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Parallel-Plate Electrochemical Reactor Model

A Method for Determining the Time-Dependent Behavior and the Effects of Axial Diffusion and
Axial Migration

T. V. Nguyen,* C. W. Walton,* and R. E. White**
Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843

J. Van Zee**

Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208

ABSTRACT

A method is presented for determining the effects of time dependence, axial diffusion, and axial migration in a
parallel-plate electrochemical reactor (PPER). The method consists of formulating the governing equations and ap-
plying a numerical integration technique to solve a set of time-dependent, nonlinear, coupled, multidimensional equa-
tions. This formulation reveals that the steady-state performance of the PPER depends on the cell potential and three di-
mensionless groups. Predictions of the concentration, potential, and local current distributions in a PPER are presented
for the electrowinning of copper from an agueous, hydrochloric acid solution. These predictions show that axial diffu-
sion and axial migration are significant when the aspect ratio (i.e., the ratio of electrode separation to electrode length)

is greater than 0.5.

White et al. (1) presented a model of a parallel-plate
electrochemical reactor (see Fig. 1) that has electrodes
that are close together. In that model, the effects of axial
diffusion and axial migration were unimportant because
the distance between the electrodes was assumed to be
much smaller than the length of the electrodes. Their
model consists of coupled, nonlinear partial differential
equations (PDE’s) which can be integrated numerically
by using a combination of implicit stepping in the axial
direction (2) and Newman’s technique (3, 4) in the normal
direction.

If the electrodes are not close together, the material bal-
ance equation consists of a set of coupled, nonlinear
PDE’s that contain second-order derivatives in both the
normal and axial directions and cannot, therefore, be
solved using the same technique as before (1). The prob-
lem can, however, be solved by using a relatively simple,
direct numerical integration technique (5) that combines
the implicit alternating direction (IAD) algorithm (2, 6-10)
with Newman’s technique. This IAD-Newman technique
can be used to follow the concentration change in a eylin-
drical catalyst pellet for a nonisothermal, irreversible
series reaction (5) and can be applied to electrochemical
systems, as discussed here. The IAD-Newman technique
is shown to have the advantage of predicting the time-
dependent behavior as well as the steady-state behavior
of a PPER. Also, the effects of axial diffusion and axial
migration are assessed by comparing the model predic-
tions of conversion per pass, and concentration, potential,
and current distributions for small and large aspect ratios
(i.e., « = S/L on the order of 1) in a PPER used for the
electrowinning of copper from an aqueous, hydrochloric
acid solution.

Model Equations
The dimensionless model equations for a PPER are
shown in Table I, where n and { are the dimensionless
normal and axial directions, respectively, and subscript j
is the number corresponding to a particular electrode re-
action. The material balance equation for species i is
shown as Eq. [I-1]. The governing equation for the poten-
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tial is the electroneutrality equation as shown in dimen-
sionless form in Eq. [I-2]. Eq. [I-3]-[1-6] are the same equa-
tions used at the anode and cathode in Ref. (1). These
equations are written, in general, for multiple electrode
reactions (11), but they do not contain time-dependent
derivatives.

In contrast to the boundary conditions at the elec-
trodes, the boundary conditions in the axial direction (Eq.
[I-7] and [I-9]) include time-dependent partial derivatives.
This is because the conditions at the inlet ({ = 0) and out-
let ( = 1) of the PPER are formulated to include the fact

Fig. 1. A schematic of a parallel plate electrochemical reactor

(PPER).
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Table . Dimensionless governing equations, boundary, and initial
conditions for the time-dependent PPER model

For0<n<land0<{<1andt> 0(governing equations)

