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Predicting Shunt Currents in Stacks of Bipolar Plate Cells

R. E. White* and C. W. Walton**
Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843

H. S. Burney and R. N. Beaver
Dow Chemical USA, Texas Applied Science and Technology Laboratories, Freeport, Texas 77541

ABSTRACT

A method is presented for predicting shunt currents in stacks of undivided and divided bipolar plate cells. The
method is an efficient way of solving the coupled sets of algebraic equations that arise from using circuit analog models
to represent the current paths in stacks of undivided or divided bipolar plate cells. These algebraic equations can be ei-
ther linear or nonlinear depending upon the current-potential relationships used in the model (i.e., nonlinear circuit ele-
ments can be included). The method is used to show the importance of including nonsymmetrical resistances and
nonlinear circuit elements in the models. Also, the method is used to predict the shunt currents for a nine cell stack of
pilot plant scale bipolar plate, membrane chlor-alkali cells. It is shown that these predictions agree qualitatively with
measured values. Finally, the method is used to predict the shunt currents for stacks of 60 and 120 of these cells.

Undivided cells.—It is well known that shunt currents
exist in stacks of bipolar plate cells with common electro-
lytes, as shown schematically in Fig. 1. These shunt cur-
rents are undesirable for at least two reasons: they can
cause corrosion of some of the components of the system,
and they are currents that are essentially lost in terms of
the production of the desired produects of the system. The
corrosion problem can be particularly severe if the shunt
currents leave the cells via conducting nozzles to which
are attached the inlet and outlet tubes for the cells. It is
desirable, therefore, to be able to predict the shunt cur-
rents for all of the inlet and outlet tubes for cells in stacks,
such as that shown in Fig. 1, fo provide a means of pre-
dicting the “worst case” corrosion rates of the connecting
nozzles. This is considered a worst case because the shunt
currents in the tubes cannot be expected to appear en-
tirely as the dissolution of the nozzle. It is, of course, also
desirable to be able to predict the total amount of shunt
current to provide a means of estimating the efficiency of
the stack.

The shunt currents shown in Fig. 1 can be predicted by
using a circuit analog model, as shown in Fig. 2 for N
cells. This model is based on the conceptualization that
the total current (I;) enters the solution in the first cell
through the terminal anode and then passes through one-
half of a cell resistance (R./2). The total current can then
either continue through the other half of the first cell re-
sistance or split and leave the cell through the connecting
channels (or tubes) and enter the manifolds as shunt cur-
rents. This first R/2 resistance that I, must pass through
is combined with the last R/2 resistance that Iy must pass
through to exit the last cell via the terminal cathode and
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is represented as the right most R, resistor in Fig. 2. Also,
the open-circuit potential of the cell that the total current
passes through when entering the solution through the
terminal anode and leaving the solution via the terminal
cathode is represented in the circuit analog model as the
right most V, in Fig. 2. Note that in the analog circuit
model, the manifolds are assumed to be electrically insu-
lated from ground and are themselves nonconducting.

The circuit in Fig. 2 can be simplified by assuming that
R,;, and R, are in parallel so that an equivalent resist-
ance R, can be defined for the inlet and outlet tubes as

1 1 1

—_—=— 1
R2 Rt,in R(,out [ ]
and, in a like manner, an equivalent resistance R, can be
defined for the inlet and outlet manifold resistances
1 1 1
PR U R
R3 Rm,m Rm,mn [2]

The resulting simplified circuit is shown in Fig. 3.
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Fig. 1. Schematic of a stack of four undivided bipolar plate cells
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It is worth mentioning at this point that some workers
have extended the circuit analog model shown in Fig. 3 to
include nonlinear elements to account for the actual cur-
rent-potential relationship that exists in the cells of inter-
est. Katz (1), for example, added zener diodes to the R,
branches of Fig. 3 and Kuhn and Booth (2) added zener
diodes to the R, branches of Fig. 3 for this purpose. These
nonlinear elements will be discussed further below.

