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Application of the empirical mode decomposition and
Hilbert-Huang transform to seismic reflection data

Bradley Matthew Battista1, Camelia Knapp1, Tom McGee2, and Vaughn Goebel3

ABSTRACT

Advancements in signal processing may allow for im-
proved imaging and analysis of complex geologic targets
found in seismic reflection data. A recent contribution to sig-
nal processing is the empirical mode decomposition �EMD�
which combines with the Hilbert transform as the Hilbert-
Huang transform �HHT�. The EMD empirically reduces a
time series to several subsignals, each of which is input to the
same time-frequency environment via the Hilbert transform.
The HHT allows for signals describing stochastic or asto-
chastic processes to be analyzed using instantaneous at-
tributes in the time-frequency domain. The HHT is applied
herein to seismic reflection data to: �1� assess the ability of the
EMD and HHT to quantify meaningful geologic information
in the time and time-frequency domains, and �2� use instanta-
neous attributes to develop superior filters for improving the
signal-to-noise ratio. The objective of this work is to deter-
mine whether the HHT allows for empirically-derived char-
acteristics to be used in filter design and application, resulting
in better filter performance and enhanced signal-to-noise ra-
tio. Two data sets are used to show successful application of
the EMD and HHT to seismic reflection data processing.
Nonlinear cable strum is removed from one data set while the
other is used to show how the HHT compares to and outper-
forms Fourier-based processing under certain conditions.

INTRODUCTION

This work is an introduction to the application of the empirical
mode decomposition �EMD� and related Hilbert-Huang transform
�HHT� �Huang et al., 1998� to seismic reflection data. The applica-
tion of the EMD and HHT to these types of data has yet to be recog-

nized as a standard application by the exploration seismology com-
munity. Therefore, it is the purpose of this work to demonstrate the
ability for these new techniques, recently accepted in other disci-
plines, to improve seismic reflection data quality. This work does not
attempt to replace conventional seismic processing methods, but in-
stead, to complement them with the addition of the EMD and HHT.
In this respect, the EMD is proposed as a highly effective time-do-
main filter. Additionally, the HHT is compared to the Fourier trans-
form to the extent that a signal may be characterized with respect to
time, frequency, or both simultaneously. The only significant differ-
ence is that the HHT can derive instantaneous amplitude, phase, and
frequency for a signal with no a priori knowledge; a priori referring
to sample frequency and local disruptions of a time series such as
noise spikes and step functions �Huang et al., 1998�.

Empirical mode decomposition

The EMD is designed to reduce nonstationary, multicomponent
signals to a series of amplitude- and frequency-modulation �AM-
FM� contributions. The EMD, since its formal introduction by
Huang et al. �1998�, has yet to be developed into a formal algorithm.
This stems from the empirical nature of the process. However, many
have written codes to perform the EMD. Among them, and the start-
ing point for this work, are the codes of Rilling et al. �2002�. General-
ly speaking, the overall result of the decomposition is to successive-
ly remove the highest frequencies from a signal. The net result is to
create a bank of subsignals, termed intrinsic mode functions �IMF�,
whose sum produces the original signal. The last IMF or residual is
of the lowest order. In this manner, Rilling et al. �2004b� have de-
scribed the EMD to behave as a dyadic filter bank under various con-
ditions. This can also be thought of as having several filters of over-
lapping frequency content. Therefore, the EMD can be used to gain
significant information inherent to the signal. Further, the EMD
differs from wavelet decomposition in that the filters of the filter
bank do not correspond to sub-band filtering but instead to signal-
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dependent, time-variant filters. Flandrin and Gonçalvès �2004� elab-
orate on the differences and similarities of EMD and wavelet de-
composition.

The EMD has received much focus in the signal processing com-
munity, but has been given little attention by the exploration seis-
mology community. Magrin-Chagnolleau and Baraniuk �1999�
demonstrated that seismic traces could be analyzed using EMD. Ad-
ditionally, similarities in the types of signals being analyzed allowed
for the works of Rilling et al. �2004a, b� to be considered. Together,
these works analyze the nature and use of the EMD for detrending
and denoising data — a common necessity in the seismic exploration
industry. Therefore, the foundation is set for further investigation of
the potential for EMD and HHT to optimally analyze seismic reflec-
tion data.

