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Quasirandom distributed Gaussian bases for bound problems

Sophya Garashchuk and John C. Light
James Franck Institute, University of Chicago, Chicago, lllinois 60637

(Received 13 June 2000; accepted 18 December)2000

We introduce quasirandom distributed Gaussian b&@&3GB) that are well suited for bound
problems. The positions of the basis functions are chosen quasirandomly while their widths and
density are functions of the potential. The basis function overlap and kinetic energy matrix elements
are analytical. The potential energy matrix elements are accurately evaluated using few-point
quadratures, since the Gaussian basis functions are localized. The resulting QDGB can be easily
constructed and is shown to be accurate and efficient for eigenvalue calculation for several
multidimensional model vibrational problems. As more demanding examples, we used a 2D
QDGB-DVR basis to calculate the lowest 400 or so energy levels of the water molecule for zero
total angular momentum to sub-wave-number precision. Finally, the lower levels;ainsr Ng

were calculated using a symmetrized QDGB. The QDGB was shown to be accurate with a small
basis. ©2001 American Institute of Physic§DOI: 10.1063/1.1348022

I. INTRODUCTION we demonstrated that real distributed Gaussian basis sets
(DGB’s) (Ref. 8 gave comparable or improved efficiency
The evaluation of highly excited vibrational states of and accuracy. In one dimension we made the distance be-
polyatomic molecules and clusters is of interest for a numbetween neighboring Gaussians proportional to the local de
of fields. The theoretical spectra, when compared with exBroglie wavelength, and chose the exponents to give a de-
periment, yield information about the accuracy of the potensired average overlap. These were later used very effectively
tial energy surfaces, predictions of levels not yet observedn conjunction with DVR’s(usually in anglesfor a number
information on the chaotic or regular character of the dynamof triatomic system$** DGB were also used for
ics, etc. Most theoretical calculations on large systems nowdistance¥"®and for distances and andfe.
use direct product discrete variable representati@ngr), There were, however, some inconveniences associated
introduced in Refs. 1 and 2, and reviewed recently in Ref. 3with using even real DGB’s which are not orthogonal. The
or DVR’s in combination with basis representations for someorthogonalization of the basis, the problem of maintaining
coordinates. The most sophisticated calculations to daté¢inear independence, and the choice of Gaussian centers and
such as those of Viel and Leforesfiéor HFCO, utilize six-  widths make them somewhat awkward to use, despite their
dimensional DVR'’s of over 10points, truncated by poten- high efficiency. However, optimization of DGB's for higher
tial energy to some 500 000 points. The sophisticated adiadimensional systems has not been investigated. As a first
batic pseudo-spectral method due to FrieSmeas then used step in such an approach, we recently showed that fully op-
to obtain about 150 accurate eigenvalues and eigenstata#mized DGB’s can be extraordinarily efficient and accurate
Other large systems such as the dimer of rigid water molfor 1D systems/ One interesting result was the demonstra-
ecules have been solved by combinations of DVR’s andion that the most accurate results were obtained with very
coupled angular basés. large condition numbers for the overlap matr, A large
Although DVR’s greatly simplify the construction of condition number, the ratio of the largest eigenvalue to low-
Hamiltonian matrix elements and lead to a structured Hamilest eigenvalue, implies near linear dependence of the basis.
tonian which can be exploited in the solution, the sheer size In this paper we look toward developing efficient DGB’s
of the basis, which scales &€, whered is the dimension for multidimensional systems. We look at three questions:
andn is some average number of basis functions per dimenthe optimum or nearly optimum placement of DGB’s in
sion (say 10 or spwill pose a major challenge for systems model potentials in one to three dimensions; the optimum
with five or more atom$d=9). We have thus begun looking condition numbers of the overlap matrix, and the scaling of
for methods to define more compact multidimensional correthe number of basis functions with the number of desired
lated bases for which the scaling might be more closely proaccurate solutions and with dimension. We build on the
portional to the number of desired eigenstates. Obviously iemiclassical criteria for placement of Gaussians proposed
we could magically choose the eigenstates as the basis tiheng ago® but look at quasirandom methods of placement
problem would be solved. which will be applicable to arbitrary dimensionality and po-
Some time ago distributed Gaussian basis’Setsere  tentials. We will first apply the quasirandom distributed
introduced for multidimensional vibrational problems with Gaussian basiSQDGB) approach to problems with simple
semiclassical criteria governing the parameters of the Gaugpotentials, but we then do an accurate DVR-QDGB calcula-
sians. Davis and Hellérexamined complex Gaussian basistion of the vibrational levels of KD (J=0) up to about
sets distributed in phase spa@&igner distribution. Later 28 000 cm . The DVR-QDGB appears to be substantially
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more accurate than the earlier DVR-DGB calculatfofor