Consideration of the circuits in Fig. 2 and 3 reveals that
two special cases exist. One of these cases exists when
Riin >> Ry (or vice versa) and R, ;, >> R, . (or vice
versa) and the other exists when Ry;, = Ryoq and Ry =
R, o In the first case, the currents in the two circuits in
Fig. 2 and 3 are essentially the same (i.e., I;,; = I; and I, ;
= I,;) since current would not enter the lower portion of
the circuit in Fig. 2. In the second case, it can be shown
that the currents in the branches of the circuit in Fig. 2
are equal to one-half of those in Fig. 3 Gi.e., Ii; = I,; = I,/2
and I, ; = In,,; = I3/2), as expected based on the symmetry
of the circuit in Fig. 2. For all other cases, the currents in
Fig. 2 can be determined directly (see below), or approxi-
mately by using the current obtained from an analysis of
the circuit in Fig. 3. That is

I.; (Fig. 2) = L; (Fig. 3) 3}
R,
I, = Rt:n L. [4]
R,
Los = g1 [5]
R.
L [6]
and
R,
Imu.j = ij)ut I3.i [7]

Predictions for the currents in Fig. 3 have been ob-
tained by a variety of methods. One method used by some
workers (3-8) consists of writing the finite difference
form of the equations for the currents in Fig. 3 (see below)
in continuous form. That is, it is assumed that a linear Qif-
ferential equation can be used to replace the finite differ-
ence equations for the currents for a large number of
cells. The resulting differential equation is then solved by
standard methods which yield a solution containing ex-

Vo

Fig. 3. Simplified form of the circuit shown in Fig. 2

lei+1

ponential terms. This approach is of limited utility be-
cause of the required assumption of a large number of
cells. A similar approach has been used recently by
Grimes et al. (9-13) in which they solve the finite differ-
ence equation for the currents in Fig. 3 by using a power
law solution technique (9). Unfortunately, neither of these
methods can be used easily, if at all, to solve for the cur-
rents in a circuit like Fig. 3 with nonlinear elements [see
Fig. 5 of Ref. (1), e.g.]. Another method for solving for the
currents in Fig. 3 consists of using standard matrix tech-
niques to solve the governing finite difference equations,
as discussed in Ref. (1), (2), (14), and (15). These standard
matrix techniques can be used to solve approximately for
currents in circuits which have nonlinear elements (1).
The method used by Katz (1) is only approximate because
he uses a linear current-potential relationship for cell j
and then uses iteration to find the proper slope and inter-
cept values for the linear polarization relationships for
cell j. The treatment of the nonlinearities by Kuhn and
Booth (2) is based on a similar method, but their method
is, unfortunately, based on a software package that is not
widely available. A simple, dire¢t method for treating cir-
cuits with nonlinear current-potential relationships is pre-
sented below. ’

As shown in Eq. [8]{7], once values for the currents in
Fig. 3 are known, they can be used to predict approxi-
mately the currents in Fig. 2. If more accurate values of
the currents in Fig. 2 are of interest, they can be obtained

Rmc
t Membrane
+Electrode
Tank Tank
and pump and pump
Electrolyte
supply chamber- I
Anolyte R mc
supply manifold —— \\
+ - Catholyte
’ supply manifold
Power
supply

Fig. 4. Schematic of a stack of divided bipolar plate cells
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Fig. 5. Circuit analog model of a stack of N divided bipolar plate cells

by using the method presented here or standard matrix
methods as shown by Rousar and Cezner (16). Another
approximate method of determining the currents in Fig. 2
was presented by Burnett and Danly (17). Their method is
approximate because they assume that R, = Ry = 0
which leads to a simple solution but unfortunately yields
an incorrect dependence of the fractional amount of cur-
rent loss due to shunt currents on the number of cells, as
shown first by Farnum (18) and discussed further below.