Hilbert-Huang transform

In seismic signal processing, the Hilbert transform is commonly
used to generate a complex time series or analytic signal. The benefit
is that instantaneous attributes can be derived from complex traces.
However, accurate and meaningful computation of these attributes
requires that the input signal’s start and end have zero amplitude, and
it contains no trend that introduces a nonzero mean �Dix, 1949�. In
this regard, perhaps the most significant seismic use for the EMD is
to prepare a signal for input to the Hilbert transform. Together, the
EMD and the Hilbert transform are labeled the Hilbert-Huang trans-
form. Huang et al. �1998� explain how all of the IMFs may be passed
into a common time-frequency domain where the instantaneous am-
plitude and phase can be analyzed with high resolution. The benefit
of preceding the Hilbert transform with the EMD is that signals ex-
hibiting stochastic behavior may also be transformed to yield mean-
ingful physical information in the time-frequency domain. Mean-
ingful physical information refers to instantaneous attributes that are
free of artificial harmonics and/or irregular phase caused by a non-
zero mean. Furthermore, analyzing instantaneous attributes in the
time-frequency domain provides the most comprehensive environ-
ment for filter design because both time and frequency domains are
considered.

CUSTOMIZATION AND DESIGN

Empirical mode decomposition

The objective of the EMD is to empirically separate a signal into
several subsignals of varying, and possibly overlapping, frequency
content. Each of the subsignals is referred to as an intrinsic mode
function because it is empirically derived from the data �i.e., there
are no user-specified filters�. The EMD produces a bank of IMFs
whose sum yields the original signal. The first IMFs produced con-
tain the highest frequency components of a signal while the latter
contain the lowest frequency components. Two questions are pre-
sented and answered to clarify how the EMD works. First, what is an
IMF? Second, how is an IMF computed? The answer to the first
question is simple. The total number of extrema �peaks and troughs�
in an IMF must not differ from the total number of zero crossings by
more than one, and the IMF must not contain a nonzero mean �Hua-
ng et al., 1998�. The method of producing IMFs, and the answer to
the second question, lies in the concept referred to by Huang et al.
�1998� as sifting.

The result of sifting is to remove all trends preventing a subsignal
from fitting the criteria of an IMF. A signal that already fits the crite-
ria for an IMF will produce no further IMFs during the EMD. Other-
wise, the signal’s extrema are found and separated into peaks and
troughs. A cubic spline is fit to each separately. This envelopes the
signal within two curve fits, one that rides along the peaks and one
that rides along the troughs. The average of the two cubic-spline fits
is taken as a function of time, and is referred to as the mean spline,
because it visually resembles a low-order, running-average curve fit.
The mean spline is subtracted to produce a new signal. The process is
repeated on each new signal until the criteria for an IMF are met. It is
nearly impossible to achieve a mean spline that is exactly zero for the
signal’s duration, so a final stopping criterion must be set to deter-
mine when sifting has effectively produced an IMF. This criterion is
a predetermined rms tolerance between two consecutive compo-
nents of sifting. Let s0�t� be sifted once to yield its first component,
s1�t�, by removing its average spline, m0�t�. The rms is determined
for each s0�t� and s1�t�, and their difference is compared to the prede-
termined tolerance. Sifting continues according to equation 1 if the
difference between rms values is greater than the tolerance.

1

J
��� j=1

J
sn−1�t�2�

1
2 − �� j=1

J
sn�t�2�

1
2�

� tolerance,

sn+1�t� = sn�t� − mn�t� , �1�

where n = 1,2,3,. . . and J is the number of samples in the time se-
ries. The first IMF, having had several lower frequency components
removed, contains only the highest frequency components of the
signal that do not cause it to violate the IMF criteria. Subtracting the
first IMF from the original signal produces a new signal which may
be sifted to form a second IMF. Sifting and production of IMFs con-
tinues until the process is manually terminated or the remaining re-
sidual contains at most three extrema. Therefore, IMFs can be relat-
ed to a signal in accordance with equation 2,

c0�t� = ��n=1

N
cn�t�� + r�t� , �2�

where c0�t� is the original signal, cn�t� are IMFs, r�t� is a residual, if
any, and N is the total number of IMFs. Figure 1 illustrates the EMD
of a signal composed of three pure tones.