Co . 2V aja; o«
the same basis size. Finally, we use a QDGB for the rare gas S = ! exd — ) (% —x)2 (4)
trimers (Ar; and Ne@) using bond distance coordinates. ) ajta; ait a; A

Again the quasirandom placement is shown to be more efﬁénd the kinetic energy matrix elements
cient than the recent DGB on a grid calculation of Ref. 15.
In the next section we “optimize” the placement of the 2 @ @ 2
centers of the Gaussian basis functions and their widths iftij=(gi|— 5—2|gj):( ] (a'+CJ¥' (xi—x,-)> )3,-
1D potentials and study the effects of scaling the Gaussian dx o 5
widths (varying the condition number d8) on the relative ®)
accuracy of vibrational eigenvalues. Both the “optimal’ have simple analytic forms. The potential matrix elements
widths and the density of Gaussians are found to be the linVj;=(g;|V|g;) can be accurately calculated using low order
ear functions of the potential. We also found that a range ofSauss—Hermite quadrature, since the basis functions are lo-
fairly large condition numbers of the overlap matrix give calized and a product of two Gaussian basis functions is a
accurate energy eigenvalues. In Sec. Il we transfer our exsingle Gaussian. The diagonal matExgives the eigenval-
perience with the 1D “optimized” Gaussian bases into manyues of the Hamiltoniamd and the columns of the matrig
dimensions and construct DGB’s using QDGBs whoseare the respective eigenvectors.
widths and density are linear functions of the potentials. We  Theith diagonal matrix element of the kinetic energy is
analyze the effectiveness and the performance of the quasky; = «;/2, so we expect the optimal; to be proportional to
random DGB for 1D-3D Morse potentials and for the the maximal kinetic energy at the centerof a correspond-
Henon—Heiles potential. The accuracy of the numericaing Gaussian,
guadrature integration for the potential matrix elements and
the dependence on the two parameters determining the basis ™~ (Eou™ V(X)) (6)
are also tested. In Sec. IV A we present the results f¢® H Semiclassical spacing of the Gaussian Fasismygests
(J=0), using a combination of QDGB for the two radial their separation should be proportional to the de Broglie
coordinates and a DVR for the angular coordinate. In Seowavelength, and thus the density to be proportional to
IV B we present the 3D QDGB results for Nend Ar.
Section V concludes. P~ (Beu= VX)), @)
with y=1/2. We show below that a linear dependence
(y=1) is perhaps preferable.
Il. OPTIMIZED GAUSSIAN BASIS SET IN ONE _ Th_ese criteria yield b_asis functions which are narrower
DIMENSION in regions of low potential and, consequently, the centers
may be more dense where the de Broglie wavelength is
For 1D systems and small Gaussian basis sets a full omall, and they will be broader and further apart in the re-
timization can be carried odf,where it was shown that the gions of high potential.
lower eigenvalues are slowly varying with basis parameters To verify that this is a good choice, we show that it
near the optimum basis. However the full optimizationresults from the minimization of the following functional,
method scales as thHdth power of the basis size. We seek,
therefore, a more practical approach to findingoadif not F=Tr(H) =\ > i (8)
optimum Gaussian bases. iz 1-S;

. Our initial goa] is to const.ruct an _efficient.basis consist-\itn respect to the positions of Gaussidis! and to their
ing of real normalized Gaussiargy;}, in coordinate space, widths { e}
it

ai+aj

_ 1/4 _ Y No functional form of«; or the density is specified at
0= (2er /) exp = (X = X)) @ this stage, since the widths and positions are to be found
for a one-dimensional Hamiltonian, variationally. The functional includes the full trace of the
Hamiltonian and the artificial repulsion term whose strength
- d? is determined by the parameter
H=— §@+V(X)- 2 While the functional is ad hoc, it is based on physical