Divided cells.—A schematic of a stack of divided bipo-
lar plate cells is shown in Fig. 4. This schematic, which is
similar to that presented by Prokopius (19), can be used
to formulate the circuit analog model shown in Fig. 5,
which is similar to that presented by Prokopius and by
Kaminski and Savinell (20). This model is based on the
conceptualization that the stack consists of a series of
compartments for the terminal anode, bipolar plates, and
the terminal cathode, and that these compartments are
separated by ion exchange membranes, for example.
Also, note that only the inlet and outlet anolyte streams
are connected to the terminal anode compartment and
only the inlet and outlet streams of the catholyte are con-
nected to the terminal cathode compartment. The total
current enters the stack by overcoming the anodic
portion of the open-circuit potential of the cell potential
which, as before, is lumped with the cathodic portion of
the open-circuit cell potential and is shown as the right
most V, in Fig. 5. Next, some of the total current leaves
the terminal anode compartment through both the inlet
and outlet anolyte tubes and the rest of the total current
passes through the resistance due to the first membrane.
It is assumed for simplicity in this model that the resist-
ances of the electrolyte and the bipolar plates in the main
current path are negligible relative to the resistance of the
membrane (R.). This means that no real cell dimensions
(electrode gap, bipolar plate thickness, etc.) have been in-
cluded in this model so that the branch currents through
the inlet and outlet tubes effectively meet at a central
node point as shown in Fig. 5. However, the tube and
manifold resistances can be determined in the usual way
(17) by using tube and manifold dimensions and the
specific resistivity of the electrolyte in them. Once the
majority of thie current passes through the first mem-
brane, it enters the first bipolar plate compartment and
overcomes the open-circuit cell potential. Next, a portion

of the current leaves the compartment via the inlet and
outlet tubes of both the anolyte and catholyte streams, as
shown as node point number 2 in Fig. 5. The current con-
tinues through the stack in this manner until passing
through the last membrane and entering the terminal
cathode compartment. Here the current can enter the
compartment from the catholyte inlet and outlet tubes
only, as represented by the last node point in Fig. 5.

Methods for predicting the currents in Fig. 5 with sym-
metrical resistances (i.e.,, R, = R',, etc.) have been pre-
sented by Prokopius (19) and Kaminski'and Savinell (20).
The method used by Prokopius is a standard matrix
method, which is probably not suitable for use with a
large number of cells with nonlinear circuit elements and
unsymmetrical resistances. His method was not consid-
ered in depth here because of a lack of sufficient detail in
his report. The method presented by Kaminski and
Savinell [see also Kaminski (21)] is computationally more
efficient than that presented by Prokopius but, unfortu-
nately, it does not appear that their method can be ex-
tended easily, if at all, to treat circuits with nonsym-
metrical resistances and nonlinear circuit elements.

The currents in Fig. 5 have also been predicted in an ap-
proximate manner by Burnett and Danly (17). They deter-
mined the fraction of current loss due to shunt currents
for the anolyte side using a simplified form of the circuit
in Fig. 2 and did the same thing for the catholyte side and
added the two together to obtain the total loss due to
shunt currents.

Finally, it should be mentioned here that others (22-24)
have presented methods for predicting shunt currents
based on solving Laplace’s equation or a combination of
Laplace’s equation and a circuit analog model (25), and
others (26-28) have presented papers that deal mostly with
the experimental aspects of shunt currents.

Solution Technique

The currents in Fig. 2, 3, and 5 can be obtained by using
the concept that all of the currents in a particular branch
(or branches) of the circuit can be treated as unknown
currents at a particular node point on the central branch
of the circuit. That is, for example, the unknown currents
I, I,;, and I;; in Fig. 3 can be assumed to exist at node
point j. The three governing finite difference equations
that apply for these currents can be obtained from Kir-
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choff's node and loop rules as follows

forl<j<N
Iojoi=Io; + Iy, (81
Ly + Ly =1 (9]
V, = —R.l.; + Ruols; + Rsl3; — Rl s, [10]

This same concept can be applied to the first and last
node points

atj=1
In=1,+1, [11]}
L,=1I, [12]
V,=—-RJI,, + R,, + RgI;, — Ryl [13]
and
atj=N
Ienoy = Ien + Iy [14]
Lixoy =Ly {15]
Lix=0 [16]