Instantaneous attributes

Let Xn�t� be a bank of IMFs and Yn�t� be a bank of their Hilbert
transforms. A bank of analytic signals, Zn�t�, can be determined as

Zn�t� = Xn�t� + iYn�t� , �3�

where n denotes the IMF in the bank. The bank of analytic signals af-
fords the ability to determine instantaneous amplitude and phase in
the time domain. Equations 4 and 5 show how this is done:
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an�t� = �Xn�t�2 + Yn�t�2, �4�

�n�t� = tan−1�Yn�t�
Xn�t�� . �5�

Amplitude, an�t�, and phase, �n�t�, for each IMF
in the bank are found using simple trigonometry.
Instantaneous frequency is determined within the
intervals between samples and not at individual
samples. This stems from the fact that frequency,
fn�t�, is the first derivative of phase according to
equation 6

fn�t� =
1

2�

d�n

dt
. �6�

Once determined, amplitude, phase, and frequen-
cy can be time-sorted and displayed in a time-fre-
quency fashion. This produces a spectrogram at
the highest possible resolution; that is, for every
sample in time there is a corresponding ampli-
tude, phase, and frequency. Additionally, the
temporal summation of amplitude, a�f ,t�, with re-
spect to frequency shown in equation 7 produces
a marginal spectrum, hf, in similar manner to that
of a periodogram:

hf = �
0

T

a�f ,t�dt . �7�

The difference is that there is no spectral window-
ing as with the periodogram because of the use of
instantaneous attributes, and there may exist fre-
quencies having no energy. However, this does
not happen with broadband signals, and the result
resembles a power spectrum. Figure 2 provides
the time-frequency results of determining the Hil-
bert-Huang transform on the IMFs derived for the
three-component signal from Figure 1. Valida-
tion of the instantaneous characteristics found in
this manner is determined in much the same way
as with the Fourier transform. Equation 8 em-
ploys Euler’s relationship to reconstruct a time
series from its instantaneous amplitude and
phase. The real part �R� of the summation is
equal to the original time series.

X�t� = R�
n=1

N

anei�nt. �8�

Data analysis

The empirical nature of the EMD causes it to
be sensitive to both analog and digital character-
istics of a signal. An analog example masks a
high-frequency signal with strong, low-frequen-
cy trends. A digital example would be quantizing
or aliasing the data with improper sampling rates.
Adequate sampling for the EMD should be much
higher than that determined from conventional
sampling theory. As explained in Appendix A,
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the discrepancy stems from the invalid assumption that finite-length
pulses, such as seismic pulses, are band limited �Shannon, 1949; Sle-
pian, 1976�.

EMD as a time-domain filter

Two data sets are used to analyze the performance of the EMD
and HHT with respect to seismic reflection data. The first comes
from a single-channel, shallow source/deep receiver �SSDR� data
set from the Gulf of Mexico. These data carry strong, low-frequency
energy generated from the strumming of the receiver cable as the re-
ceiver was towed through the water column. Cable strum is subject
to nonlinear forcing, and presents a unique opportunity for the EMD
to demonstrate its strength as a time-domain filter. The cable-strum
noise is removed using only the EMD as a time-domain filter by gen-
erating several narrow-band IMFs and summing those that do not
contain the low-frequency noise. The IMFs containing noise may be
manually removed after visual inspection or handled by way of a us-
er-defined crosscorrelation to the original trace.

HHT as a time-frequency filter

The second data set comes from a high-quality, multichannel seis-
mic survey from the Caspian Sea. There is very little noise in these
data and there exists a strong bottom-simulating reflector from Dia-
conescu et al. �2001�. There is no significant need to use the EMD as
a time-domain filter as with the first data set because the signal-to-

noise ratio is already very high. The EMD is applied to these data
only as a prerequisite to the HHT. The HHT is first used to compare
filtering in the time-frequency domain versus that of the frequency
domain using the traditional Fourier transform. Secondly, the in-
stantaneous attributes derived from the HHT are compared to those
produced by the Hilbert transform without the use of the EMD.
These exercises demonstrate both the strength of time-frequency do-
main filtering and the necessity of using the EMD with the Hilbert
transform.