S? 86, Dy 46, 3%, 8%,
——=—3Pea—(n - 9)—+a?
D, at D; aL or  an
zF >P a6, ad P a6, I
+_{02(01—+-_—)+ 1—+-__] -1
RT 3¢ &L L ant  3m @
2 ZiCirer 6:;=0 [1‘2]
Forn=0and0=<{=<1(anode)and t> 0
SUSim.ref { aaiF
———— I @)vex [———Va—(b - Uj, ]
; DiCi‘refn)F X ( i)p <] RT ( oa Jre!)
I @) [_a“F (V= @~ U]} =+ PR T
- i ex a” Yoa el = om CiT. 3
) PITRr Y =y TRT D o
z 2iCies 0 = 0 [1-4]
Forn=1and 0=¢=1(cathode)and t >0
sijSicJ.re{ {H (0)11 . [ an'F (V ® U )]
—— YL —_— —_ — R
. DjCi‘refnjF : i exp RT ¢ oc Jiref,
N @)% { —a,F V-0 U )]} 36, zZF 0 od 5]
- 1) ex e Foe T Jref =T TS Ui 2
i P TRT ret. an RT om
E ZiCy ret oi =0 [1'6]
For{=0and 0 < <1l(inlet)and t >0
5% 86; D 0; — b e > 96
___=—3Pea_n(n_-,’2)L—f">. Baliiacl
D, ot D, AL AL 3
20, zF oz P PP 36, od
~—+——[— ,—— + i———+——] [1-7]
an? RT LAL L I’ an on
2 2iCiret 8 = 0 [1-8]
For{=1and 0 < » <1 (outlet) and t > 0
S0, o 36, 9%
D, at AL 8L om?
F r-a2 3 2d 36, ad
il [_a e ______] [1-9]
RT L AL 3¢ > dm anm
2 2Cire 6= 0 {1-10]
For0=n=1and0={=<1fort= 0(initial conditions)
6, = 1 (with £ § ¢ ety = 0 [I-11}
t
® no initial condition is needed
(set arbitrarily equal to zero) [1-12]

that the electrode reactions occur at #» = 0 and 5 = L
Equation [I-7] can be obtained by writing the following
dimensional material balance equation

ONu| _ N

acy
=0 ay xz =0 dx

at

(1]

xr =20

and approximating the term dN,/dx evaluated at x = 0 as
follows

aN.z‘i
ax

1
= Tx— (N.rilx =0~ inlr = —ax) [2]

r =20
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Since the flux of each species i prior to entering the reac-
tor (Ni|z=—az) is equal to ,C; 5eq (assuming no migration or
diffusion in the insulated enfrance region), Eq. [2] can be
written as
i
= — (N,
r=0 Ax N

oN ri

o — VxCj teea) {3]

x =0

Substituting Eq. (3] into Eq. [1] yields a time-dependent,
two-dimensional boundary condition for the inlet of the
reactor

1
— ——_(N..
- Ax( =t

at

3Ny
xr=0 By

= V1C teed)

z =0

(4]

where N and Ny are the x-component and y-component
of the flux equation, respectively

ac; z,F od
5= -Di— ~ == iCi—— + VaC;
N sz RT DGog TV (51
ac;  zF g

Ny = =Dy o UG/
. Y RT cay

[6]
This boundary condition accounts for mass transfer in
the axial direction across the entrance boundary (x = 0),
as well as mass transfer in the normal direction (y) from
one electrode to another. Substituting Eq. [5] and [6] info
Eqg. [4] and putting the resultant equation in dimension-
less form yields

98 Dy (6, — 0 gecq) a® a6;
Ll _3Pea —X (q — p2) i bfeed? 7 T
D, ot ea g (- M) —x AL aC
a2 2 90 *P 06, o
i+£[il_+ ‘__._+_1___] [7]
an* RT L AL aL an? dn 9n

where 0, ;.4 is the concentration of species i in the feed
stream and is equal to one when the feed concentrations
are the same as the reference or initial concentrations, as
is the case here. Consideration of Eq. [7] shows that it re-
duces to the inlet conditions [6;({ = 0) = 6;1q = 1, when
Citeed = Cirer) USed by White et al. (1) when «a is small, d6,/dt
=0, and N, = 0.