Values for the currents I, I,;, and I;; can be determined
by using Newman’s BAND(J) subroutine (29-31) to solve
Eq. [81{16] once values have been specified for I, V,, R,,
R,, R,;, and N, as discussed in Appendix A of Ref. (32).
This same conceptualization of writing the governing
equations for the local unknown branch currents as if
they all existed at node point j on the central branch of
the circuit can also be applied to the currents in Fig. 2.and
5, as discussed in Appendix B and C of Ref. (32). It is
worth noting that this means that five and nine unknown
currents exist at each central node point for the circuit
analogs presented in Fig. 2 and 5, respectively. Newman’s
BAND(J) subroutine is ideally suited to solve this type of
problem for a large number of cells (>50) because it re-
quires less computer storage and less computer time than
standard matrix techniques. This method is referred to
here as the exact or BAND(J) method.

March 1986

This BAND(J) method can be extended easily to treat
nonlinear circuit elements. That is, for example, the cir-
cuit elements V, and R, in Fig. 3 could be removed and re-
placed by a zener diode placed in the circuit such that the
direction of current flow would be the same as that
shown for V,. The current-potential relationship for such
an element might be represented by a third-order poly-
nominal as follows

Vi=a,+ @l + asle + al. @ [17]

which reduces to the previously used linear current-po-
tential relationship if a, = V,, a, = R,, and a; = a, = 0. The
procedure for using Eq. [17] in the exact method consists
of replacing V, + RJ,.; in Eq. [10] and [13] by the right-
hand side of Eq. [17] as discussed further in Appendix A
of Ref. (32). Other nonlinear elements could be added to
the circuit in Fig. 3 (or other circuit analog models) and
handled in a similar manner.

Results and Discussion

Undivided cells.—Table I presents values for the cur-
rents in Fig. 2 for a battery case presented by Kaminski
(21) obtained by both the exact method and the approxi-
mate method according to Eq. [3}{7], with I, I,;, and I;;
obtained by the exact method. The values cobtained for
the currents in Fig. 2 using the exact method are the same
as those obtained by Kaminski (21), whereas the approxi-
mate values are accurate to within about 1% or less ex-
cept for the manifold currents which disagree by as much
as 9%. However, this larger difference in the manifold cur-
rents is to be expected due to the additive nature of the
manifold currents.

The exact method of calculating the currents in Fig. 2
can also be used to calculate the fraction of the total cur-
rent lost due to shunt currents as defined by Burnett and
Danly (17)

M
NI, - E I,

Vo= El 18
NI, (18]

Table II presents a comparison of the ¥ values obtained

Table I. Comparison of the exact® to the approximate® method for calculating the currents in Fig. 2

Input parameters®

I;=01A, N=11,

V, = —-1.0V, R, =30

Rt, mn = 12000) Rt, out = 10000’ Rm. in = 69’7 Rm, out = 40

Results
Cell number
Method G 10" x I, (A) 10% x Iy (A) 102 x I, (A) 108 x Iy (8) 103 x I,,4(A)
Exact 1 1.0579 ~2.6171 -3.1731 —2.6171 -3.1731
Exact 2 1.1035 -2.0614 —-2.5031 -4.6785 —5.6762
Exact 3 1.1374 -1.5273 —1.8569 -6.2058 -7.5331
Exact 4 1.1598 ~-1.0093 ~1.2283 -7.2151 -8.7614
Exact 5 1.1709 -0.50202 -0.61124 -7.1171 -9.3727
Exact 6 1.1709 0.0000 0.0000 -7.7171 -9.3727
Exact 7 1.1598 0.50202 0.61124 -7.2151 -8.7614
Exact 8 1.1374 1.0093 1.2283 —6.2058 -17.5331
Exact 9 1.1035 1.5273 1.8569 —4.6785 ~5.6762
Exact 10 1.0579 2.0614 2.5031 -2.6171 -3.1731
Exact 11 1.0000 2.6171 3.1731 0.0000 0.0000
Approximate 1 1.0579 -2.6332 —-3.1599 -2.3172 -3.4759.
Approximate 2 1.1036 ~2.0760 -2.4911 —4.1441 -6.2161
Approximate 3 1.1375 -1.56393 ~1.8471 —5.4986 ~8.2480
Approximate 4 1.1599 -1.0178 -1.2213 —6.3943 -9.5914
Approximate 5 1.1710 -0.50638 —0.60766 -6.8399 -10.2599
Approximate 6 1.1710 0.0000 0.0000 —-6.8399 -10.2599
Approximate 7 1.1599 0.50638 0.60766 —6.3943 —9.5914
Approximate 8 1.1375 1.0178 1.2213 -5.4986 ~8.2480
Approximate 9 1.1036 1.5393 1.8471 -4.1441 -6.2161
Approximate 10 1.0579 2.0760 2.4911 -2.3172 -3.4759
Approximate 11 1.0000 2.6332 3.1599 0.0000 0.0000