OPTIMIZATION AND FILTER COMPARISON

Parameter optimization for the EMD

The EMD is very sensitive to both the physical and digital charac-
teristics of the signal being analyzed. The sensitivity is high enough
to pick up quantization and fidelity errors. Quantization errors result
from rounding errors introduced when a continuous function is sam-
pled at discrete locations �Oppenheim and Schafer, 1989�. Loss of fi-
delity allows for amplitude modulations even when sampling faster
than the conventional Nyquist frequency. Most signal processing
techniques for seismic data are not significantly affected by this.

Figure 3 shows that the IMFs from a pure 60 Hz tone sampled ev-
ery 1000 �sec �1 kHz� introduce a 20 Hz tone. The same signal
sampled every 333 �sec ��3 kHz� does not produce the 20 Hz tone
after EMD because the fidelity error has been significantly reduced.
Furthermore, low-energy dots in Figure 3 result from edge effects in

the Hilbert transform. These edge effects are un-
avoidable in the case of a pure cosine function be-
cause it is impossible for it to meet Dix’s �1949�
criteria of zero-amplitude beginning and end with
zero mean throughout. However, following Sle-
pian �1976�, these points can be ignored because
they fall below the level of significant energy.
Moreover, loss of fidelity is inevitable for any
seismic pulse, and the choice of sample rate
should be the highest possible if the assumption is
held that seismic pulses possess infinite band-
width, Appendix A defends this assumption. This
lends support to McGee �2000�, who suggested
seismic signals should be sampled as fast as pos-
sible to respect the Heisenberg Uncertainty Prin-
ciple, stating that time-limited signals have infi-
nite bandwidth and band-limited signals have no
beginning or end.

The EMD sometimes exhibits difficulty sepa-
rating weak trends from strong trends. This most-
ly occurs when a signal contains strong, low-fre-
quency components with weak, high-frequency
components riding along. The sifting process of
the EMD may miss detect the weak components
when determining the signal’s envelope and
mean. To summarize sifting, a signal’s extrema
are located and separated into upper �peaks� and
lower �troughs�. A cubic spline is drawn through
each and they are averaged to form the mean
spline. The mean spline can significantly stray
from the signal in cases dealing with strong
trends. For example, parts of the mean spline
could lie outside of the signal’s amplitude enve-
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Figure 3. Effect of sample interval on the EMD. �a� Hilbert marginal spectrum for a
60 Hz tone before performing the EMD. �b� Hilbert marginal spectrum for all IMFs pro-
duced by the EMD for a 60 Hz tone with a 1000 �sec sample interval. The introduction
of a weak, 20 Hz peak results from slight amplitude modulation caused by the EMD’s
sensitivity to fidelity. �c� Hilbert marginal spectrum for all IMFs produced by the EMD
for a 60 Hz tone with a 333 �sec sample interval.
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lope. Artificial trends are produced during sifting when the poorly
determined mean splines are subtracted from the data. Figure 4
shows both the nature of this problem as well as a working solution.
The problem is that strong, short-lived trends prohibit the detection
of extrema because the weaker signal riding on the trend cannot ex-
press a change of slope �i.e., peaks and troughs are lost in the trend�.
The “missing” extrema can be located by analyzing the distribution
of extrema for the whole signal. Extrema spacing is a measure of the
dominant frequencies in the signal, and a large gap in extrema sug-
gests the presence of a strong trend. Thus, a strong, local trend is de-
fined as a portion of the signal where the extrema spacing is greater
than two standard deviations from the mean extrema spacing. These
portions of signal are fitted with a third-order polynomial that is sub-
tracted before determining extrema. The result, as shown in Figure
4, is to constrain the mean spline such that it cannot separate from the
signal. Further, the introduction of false trends is significantly mini-
mized by using well-constrained mean splines. An additional benefit
of this is to produce more IMFs of narrower bandwidth than before.
Results of using the EMD with and without this optimization are
shown in the following section. Furthermore, this modification can
be considered permanent, and does not need to be adjusted for other
data sets. It is presented here to demonstrate how the EMD is adapted
for use with seismic signals.