A boundary condition for the outlet of the reactor can
be derived similarly by starting with a material balance
on speciesiatx = L

aci
at

Ny
xr =1L ay

Again, the term aN,/ox evaluated at x = L may be ap-
proximated by

aN‘m
o

dN,;
xz =L dx

(8]

r=1L

- Nzl

z =1L+ Ax

Y ) o

x =1 Ax

x =1L

where Nil,-1+a: is equal to v,¢; (x = L, y, £). This balance
is based on the assumption that there is no axial diffusion
and migration involved beyond x = L. This condition,
which is often referred to as the ‘“closed-end” boundary
condition (12), is satisfied if the reactor empties into a
well-mixed tank, for example. This being assumed, Eq.
[9] can be written as

3N |
ax I,r:L

. L) [10]}

Substituting Eq. [10] into Eq. [8] yields a boundary con-
dition for the outlet of the reactor as follows

1
v (vzci(x =L,y,t) = Ny

ac IN,;

at xr =1L ay

x =1L

1
- — (v.rci(x =L,y t) - Ny

Ax = L) {11
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Equation [11] written in dimensionless form becomes

S 30, ot 36 &%,

= 1 - _ - 4 -1
D; ot AL oL o
—a? 2P 26, ad
zF [ a 6,22 P 0, d L) ] [12]
RT | A¢ i1 In? an

Additional discussion of the inlet and outlet boundary
conditions is given by Nguyen (13).

Solution Technique

The set of partial differential equations in Table I can
be solved using the IAD-Newman technique (5). The im-
plementation of the IAD-Newman technique requires two
finite difference equations for each differential equation,
which are used in turn over successive half-time steps.
During the first half-time step, the first equation is im-
plicit in one direction ({, for example), and during the re-
maining half-time step the second equation is implicit in
the other direction (i.e., m, the normal direction). Thus,
the unsteady-state material balance equation (Eq. [I-1] in
Table I) can be written at the first half-time step

S (0% — 0) Dy a6%; , 076% 9%6;

e i — —_ — 2 o o—
D, At/2 SPea 5= (n — ) MR TTR e
zF [ ( a2h*  30%, ad>*) 2P 90, ad>]

+ = o —— + + 60—+ — —
RT g L AL an? an on
[13]

and at the second half-time step
S: (6 - 6r)

D, A2
Dy 0%, 326%*, 8%0%*, zF
—3Pea —* (n — + o + =
ea Di (n 7) aL o agg an? RT
PO*  gg%, ad* F T A
o2l 0% —— + o —
g2 a I an? an an

[14]

where * and ** designate the dependent variables for the
first and second half-time step: the lack of a * superscript
indicates previous time-step or starting values. The deriv-
atives in Eq. [13] and [14] are expressed in finite differ-
ence expressions according to the superscript designa-
tion. It is important to point out that, in this work, the
concentration of each species i (the term 8, not part of the
derivatives) in Eq. [13] and [14] was treated as unknown at
each half-time step [as suggested in Ref. (5)] and then
treated as shown in Eq. [13] and [14], and it was found
that both approaches yield the same results. However, in
the latter approach, convergence can be obtained with
fewer iterations.

Table 1I. Implementation scheme for IAD-Newman solution to PPER
equations

PARALLEL-PLATE REACTOR 83

First half-time step [implicit in axial () direction]

[1]——*[1] = 0 (anode)

[2}—————[3]———)[4] 0 < n < 1 (channel)

[1]——————»[1] 7 = 1 (cathode)