2 The equations for the exact method are presented in Appendix B of Ref. (32).

> Currents obtained according to Eq. [3]{7].

< This case and the answers are the same as those presented in Table I of Kaminski (21).
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Table . Comparison of ¥ values obtained from the exact?
method to that obtained by Burnett and Danly (17)

Fixed input parameters (anolyte only)
I, = 3000A, N =40, V,=10V
Rt, in = 340’ Rt, out — 399’

¥ (Anolyte)

Burnett and
Exactt  Danly (17) Re@ Rupuw@® Ry Caset
0.0481 0.0248 0.00333° 0 0 A
0.0248 0.0248 0 0 0 B
0.0440 0.0248 0.00333" 0.02¢ 0.02¢ C
0.0227 0.0248 0 0.02 0.02 D
0.0840 0.0248 0.01 0.02 0.02 E

2 The equations for the exact method are presented in Appendix B
of Ref. (32).

b Obtained by dividing V, by I.

¢ Arbitrarily selected value.

4 Cases A, B, and C, are presented in Fig. 6 for different values of N.

according to the exact method with various resistance
values and those obtained by Burnett and Danly (17) for
the anolyte of their example case. Inspection of the ¥
values in Table II reveals that the exact method yields
significantly different values from those presented by
Burnett and Danly (17) except for the case where R, =
Ruin = Ruou = 0. Figure 6 shows how ¥ depends on N for
three of the cases (A, B, and C) presented in Table II.
Clearly, ¥ depends on N, but not as N?, as reported by
Burnett and Danly (17) unless R, = Ry = 0. Note that,
if the manifolds offer resistance to the passage of current,
¥ will approach a constant, as pointed out by Farnum (18)
and illustrated in Fig. 6 by case C. Further consideration
of Table II reveals that the dependence of ¥ on R, is sig-
nificant (cf. cases C, D, and E) and should not be ignored,
as mentioned earlier by Kuhn and Booth (2).

Nonlinear circuit elements.—The effect of a nonlinear
current-potential relationship can be demonstrated by
replacing R, and V, in Fig. 3 with a zener diode with cur-
rent passing in the same direction as induced by V, and
with the current-potential relationship given by Eq. [17].
The linear and nonlinear model predictions of the shunt
current leaving cell number 1 (I,,) can be compared by

u T
RN o 1
o4 E
03}

>
02r E
o ]
0.0 Lewg="" . . . i i

0 20 40 80 80 100 120 140 180

N

Fig. 6. Comparison of methods for calculating the fraction of cur-
rent bypassed (see Table I for the parameters for cases A, B, and C.)
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Table 111. Comparison of predicted values for I, ; (Fig. 3)
for linear and nonlinear current-potential relationships
for three values of R,

Fixed input parameters
a, =V,=195V, N =20, I;=8000A, R; = 0.01Q,

R2 =131 x 10—, a, = 2.037 x 10~4Q,
a; = —1.045 X 10* /A, a, = 2.148 x 10~1 Q/A?

