4 to complex molecular systems,5–7 condensed
phase problems,8–12 and nonadiabatic dynamics.13–16 Semi-
classical propagators, with the propagator of Herman and
Kluk ~HK!17–22 being the most widely used, are based on
propagation of classical trajectories that have phases and am-
plitudes associated with them. This requires calculation of
the stability~or monodromy! matrix M , that shows the sen-
sitivity of the final position and momentum of a trajectory to
the initial conditions. This matrix is usually calculated by
solving 4N2 additional differential equations for an
N-dimensional system which require the second derivatives
of the potential.

As applications of semiclassical propagation methods
move towards large systems, the numerical effort of obtain-
ing M becomes an issue. The quadratic scaling withN of the
number of differential equations per trajectory is avoided in
several recent works: through a decoupling approximation in
Ref. 12, through the harmonic approximation to a potential
in Ref. 23. The method of Ref. 11 avoids the calculation of
the stability matrix by introducing a momentum discontinu-
ity. A different semiclassical propagator,24 based on the co-
herent state representation, also bypasses the stability analy-
sis. An integral over a swarm of classical trajectories,
derived from the unitary condition on the propagator, weighs
each classical trajectory.

In this article we present a simple way to calculate the
stability matrix with thelinear rather than quadratic scaling
with N of the number of auxiliary equationswithout approxi-
mations, that does not require the second derivatives of the
potential. The method is described in Sec. II and it is illus-
trated on the collinear H3 system using the IVR propagator
of Herman and Kluk. It can be used in any semiclassical
propagator that uses the trajectory stability analysis. Section
III concludes the work.

II. CALCULATION OF THE STABILITY MATRIX USING
UNITARITY OF CLASSICAL PROPAGATION

The HK propagator inN dimensions, generalized to in-
clude the width parameters as a matrix, is

Ksc~x8,t;x,0!5
1

~2p!NE E dp0 dq0 Rpqte
ıSpqt

3gg~qt ,pt ,x8!gg* ~q0 ,p0 ,x!. ~1!

The function

gg~qt ,pt ,x!5S det~G!

pN D 1/4

3exp~2 1
2 ~x2qt!G~x2qt!1ıpt•~x2qt!!,

~2!

is a complex Gaussian with the diagonal width matrixG
5$g i%. All g i are positive real parameters. Vectorsq0

5(q0
1, . . . ,q0

N) and p05(p0
1, . . . ,p0

N) are initial conditions
of a classical trajectory at time zero and vectorsqt

5(qt
1, . . . ,qt

N) andpt5(pt
1, . . . ,pt

N) are its coordinates and
momenta at timet. Spqt is the classical action,

Spqt5E
0

t

@pt8•q̇t82H~pt8 ,qt8 ,t8!#dt8. ~3!

The prefactor involving the stability~or monodromy! matrix
elements is

Rpqt5Adet~B!, ~4!

with the matrix elementsB5$bi j % being

bi j 5
1

2 SAg i

g j

]pt
i

]p0
j

1Ag j

g i

]qt
i

]q0
j

2ıAg ig j

]qt
i

]p0
j

1
ı

Ag ig j

]pt
i

]q0
j D . ~5!

The square root in Eq.~4! is chosen to makeRpqt a continu-
ous function of time.20 The HK propagator is unitary, i.e., it
preserves the normalization of the wave function, within the
stationary phase approximation.19 Most of the other semi-
classical propagators are also based on the propagation of
classical trajectories with contribution of each trajectory be-
ing a function of the stability matrix elements.
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The stability matrix,M (t2 ,t1), of a trajectory$qt ,pt%
evolving in time under the HamiltonianH, is a function of
initial and final timest1 and t2

M ~ t2 ,t1!5S ]pt2

]pt1

]pt2

]qt1

]qt2

]pt1

]qt2

]qt1

D . ~6!

The time evolution ofM is described by a matrix equation of
2N32N size,

dM ~ t,t1!

dt
5S 0

]2H

]q2

]2H

]p2
0
D M ~ t,t1!, ~7!

where]2H/]q2 is the Hessian matrix. The initial condition
of M is unitary, M (t1 ,t1)51. Solution of Eq.~7! requires
the second derivatives of the potential.

Alternatively, we use the unitarity property of the stabil-
ity matrix, that can be verified by applying the chain rule of
differentiation,

M ~ t3 ,t1!5M ~ t3 ,t2!M ~ t2 ,t1!, ~8!

to avoid the unfavorable quadratic scaling of Eq.~7! with the
system size. Equation~8! allows one to restart the matrixM
at some intermediate timet with the unitary initial condition.
Extending this idea, we can use a unitary initial condition for
M at every time stepDt and perform the partial differentia-
tion numerically. Ateach time step, following a ‘‘central’’
trajectory

z0~ t !5$q1~ t !,...,qN~ t !,p1~ t !,...,pN~ t !% ~9!

contributing to the propagator, we will propagate 2N addi-
tional classical trajectories, whose initial conditions differ
from z0(t) by a displacement in one of the variables,

z1~ t !5$q1~ t !1Dq1 ,...,qN~ t !,p1~ t !,...,pN~ t !%,

¯

zN~ t !5$q1~ t !,...,qN~ t !1DqN ,p1~ t !,...,pN~ t !%,
~10!

zN11~ t !5$q1~ t !,...,qN~ t !,p1~ t !1Dp1 ,...,pN~ t !%,

¯

z2N~ t !5$q1~ t !,...,qN~ t !,p1~ t !,...,pN~ t !1DpN%.