C=00—>@=1
6% = 6, and &* = & 1

S§2 (6% - 8) Dy (6 — 8 geea) o 90%
e = —3Pea —2 (y — ) e UM T
D, Au2 B N v VR

30, 2zF e ad* 3P 36, ad

o iy [y Py R

an? Ag [i14 an? an dn

2 ZiCyrer 6% = 0

i

S (6% - 6) 3P, Dy ) o, PO @,
Y - _3Pe — L
D, A2 D, T Ty
N zF [ 2(0* P . 30*, BCD*) LR N 90, a<1>] (3]
RT Yar  er oL Yamr  anm am
2 ZiCiret 0% = 0
S (6% — 8) B a? 3% + 3%0;
D, AY2 AL a
zF [—oﬁ o* od* . 2 99; ad>] (4]
RT Lag " '"ar " anr am oq
2 ZiCirer 0%, = 0
Second half-time step [implicit in normal () direction]
[i] [?] [5] 7 = 0 (anode)
6] -+ - [f] .. [9] 0 < » < 1 (channel)
N [71 [7] % = 1 (cathode)
€=0)0——(=1
$uSosirer {
———— I (6% ex [-— — P** —U,e]
; D‘Ci ,e,n,F ( l) p R (V oa 3, f)
—aF
= II(e**)% exp ]: RT Va - 0%+, - j.ref)]}
1
6% * 2 F Pk
= + o [5]
an RT an
E ZiCires 0% = 0
i
G Tl _3Pea 20 (n— ) (6% — Bireea) 02 36,
D, At D, K AL AL ot
A2+, le . Lo 2P** agt*, Gd**
+— [ B —— + B —— + } 6]
an AL aL an an  an
2 zici.rel' 0**i = 0
i
sijSioj,ref { anF
- )
5 DiciemF U, @*rw exp RT Uined)
—a F
~ 1 (§**) exp [ R;’ (V. — &, — ,.m)]}
i
__ o zF | oow .
an RT ! an m
2 ZiCirer 6** = 0
1
52 (8%, — 6%) Dy 6%, A 320%*,
— —-—3Pea——-—(1;—- ) + o — 4
D, A2 D, PY: ag an
4F [ , (0* PO*  ap*, ad* L g Frp** L a<I>**] -
el + )
RT (* \"' p 3L oL ) an? om oy
z zlci.ref 8**i = 0
i
SZ (0** —_ 0*‘) al ao*i a!e**i
D, Ayz AL & an
zF [—a‘ Y IV PO a0 a¢**] .
RT LA "' & P an  an (9

2 ZiCures %% = 0

f
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Table II illustrates the implementation of the IAD-

Newman technique to the complete set of governing
equations shown in Table I. Grid Eq. [1] shows that the
unknowns along the electrodes are set equal to their
values at the beginning of the time step (i.e., 8%, = 6, and &*
= ). This is done because the boundary conditions for
the electrodes contain derivatives in the 7 direction only
and are satisfied in the next half-time step (implicit in the
7y direction, grid Eq. [5] and [7]). Similarly, grid Eq. [2], [3],
and [4] show that the previous half-time step values of the
concentration and potential are used only for the finite
difference expressions for the derivatives in the radial di-
rection and for half of the expression in the time deriva-
tive. The equations for the second half-time step treat the
derivatives in the radial direction implicitly. Note that at
the anode and cathode, grid Eq. [5] and [7] do not include
any previous values from the intermediate half-time step.
On the other hand, the grid Eq. [6] and [9] applied at the
inlet and exit of the reactor include intermediate half-
time step values in the axial direction derivatives and in
the time derivative. Grid Eq. [8] also includes intermedi-
ate values for the axial and time-dependent derivatives in
the same manner as grid Eq. [3] includes the previous
half-time step values.
- After formulating the equations as shown in Table II
the numerical integration is accomplished by applying
Newman’s BAND(J) (14) first at the anode (i.e., using the
grid Eq. [1]) with J = 1 and J = NJ corresponding to { = 0
and { = 1, respectively. Then BAND(J) is applied succes-
sively at each row of mesh points using grid Eq. [2], [3],
and [4] up to and including the cathode using grid equa-
tion [1]) with J = 1 and J = NJ again corresponding to { = 0
and { = 1, respectively. Note that each application of
BAND(J) during these first half-time steps is coupled in
the radial direction through the previous time-step value
and coupled in the axial direction through the dependent
values 6* and ®*.

For the second half-time step, the numerical integration
is accomplished by applying BAND(/J) first at the inlet of
the reactor using the grid Eq. [5], [6], and [7] with J = 1
and J = NJ corresponding to n = 0 and 5 = 1, respec-
tively. Then BAND(J) is applied successively at each col-
umn of mesh points using the grid Eq. [5], [8], and [7] up
to and including the exit of the reactor using the grid Eq.
[51, [9], and [7] with J = 1 and J = NJ again corresponding
to » = 0 and n = 1. The values of the dependent variables
6**, and ®** are the results at a full time-step At and they
constitute the previous time step values to be used at the
next first half-time step.

As is the case for all finite difference techniques, the
accuracy of the solution depends on the number of grid
points used. For three-digit accuracy [this accuracy was
obtained by adding additional mesh points in both the 7
and ¢ directions and decreasing the time step size (Af) un-
til the results no longer changed to within three digits],
the central processing unit (CPU) time for the model with
the axial diffusion and migration terms included was
70-100 times longer than the time required to solve the
model without the axial diffusion and migration terms.
The total execution time was approximately 30,000 CPU
seconds on a CDC-Cyber 170-825 with the axial diffusion
and migration terms included.