Variable
L, (A) parameter
Linear Nonlinear % Difference® R, ()
2,75 2.47 11.3 10.0
5.32 4.78 11.3 5.0
21.3 19.2 10.9 1.0

2 Obtained from Eq. [33] with V; = 3.0V.
b Relative to the nonlinear values.

using one of two methods for approximating Eq. {17]. The
first method is to determine the value of R, based on the
cell potential for a single cell measured at I,;. That is, by
settingj=N=1,V,=V,a,=V,a=R,I,,=I,a; =
0, and a, = 0, Eq. [17] becomes

Vcell - Vo

R, = I

[19]
which, by using known values for V., V,, and I, yields a
value for R, that is assumed to apply at and near the set
value of I.. The second method consists of using the de-
rivative of Eq. [17] evaluated at I, to determine a value for
V, according to
dv;
Vo=V — Iy - [20]

dIl,S I1y=1It

That is, at a set value of I, Eq. [17] with known values of
a, — a4 is used to obtain a value for the derivative ap-
pearing in Eq. [20]. This value of the derivative is equated
to R. and is used in Eq. [20] to determine V, for use in the
linear approximation of V, (V; = V, + RJ.;. The first
method is used here, but both methods yield essentially
the same results. Table III presents the predicted tube
current out of the first cell (I,,) for the linear and non-
linear models with three different values of R,. Compari-
son of the values for I, , presented in Table III reveals that
the nonlinear circuit element approach leads to a smaller
predicted shunt current (= 10% less) for cell number 1,

tube current (amp)

04 — 0. @muund

03t predicted
L OJ
0.2 -
0.1+
0.05
LB | B

-0.00 el
X l
-0.1+ x:x:x"—i
3% 2l
-0.2 - 3
A d-0.22
-0.23
-0}
-0.4
1 S5 9
cell position

Fig. 7. Comparison of measured vs. predicted anolyte inlet tube
shunt currents.
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Table IV. Predicted currents for the divided cell model based on Fig. 5 with symmetrical resistances?
Fixed input parameters
N=3, I;=05A, V,=-15V, R, =10,
R, = R, = 50008, R.;= R/ =400Q,
Rya = R'ya = 10Q, Ryc = R'ye = 50
Selected predicted currents
J i; (A) k' (A) U; (&) k; (A4) LA
1 0.5004 —1.992 x 10— 0.0000 -1.992 x 10—+ 0.0000
2 0.5053 3.273 x 107 —2.456 x 10— 3.273 x 107 —2.456 x 103
3 0.5049 1.989 x 10—+ -3.295 x 107 1.989 x 10-¢ -3.295 x 10—
4 0.5000 0.0000 2.457 x 10-3 0.0000 2.457 x 10-3
2 Same case as that presented by Kaminski (21) in his Table III.
Table V. Predicted currents for the divided cell model based on Fig. 5 with unsymmetrical resistances
Fixed input parameters
N=3, I;=05A, V,=-15V, R, =1Q,
R, =5000Q, R’, = 2500Q, R.=400Q, R'.=200Q,
Ry, =109, Ry, =5Q, Ryc =50, Ry =250
Selected predicted currents
J i; (A) k's (A) U; (A) k; (A) L (A)
1 0.5006 -3.980 x 10— 0.0000 —1.990 x 10— 0.0000
2 0.5080 9.792 x 10-7 -4.900 x 10-3 4.896 x 107 ~2.450 x 103
3 0.5074 3.970 x 10— -9.859 x 10~7 1.985 x 10— -4.930 x 10-7
4 0.5000 0.0000 4901 x 10-3 0.0000 2.451 x 10-3
Table Vi. Predicted currents for a stack of bipolar plate, membrane chlor-alkali cells
Fixed input pararmeters
N =29, I,=207T10A, V,=-19607V, R.= 6.234 x 10-3Q,
R, = 3450, R', = 5880, R.=15.6Q, R'; = 26.6Q,
Rys =69 x1072Q, R'ys =69 x 10720, Ryc= 3.14 X 10-2Q, R’y = 3.14 x 10202
Selected predicted currents
Cell Internal cell Inlet tube currents Outlet tube currents
number current Anolyte Catholyte Anolyte Catholyte
J i; (A) k's (A) I'; (A) k; (A) l; (A)
1 20769.40862 0.219520 0 0.371858 0
2 20767.65846 0.164412 0.485223 0.278240 0.822290
3 20766.38509 0.109499 0.363414 0.185182 0.615268
4 20765.58635 0.054717 0.242037 0.092497 0.409490
5 20765.26087 —-0.000001 0.120947 ~0.000002 0.204540
6 20765.40809 —-0.054719 0.000001 —-0.092500 0.000002
7 20766.02825 -0.109500 -0.120945 —0.185184 —0.204536
8 20767.12243 -0.164411 -0.242036 —0.278239 —0.409489
9 20768.69248 —0.219516 —0.363414 —0.371852 -0.615270
20770.00000 0 -0.485226 0 —0.822295