Then, the elementsmi j of M are

mi j 5
]zi~ t1Dt !

]zj~ t !
5

zj
i ~ t1Dt !2z0

i ~ t1Dt !

Dzj
, ~11!

with zj
i designating thei th component of thej th trajectory.

The elements for any initial timet1 and final timet2 can thus
be found as a product

M ~ t2 ,t1!5M ~ t2 ,t22Dt !•M ~ t22Dt,t222Dt !

• . . . •M ~ t11Dt,t1!, ~12!

where the number of terms is (t22t1)/Dt. A more accurate
central difference scheme formi j requires 4N trajectories
with displacements6Dqi ,6Dpi . This was used in the ex-
ample below. The number of equations per trajectory will
scale linearly with N, as 4N for the central difference
scheme of numerical differentiation above, and thesecond
derivatives of the potential are not required. Matrix multi-
plication gives overallN3 scaling to both, the present method
of Eqs.~10! and~12! and to the standard method of Eq.~7!.
However, the main computational effort goes into solving of
the differential equations and this is why the present method
might be advantageous.

The multiplication time stepDt of Eq. ~12! can be the
same as the trajectory propagation time stepdt or larger, as
long as the numerical differentiation remains accurate. The
accuracy ofM can be monitored by the deviation of the
determinant ofM from 1. Since the multiplication of small
matrices is a minor numerical effort compared to the trajec-
tory propagation, and since smallerDt gives more accurate
numerical derivatives, we take the trajectory propagation
time stepdt to be equal toDt below.

As an example we will look at the amplitudeuRpqtu in
the HK propagator, which is a function of the stability matrix
elements, of a single reactive trajectory on the potential sur-
face for the collinear H3 system. Figure 1 shows a typical
reactive trajectory with initial conditionsz0(0)5$5.0,1.4,
27.0,0.0% and which is the center of a Gaussian withG
5$12.0,18.7%. Other details of the calculation are the same
as in Ref. 2. The propagation time stepdt is the same for the
central and auxiliary trajectories and equal toDt.

Rpqt of the trajectory is given by Eq.~4!. Rpqt found
with Eq. ~7! and with Eqs.~10! and~12! are shown in Fig. 2.
The two curves agree within 531024. The propagation re-
quired about 3000 time steps,Dt50.574 a.u. Figure 3 shows
the convergence ofuRpqtu with respect to the time step for
the present method. The accuracy of the determinant,
udet~M !21u, was better than 1028 at all times. Figure 4
shows the accuracy ofuRpqtu for several initial displacements
in Eq. ~10!. We obtained stable results for displacements
102421026 ~the same in all coordinates!. Equation ~12!

FIG. 1. A reactive trajectory for the collinear H3 system in Jacobi coordi-
nates.
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might be numerically inaccurate for long-time propagation of
chaotic trajectories requiring a very large number of steps.

III. SUMMARY

As initial value representation semiclassical propagation
methods become widely used for large systems—complex
molecules and condensed phase systems, the computational
effort going into the calculation of the stability~monodromy!
matrix M becomes a concern. The typical way of findingM
requires a solution of 4N2 auxiliary differential equations
and the second derivatives of the potential for an
N-dimensional system. We presented a simple way of calcu-
lating the stability matrix for classical trajectories based on
its unitarity. The number of differential equations per trajec-
tory scales linearly, as 4N for the central difference scheme.

Only the first derivatives of the potential, that are often found
along with the construction of the potential surface, are
needed. The method does not involve any approximations.
We illustrated it on the collinear H3 system using IVR semi-
classical propagator of Herman and Kluk and showed that it
gives accurate amplitudeRpqt for a range of initial displace-
ments and converges with respect to the time step. Our
method may not be well-suited for chaotic systems that will
require many thousands of time steps, something that was
not tested in this work. However, we expect this way of
finding the stability matrix to be useful for dynamics of large
systems where its features will be an advantage.
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FIG. 2. The amplitudeuRpqtu of a trajectory in HK propagator found from
the matrix Eq.~7!, shown with the solid line, and as a product from Eqs.
~10! and ~12!, shown with circles. Time step isDt50.574 a.u.

FIG. 3. Difference of the amplitudeuRpqtu for Dt50.574 a.u. with ampli-
tudes for 2Dt ~solid line!, 4Dt ~dashed line!, and 8Dt ~dot-dashed line!.

FIG. 4. Difference of the amplitudeuRpqtu for initial displacement 1025 with
amplitudes for displacements 1024 ~solid line!, 1026 ~dashed line!, and
1027 ~dot-dashed line!.
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