Results and Discussion
The method can be used to solve the model equations
for a typical parallel-plate system for the electrowinning
of copper from an aqueous hydrochloric acid solution
where the reaction at the anode is

CuCl2- = CuCl* + 2Cl~ + e~ (anode, reaction 1)
[15]

and the reaction at the cathode is

CuCl2- + e~ = Cu + 3Cl- (cathode, reaction 2)
[16]

Table III gives the values of all fixed parameters used in
the study of the model for these electrode reactions. The

January 1986

Table lil. Values for fixed parameters used in the model

Kinetic and thermodynamic

Reaction 10% iy, rer ;8 Ui, et
@ (Alem?)s Qi Qe n; wy V¥
1 1.0 0.5 0.5 1 0438 O
2 1.0 0.5 0.5 1 0233  0.1144
T=29815K
Reaction 1 (j = 1) Reaction 2 (j = 2)

Component - —_—

@ Sis Dii Qi Sij Dis Qi
" 0 0 0 0 0 0
Cl- -2 0 2 3 3 0
CuClz2— 1 1 0 -1 0 1
CuCl- -1 0 1 0 0 0
V cathoge = OV S =01cm W=10cm

Transport and reference concentrations

Component 10° D, 10% ¢, et

® 2 (cm's) (mol/cm?)
H' 1 9.312 1.00
Cl- -1 2.032 0.10
CuCly?— -2 0.720 0.50
CuCr 1 0.720 0.10

J SiJiuJ', refS
gy = |
MFDC; e

Component (i) Reaction 1 Reaction 2
H* 0.0000 0.0000
Cl- 0.1020 0.1530
CuCly*- 0.0288 0.0288
CuCr 0.1440 0.0000

a Chosen arbitrarily.

b See Ref. (11) and (16) of White et al. (1).

¢ The open-current potential of reaction j at the reference concen-
trations relative to reaction 1.

4 Designated as the limiting reactant.

effects of axial diffusion and migration on the perform-
ance of a parallel-plate electrochemical reactor can be
studied in terms of both their influence on conversion
per pass and the concentration, potential, and local cur-
rent density distributions. The steady-state values can be
obtained with the time-dependent model by stepping
through time until the results no longer change to within
three digits. The dynamic behavior of the concentration
distribution of the reactant CuCl,?>- in the electrochemical
reactor as the system approaches steady state is demon-
strated in Fig. 2 and 3 for the case of « = 1. Figure 2 shows
the concentration distribution of CuCl;*~ in the reactor at
time equal to 2 min and Fig. 3 shows a lower concentra-
tion distribution at steady state which occurs in 6.5 min,
which is what would be expected during a start-up situa-
tion, since CuCl;*~ is consumed at both electrodes. It is
interesting to note that, when a = 0.01, steady state was
achieved in only 5 min, which may be an important con-
sideration when testing control schemes with laboratory
scale reactors.

Effect of axial diffusion and migration on conver-
sion.—The conversion per pass of a species i (CPP)) can

be defined as (1)
CPPi = ;Bi,feed - ai,avg(t7 C = 1)| [17]

According to the model equations in Table I, the steady-
state value of CPP, is a function of four independent

variables
Ecell = (Va - Vc) [18]
25%
Pea = ave 19
ea DL [19]
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Fig. 2. Concentration distribution of CuCl;>~ in the PPER at 2 min
(a =1, Pea = 10; E, = 0.4Y).