Fraction of current bypassed (¥) = 1.522 x 10-%.

where the highest possible shunt current would be ex-
pected to exist.

Divided cells.—Results are presented here for two cases.
The first case is for a battery stack and the second case is
for stacks of bipolar plate, membrane chlor-alkali cells.
Table IV presents the currents calculated for the circuit
shown in Fig. 5 for the same battery case as that pre-
sented by Kaminski (21) in his Table III. Comparison of
the values presented here to those presented by Kaminski
reveals that the two different methods yield essentially
the same results, as expected. Table V presents the re-
sults obtained when the symmetrical resistances in Table
IV are made unsymmetrical by dividing R',, R'¢, R'ya,
ard R'yc by 2. Comparison of the currents presented in
Table IV and V reveals that they differ significantly. The
degree of importance of this difference depends, of
course, on how much difference exists between R, and
R’,, etc. Unfortunately, there does not appear to be a sim-
ple parameter to predict quantitatively the importance of
unsymmetrical resistances.

Table VI presents the parameter values and the pre-
dicted currents obtained for a stack of nine bipolar plate,
membrane chlor-alkali cells. The results show that it is
possible to predict the currents in each of the connecting
tubes to the cells. The values predicted for some of these
tube currents were verified qualitatively with a clip-on
Hall-effect (inductive) ammeter as shown in Fig. 7 and 8.
The measured values shown in these figures are only
qualitatively significant because the accuracy of the am-
meter apparatus used was only * 0.1A, due to the sensi-
tivity limit of the strength of the inductive field.

The effect of increasing the number of cells on the pre-
dicted maximum catholyte outlet tube current is shown
in Fig. 9 for full and half-full outlet tubes and manifolds
(half-full values obtained by doubling the values for R,,
R¢, Rya, and Ry in Table VI). Finally, Fig. 10 shows the
effect on the percent bypass current of increasing the
number of cells. Figures 9 and 10 both illustrate the im-
portance of the number of cells and the ability of the
model to account for the fact that outlet tubes and mani-
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tube current (amp) folds, for example, may be only half-full due to presence
0.6 - 2%y of product gases. It should be noted in closing that an in-
- 0.49 gy measured  toresting approach to reduce the shunt currents in chior-
0.5 i - D dicted alkali cells has been presented recently by Mataga and
o4l 240 ,_ prece Takenaka (33). Their approach consists of inserting the

inlet and outlet tubes into the cells.

03} .

A Conclusions
0.2 - Shunt currents in stacks of either divided or undivided
0.11 bipolar plate cells with or without nonlinear current-
0.00 potential relationships. can be- predicted easily and
-0 Y efficiently by using circuit analog models with or with-
P ‘ out symmetrical resistances, Kirchoff's node and loop
-0l r rules, and Newman’s BAND(J) subroutine. The expres-
0zl ! sion presented by Burnett and Danly (17) for the frac-
L tional amount of current lost due to shunt currents is cor-
0.3 - rect only if R, = R,;, = Ry = 0. It is important to
04 i —0.35 include nonsymmetrical resistances, if they exist, in the
| l—‘ circuit analog models because the predicted tube currents
~05 L Ty depend significantly on the values of all other resistances

: for a large number of cells.