Cable strum removal using the EMD

The EMD is applied to a single-channel seismic reflection profile
taken in the Gulf of Mexico using a shallow source with a deep-
towed receiver. There is a significant amount of noise contributed to
the receiver because of cable strum as shown in Figure 5. The energy
of the cable strum far exceeds that of the seismic reflections from the
seafloor and below. However, performing the EMD, even under
poor conditions, helps to bring out the desired data. Figure 6 shows
the same traces after performing EMD and filtering without any pa-
rameter optimization as described above. Most of
the cable strum has been removed but there is ob-
vious evidence for the introduction of artificial
trends; these being the high amplitude noise in
Figure 6. Parameter optimization of the EMD re-
duces the introduction of artificial trends almost
completely and produces IMFs of narrow band-
width. Therefore, it is much easier to separate the
cable strum in the time domain by summing IMFs
without cable strum. In this manner, the EMD is
used as a signal-dependent, time-variant filter.
Figure 7, having had EMD parameterization to
reduce artificial trends, presents the ideal results.
Most of the traces contain the same number of
IMFs but some contain less. The ability to decide
which IMFs are most representative is subject to
interpretation, but can be guided. It was decided
that any IMFs containing cable strum and not
containing energy for the seafloor reflection
could be removed based on the idea that the seaf-
loor horizon should reflect the most energy and
attenuate the least. This criterion proves highly
effective, as seen in Figure 7. The data in the up-
per panel is not present in the filtered noise in the
lower panel.

Time-frequency versus frequency-domain filtering

The HHT is used to derive instantaneous phase and amplitude for
a signal. Instantaneous frequency can be derived from phase as de-
scribed previously in equation 6. In this manner, a time-frequency
representation is achieved wherein every sample is accounted for.
The Hilbert transform can be approximated via forward and inverse
discrete Fourier transform only if the signal satisfies the amplitude
and mean criteria described by Dix �1949�, which are optimally
achieved using the EMD. Additionally, the HHT and Fourier trans-
form can apply the same transfer function to the data with nearly
identical results. Figure 8 illustrates the results of applying the same
frequency response, a sixth-order Butterworth bandpass filter with a
passband of 100–300 Hz, to the same data set. Figure 8a shows the
filtered data, while Figure 8b shows the traditional method using
FFT. Clearly, the two methods of filtering are related as the results
are nearly the same. However, upon closer look, there are differenc-
es. These differences can be caused by two major factors. First, the
HHT may produce invalid attributes, if any of the employed IMFs
carry a trend which they should not if the EMD is properly per-
formed; meaning it was prevented from sifting completely. Second,
a zero-phase filter is achieved via Fourier transform by filtering both
the forward and reverse directions, which effectively applies the fil-
ter twice. Therefore, the HHT bandpass filter maintains a higher
spectral resolution. Even so, the two forms of filtering converge on
the same result when optimum detrending has occurred prior to fil-
tering. Further, neither application outperforms the time-domain im-
plementation of the EMD as seen in Figure 7. Filter comparison is
also performed on high-quality data to show how robust the HHT re-
ally is. We noted above that applying a bandpass filter using FFT and
HHT produced nearly the same result. Figure 9 reemphasizes this
point by applying a bandpass filter with a passband of 15–60 Hz to
data from the Caspian Sea containing a buried gas hydrate �Diaco-
nescu et al., 2001�. Notice there are many similarities between the
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Figure 4. Effects of strong trends on the EMD. �a� Example of how the mean spline can
stray from a signal in the presence of a strong trend caused by lack of extrema. �b� Results
of an automated routine that finds the missing extrema to properly constrain the mean
spline.
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mains. This noise is both cable strum and artificial noise caused by
improper sifting in the presence of strong trends.
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two techniques. However, as stated before, the HHT posseses higher
resolution and respects the phase of the original signal better than the
FFT-based filter.