Fig. 3. Concentration distribution of CuCl;>~ in the PPER at steady

state (@ = 1, Pea = 10; £, = 0.4V).
Sz
a? = F [20]
and
sl'ia'rels
= 21
fh anDRcl,ref [ ]

Pea and o? are chosen instead of Pe and a because of the
way they appear in the material balance equation (Eq.
{I-1] in Table I). While E.,; and the dimensionless groups
Pea and ¢, (see Table III) are always important, the di-
mensionless variable o? can be neglected when the dis-
tance between the electrodes (S) is much smaller than the
length (L) of the electrodes, i.e., S/L << 1, [as done by
White et al. (1)]. That is, the effects of axial diffusion and
migration are negligible and can be ignored when the as-
pect ratio (@« = S/L) is small. In a simple model of a
parallel-plate cell by Pickett (15), the quantity CPP,
(Pickett’s fractional conversion, fi; his Eq. [5.44)]) is
defined as

CPP, = 1 {233 (—-_—A m}
I ReScWS)

where Re = v,,,2S/v, Sc = v/Dg, and A are the Reynolds
number, the Schmidt number, and the electrode area of

PARALLEL-PLATE REACTOR 85

the reactor, respectively. Note that Pickett’s B is replaced
by W to match the nomenclature in this paper. It is impor-
tant to point out here that Pickett’s model was derived for
the case of a single-electrode reaction @i.e., only one elec-
trode is considered and at this electrode the reactant is
consumed by a single reaction). Therefore, to compare
properly Pickett’s model with the results obtained with
this model, where the reactant is consumed at both elec-
trodes, it is necessary to double the surface area (notice
the 2 in front of variable A in Eq. [22])

2A 2/3
_— 22
ReScWS ) } [22]

After substitution of variables, Eq. [22] can be written as

CPP; =1 — exp {—2.33 (

—2{3
CPP, = 1 — exp { -2.33 ( P;’“ ) } (23]

This expression for CPP; is incomplete because it does
not include the correct dependence of CPP; on important
cell design variables such as the distance between the
electrodes (S) and the cell potential (E..;). Furthermore,
Eq. [23] is restricted to cases of very low conversion per
pass because it is derived with the assumption of con-
stant reactant concentration in the bulk solution.

Table IV shows a comparison between three models at
various Peca: Pickett’s model (15), the model of White
et al. (1), which omits the effects of axial diffusion and ax-
ial migration, and this model. It is important to point out
that the parallel plate model as presented by White et al.
(1) does not include reactions occurring at the entrance
points of the electrodes. However, by using the inlet
boundary condition (Eq. [7]) derived in this work, with
the axial diffusion and migration terms and the time-
dependent term neglected, the model of White et al. (1)
would then include reactions occurring at { = 0. The
values for the model of White et al. (1) as given in Table
IV have been corrected to include the entrance points of
the electrodes by making an extra step down the reactor,
which is equivalent to using the inlet boundary condition
(Eq. [9)] directly. Uncorrected values are 1% lower.

It is possible to vary a while holding Pea and other in-
dependent variables constant, as shown in Table IV, by
changing L and v,,,. Note that as the aspect ratio « in-
creases, which is equivalent to increasing the effects of
axial (back) mixing in the reactor, the predicted CPP; for
CuCl;*~ decreases. Consequently, the percentage error for
neglecting the effects of axial diffusion and migration in
predicting the conversion per pass can be as large as 11%
at @ = 1 for the case Pea = 10. However, for aspect ratios
less than 0.5 the model of Ref. (1) is accurate to about 5%,

Table IV. The effect of axial diffusion and migration on the
conversion-per-pass of the reactant CuCl,2—

CPP of CuCl?~ (Eeey = 04V S =0.1cm)

Vave L Pickett’'s Model Model %
Pea (cm/s) {cm) a Model 12 FAS Error®
10 0.036 10 0.01 0.549 0.606 0.606 0.0
10 0.0036 1 0.10 0.549 0.606 0.602 0.6
10 0.0018 05 020 0.549 0.606 0.600 1.0
10 0.00072 0.2 0.50 0.549 0.606 0.585 3.6
10 0.00036 0.1 1.00 0.549 0.606 0.548 10.6
25 0.0900 10 0.01 0.351 0.334 0.334 0.0
25  0.0009 01 1.00 0.351 0.334 0.327 2.1
50  0.1800 10 0.01 0.239 0.193 0.193 0.0
50 0.0018 0.1 100 0.239 0.193 0.196 1.5
100 0.3600 10 0.01 0.158 0.107 0.107 0.0
100 0.0038 0.1 1.00 0.158 0.107 0.111 3.6

Note: Values given above for models 1 and 2 are accurate to three
significant figures.