-0.8 : P . Finally, it should be noted that this method of pre-

dicting shunt currents based on circuit analog models is

) ] inherently limited because of the assumptions of lumped
Fig. 8. Comparison of measured vs. predicted catholyte inlet tube resistances and should be used with caution.
shunt currents.

cell position
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Factors That Affect Uniformity of Plating of Through-Holes in
Printed Circuit Boards

ll. Periodic Flow Reversal Through the Holes

Stanley Middleman
Department of AMES/Chemical Engineering, University of California, San Diego, La Jolla, California 92093

ABSTRACT

A model for the effect of flow on the diffusion-limited plating rate inside a through-hole is presented. Unidirectional
flow is of limited use in promoting uniformity. Periodic alternating flow is much more effective. Subject to a number
of simplifying assumptions, the model permits estimates of the effects of various parameters on plating uniformity.

In a previous paper (1) we demonstrated that stagnant
liquid, trapped in the through-holes of a printed circuit
board, gives rise to a diffusion resistance that leads to sig-
nificant nonuniformity of the deposition rate on the walls
of the hole. In commercial electroplating systems, at-
tempts are made to provide agitation of the plating bath
so as to promote mass transfer within the holes. Whether
this is successful or not depends upon the extent to
which agitated liquid can actually be convected into these
holes.

In this paper, we examine a mathematical model that
relates the degree of nonuniformity to the character of the
flow through the hole. In this way, we can establish crite-
ria for the nature of the flow that must be induced in the
process in order to achieve a specified level of uniform-
ity. In the third part of this series, we will examine the de-
tails of interaction between the agitation in the external
bath and the flow induced through the holes.

A primary goal of this investigation is to establish esti-
mates of the degree to which uniformity can be improved
through the control of flow through the holes. To this
end, we have selected particularly simple conditions
which permit analytical solutions to the model equations
for convection, diffusion, and reaction. It then becomes
relatively easy to examine one specific feature of flow
control: periodic flow reversal.

‘Model Development

Figure 1 shows the geometry and nomenclature for our
model of diffusion, reaction, and flow:in a through-hole.
We assume that an axial flow exists in the hole, and that
the flow is steady in time. We assume, further, that the
velocity field is fully developed everywhere beyond the
entrance, z = 0. We will assess the validity and implica-
tions of these assumptions later.

The convective diffusion eguation, under these as-
sumptions, may be written as (2)

aC 1 a( GC)
urt) —=D — —
az T or

or

(1

We use molar concentration as the composition variable
C, and consider a single species: the ion that is being
plated on the through-hole surface at r = a. Likewise, the
diffusion coefficient D is that of the ionic species in the
plating solution.

It is convenient to nondimensionalize this equation by
introducing the hole radius a as a length scale, and the av-

erage velocity U as a velocity scale. We may then write
Eq. [1] in the form

-~ oC 111 o _aé)]
F(”—az——iaz[?'ﬁ(“ﬁ [21
where
T =r/a z=1z/a C=cC/c,

and the Peclet number is defined as
Pe=2aU/D [3]

In Eq. [2], the coefficient F(r) is the dimensionless ve-
locity, which we have written as

F) = — —— = - u(r) (4]

We will later have to specify the form of F(r) if we wish
to solve Eq. [2].

We note that the axial diffusion term has been ne-
glected in Eq. [1] (and Eq. [2]). This is usually regarded as
a good assumption for large Peclet number, say Pe > 100
3).

We examine boundary conditions before proceeding
further. At the entrance to the hole, we impose the bound-
ary condition that the concentration is that of the fluid
external to the hole, or

=1 at z=0 5]
We have assumed axial symmetry, so that a boundary
condition on the hole axis is

flow into through-hole

diffusion
_________ boundary
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z
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Fig. 1. Definition sketch for mathematical model
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