HHT versus Hilbert transform

The HHT differs not only from Fourier-based techniques but also
from a standard Hilbert transform. As a reminder, the only algorith-
mic difference between the HHT and the Hilbert transform is the use
of the EMD to prepare the signal. Figure 10 illustrates the applica-
tion of EMD to a CDP gather, post normal-moveout removal, from
the Caspian Sea data set. Figure 10a shows the individual IMFs,
where Figure 10b shows the cumulative sum of the IMFs for each
CDP. The HHT is applied to the gather by applying the Hilbert trans-
form to the IMFs and not the original CDP traces. The strength of the
HHT becomes quite apparent when comparing the attributes derived
from the HHT versus the Hilbert transform. Figure 11 presents a
time-frequency spectrogram, �Figure 11b�, and Hilbert marginal
spectrum, �Figure 11c�, for the CDP trace �Figure 11a�. It appears as
though the signal is composed of broadband energy as the instanta-
neous frequencies are widely distributed. In contrast, Figure 12 sug-
gests the signal is primarily composed of stable, low-frequency
components easily seen as trends. The broadband energy compo-
nents are still present. The differences occur because the CDP trace
carries localized DC shifts while its IMFs do not, and the Hilbert
transform breaks down in the presence of a nonzero mean. Both sets
of attributes, from HHT and Hilbert transform, reproduce the origi-
nal trace after the inverse transform is applied, although the HHT
representation provides optimum results in the time-frequency
domain.

DISCUSSION

The objectives of this work are determine the
ability of the EMD and HHT in order to quantify
meaningful geologic information in the time and
time-frequency domains and to develop en-
hanced filters in the time-frequency domain using
instantaneous attributes to improve signal-to-
noise ratio. The results presented herein suggest
that both of these objectives are met. The integrity
of the EMD is crucial to the ability of the HHT to
outperform traditional Fourier-based techniques.
Therefore, parameterization of the EMD to a giv-
en type of data proves to be the highest priority for
the application of HHT to seismic reflection data
processing. EMD parameterization allows for
both the production of narrow-band IMFs as well
as the most detailed calculation of instantaneous
phase, amplitude, and frequency. Additionally,
designing filters around these attributes produces
results nearly identical to those produced by stan-
dard Fourier-based filters. However, the toler-
ance for poorly behaved signals, such as those of
the cable-strum example, is more readily accept-
ed by the HHT than with Fourier-based tech-
niques.

Several characteristics of the HHT set it apart
from other filtering methods, in addition to the ac-
ceptance of signals exhibiting stochastic behav-

ior. The HHT requires no knowledge of the signal’s sample rate or
frequency content because the EMD empirically reduces data to in-
trinsic modes. In addition to this, the HHT is effectively a time-do-
main operation, and can perform zero-phase filtering with a single
operation unlike its Fourier counterpart. Furthermore, HHT-based
filtering retains greater spectral content than Fourier-based filtering.
Zero-phase Fourier-based filters are typically achieved in two steps,
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Figure 10. EMD of a CDP gather. �a� Filter bank containing each of
the 10 IMFs for each CDP. �b� Cumulative sums of the IMFs in the
filter bank, which yield the original signal in the last trace for each
CDP.
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Figure 11. Hilbert transform of a stacked CDP gather having no EMD applied. �a� The
time series analyzed. �b� Signal power plotted in time-frequency. �c� Hilbert marginal
spectrum created as a temporal sum of instantaneous amplitude for given frequencies.
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forward and reverse filtering, and inherently remove more informa-
tion than may be desired; resulting in amplitude decay and occasion-
al phase changes as shown in Figure 9.

The use of EMD and HHT is a time-consuming process that may
not be necessary for all data processing. This is the reason it is not
presented in this work as a substitute for existing methods. Large tar-
gets, such as those typically addressed by the oil industry, may not
require such advanced processing techniques. However, smaller tar-
gets, such as those in environmental geophysics, commonly demand
such accuracy as the HHT can provide. The strength of the HHT for
industry data lies in its ability to preserve phase and amplitude while
empirically separating signal from noise. Geologic targets such as
gas hydrates can be handled in the time-frequency domain by HHT
with optimum results, meaning there is little noise introduced during
processing. Additional success has been achieved removing ground
roll from land seismics, as well as dewowing ground-penetrating
radar data because both types of noise are very similar to the cable-
strum example in this work. Future goals for this work involve
integrating the HHT with amplitude-versus-offset processing of gas
hydrates.