2 The model of White et al. (1).

» Present model.

¢ % Error = 100 - |[Model 1 — Model 2|/Modetl 2.
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Fig. 4. Steady-state concentration distribution of CuCl,>~ in the
PPER when the effects of axial diffusion and migration are not impor-
tant (o = 0.01; Pea = 10; E.;; = 0.4V).

and its use is recommended for a considerable saving in
computer time. It is coincidental here that the solutions
from this work agree to a large extent with the solutions
from Pickett’'s model (15) for the case Pea = 10. The
agreement is limited for other cases. Note also that as Pex
increases (by increasing the velocity of the electrolyte),
the effects of axial diffusion and axial migration become
less significant. It is interesting that at higher Pea (50 and
100) the effect of change a has an opposite effect on the
conversion of the reactant, as compared to the cases of
Pea = 10 and 25.

Effects of axial diffusion and migration on concentra-
tion, potential, and current density distributions.—The ef-
fects of axial diffusion and migration on the concentra-
tion distribution in the reactor are shown in Fig. 4 and 3
for the cases of @ = 0.01 and @ = 1. These figures show
that as the aspect ratio « increases (i.e., as the effects of
axial diffusion and axial migration increase) the concen-
tration distribution in the reactor becomes more uniform.
This is what one would expect as the effects of axial-dif-
fusion and migration increase and cause the parallel-
plate reactor to become well mixed. The same effects are
observed with the potential distribution in the reactor
and the local current density distribution along the sur-
face of the electrodes, as shown in Fig. 5, 6, and 7.

O.1858

Fig. 5. Steady-state potential distribution in the PPER when the ef-
fects of oxial diffusion and migration are not important (o = 0.01;
Pea = 10; £, = 0.4V).
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Fig. 6. Steady-state potential distribution in the PPER when the ef-
fects of axial diffusion and migration are important (¢ = 1; Pea =
]0, Eceu = 04V)

Figure 6, for the case of significant axial diffusion and
migration (¢ = 1), shows a more uniform potential distri-
bution and a smaller potential drop from the entrance to
the exit of the reactor than that shown in Fig. 5 for a =
0.01. Figure 7 clearly illustrates the effects of axial diffu-
sion and migration on the distribution of the local current
density along the anode. (The current density distribution
for the cathode is the same, but opposite in sign.) Note
the more uniform current density distribution for a« = 1
Fig. 7).

The effects of axial (upstream) diffusion and axial mi-
gration on the concentration distribution at the entrance
of the reactor can be observed by comparing Fig. 4 and 3.
Without the effects of upstream diffusion and migration
(that is, when a = S/L is very small) the concentration of
each species i in the bulk solution at the entrance of the
reactor approaches its feed concentration, as expected.
Exceptions to this condition are regions very close to the

a.018 T T T T T t T T L
Pec = 10
0.012 | p
o1l = 0.4V

0.011 + .

0.010

0.000

0.008
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L anode (§), A/om?

0.008

8.004

0.001 L L L I " "l L n L
0.0 0.1 0.2 0.3 0.4 0.8 o.e 0.7 0.8 0.9 1.0

Fig. 7. The effects of axial diffusion and migration on the distribu-
tion of current density along the anode.
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surface of the electrodes where there is a large normal () V.  anode potential (V)
concentration gradient as the result of reactions occurring V.  cathode potential (V)
at the end points of the electrodes. W electrode width (cm)
x axial coordinate (cm)
Conclusions Axr  axial mesh size (cm)
.The comp.arati.ve analysis of the effects of axial diffu- gj Iclgg_gaelrfggfggff s(ggé)iesi
sion and migration on the parallel-plate reactor shows
that when the aspect ratio = 0.5 the effects of axial diffu- Greek characters
sion and migration should be included to obtain accurate a aspect ratio S/L
results. It is found that for an aspect ratio less than 0.5, a,;  anodic transfer coefficient for reaction j
these effects may be neglected, which results in consider- o, cathodic transfer coefficient for reaction j
able savings in computer time. Finally, the time- { dimensionless axial coordinate (x/L)
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sented here may be a useful design tool for investigating 7 dimensionless normal coordinate (y/S)
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