CONCLUSIONS

The EMD and HHT are significantly improved when data acquisi-
tion employs sample frequencies much higher than conventional
Nyquist sampling; ten times faster than Nyquist seems to be a work-
ing minimum. This is referred to as oversampling, see Appendix A.
The pros outweigh the cons in this situation. The cons are basically

longer acquisition times and data storage prob-
lems. The pros are signals that represent geologic
targets with very high resolution in both time and
frequency. Additionally, the EMD, because of its
iterative spline fitting, depends more on a signal’s
fidelity than on its frequency for analysis. There-
fore, the HHT is also dependent on the signal’s fi-
delity. In this manner, the accuracy of HHT filter-
ing and the ability of it to optimally produce re-
sults is directly related to sample rate. It is intui-
tive that instantaneous attributes are only as
instantaneous as the sample interval they are de-
rived from. Therefore, high sample rates coupled
with EMD and HHT allow for a wide range of
tools to be developed.
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APPENDIX A

SAMPLING THEORY FOR SEISMIC PULSES

Conventional sampling theory is based on a theorem of Shannon
�1949� when he was working with the digitization of television sig-
nals. The sampling theorem relies on an assumption that the signal is
limited in both time and frequency, “although it is not possible to ful-
fill both of these conditions exactly” �Shannon, 1949�. The theorem
states that a continuous-time signal can be digitized without loss of
information by sampling it at a rate equal to one-half the highest fre-
quency in its power spectrum. Shannon calls this the Nyquist fre-
quency.

Of course, in the real world, all continuously recorded signals are
of finite length. Slepian �1976� calls these real signals and discusses
the problem of applying Shannon’s sampling theorem to them. He
shows that finite-length signals cannot be band-limited and, recipro-
cally, band-limited signals must be of infinite length with no begin-
ning or end. The fact that Shannon was aware of this is indicated by
his inclusion of the statement quoted above, that he felt no compul-
sion to discuss it further implies that it was of no great concern to his
work. Though it does involve the time/bandwidth product, WT by
both Shannon �1949� and Slepian �1976�, which is well known to be
subject to the Heisenberg Uncertainty Principle. In theory, the un-
certainty associated with WT presents a serious dilemma when digi-
tizing signals. Slepian �1976� suggests getting around it in practice
by defining an insignificant level of power which would determine
an effective bandwidth as signal power falls below it.
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Figure 12. Hilbert transform of a stacked CDP gather prepared using EMD �i.e., HHT of a
stacked CDP gather�. �a� The time series analyzed. �b� Signal power plotted in time-fre-
quency. �c� Hilbert marginal spectrum created as a temporal sum instantaneous ampli-
tude for given frequencies. Notice how much information is now present in �b� compared
to Figure 11.
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Television signals consist of a high-frequency carrier that is
modulated by subsignals which carry the information to be transmit-
ted. The carrier-frequency portion of the signal is extremely long in
time �an hour-long program is given as an example� and high in fre-
quency relative to the subsignals. The application of the sampling
theorem to such a signal would determine that a sampling rate equal
to one-half the carrier frequency is sufficient. Given the great length
of the carrier signal, this would be exact enough for the assumption
to be approximately valid.

Seismic signals are causal and have finite energy; therefore, they
are limited in time. However, they are not band-limited. This implies
that they cannot be digitized at a finite rate without some loss of in-
formation. These losses take the form of quantization �round-off� er-
rors caused by the finite dynamic range of the A–D converter and the
aliasing of energy at frequencies too high for the chosen sampling
rate to represent with good fidelity. Antialias filters are necessary but
result in loss of information/resolution. A signal’s capacity to trans-
mit information is measured by its entropy, which is determined
from its power spectrum �Shannon, 1948�. Smoother power spectra
exhibit greater entropy. The use of steep antialias filters disrupts the
smoothness and lowers the entropy, thereby losing information.
This can be avoided by sampling so fast that the Nyquist frequency is
located far beyond any frequencies that contribute significantly to
the signal’s entropy. This allows the use of gentle antialias filters that
are capable of reducing signal power enough to ensure that the Ny-
quist frequency represents an appropriate effective bandwidth. The

technique has been dubbed oversampling and has found wide use in
seismic and other applications requiring great resolution.
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