considerations and does yield an excellent basis. If the basis

We want the basis to describe adequately the energy eige}ﬁ orthogonal, the second term is zero and the trace of the
functions below a certain cutoff enerds,,.. The Gaussian Hamiltonian will be minimized. For a normed but nonor-
basis is not orthogonal, and in order to find the eigenvalue§iogonal basis, the minimum of th¢ ] term alone would
of Fi one has to construct the overlap mat@xwith the  Yield N replicas of the ground state[H] = Ne,. The sec-
elementss; =(9i|gj), the Hamiltonian matrixd with the ond t.erm of the functional forces linear mdependence_ of the
~ . . functions and leads to acceptable bases. The repulsion term
elementsH;;=(g;|H|g;) and to solve the generalized eigen- G ans from bei laced 100 close t h oth
value problem prevents Gaussians from being placed too close to each other
during the minimization procedure and guarantees that the
HB = SBE. 3) overlap matrixS is not singular. The parametaris nonva-
riational, and minimization of this functional will not pro-
The overlap matrix elements duce the optimal Gaussian basis. However, the minimization
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procedure generates a basis that becomes very efficient aft€hus, we obtained all 24 energy levels using 48 Gaussian
Gaussian widths are scaleshiformly to optimize the accu- basis functions with relative accuracy better than 30ab-
racy with the full Hamiltonian diagonalization. solute accuracy better than 10 This gives a ratio of just 2

We apply the outlined procedure to the calculation of allbasis functions per accurate eigenvalue. The efficiency and
the bound energy levels of a one-dimensional Morse oscillaaccuracy of this basis with density scaling linearly with the
tor, potential (y=1) is nearly identical to that found earlfewith

semiclassical spacingy&0.5). Note that the density is de-

V(x)=D (exp(—wx)—1)2. 9) termined by minimizing the functional and was not imposed.

In Fig. 3 we show the analytical and numerical eigen-
The dissociative character of the potential requires the introfunctions for the highest vibrational level, which requires the
duction of a finite coordinate range where Gaussians are fgaussians to be placed far into the dissociation region. A
placed. To limit the range t®; < X, We simply add a step unn‘orm grid of |dent|c§1I_Gau53|aQ§ with optimized expo-
potentialVge=Vo 0(Xma—X). We use the Morse potential nents is much Igss eff|C|ent,_ requiring more than twice as
B in Ref. 8 with parameter®=12.0 andw=0.204 1241 Many baS|§ functions to obtain comparablt_e accuracy.
which supports 24 bound states. The amplitude of the step 10 Verify the dependence on potential of the “opti-
potential is takerV,=25.0, well above the energy cut-off. mized” Gaussian parameters, we repeat the same variational
The highest true bound state wave function has its broafrocedure to obtain the basis set for the Gaussian double
maximum atx~ 35.0; thus we SeX,,= 70. well potential as ifi

We found that the range of the nonvariational parametes/(x) = — D (exp( —w(x—Xg)2) +exp(—w(X+xg)2))  (11)

N for which the minimization procedure converges is )
[0.5,1.9. The optimization of;} and{x;} (with A= 1.0) Wlth. the parameter®=12.0,w=0.1, andxy,=>5.0. This po-
produces the “expected” distribution of Gaussian centerd€ntial also supports 24 bound states. o

and widths, with theeciprocal condition numbefRCN) of We used a basis of 54 Gaussiaugithout taking into
the overlap matrisS, which is the ratio of the smallest eigen- account the symmetry of the potenfiahfter uniform scal-
value to the largest eigenvalue, on the order ofS10This  INg of the exponents to yield the RCN of 19 we obtained
RCN is orders of magnitude higher than the minimum re_aII the V|5brat|onal levels with the relatlye accuracy better
quired to yield stable numerical inversion. Scaling of @l than 10°. (Comparable accuracy requires 250 uniformly
by a constant, such that the RCN of the overlap matrix isdlstnbuted Ggussmns of equal widtfthe d_|str|but|0n ofai_ _
reduced to 10°—10"12 increasesthe accuracy of the en- e_md the deqsny of centers we_re once again accurat_ely f|t with
ergy levels by about three orders of magnitude. We find thafn€@r functions of the potential energy, as shown in Fig. 4.
if the RCN is still smaller the eigenvalues Bff increase. Full optimization ofF for large multidimensional bases

For the very small RCN's the generalized eigenvaluemay be impractical. However, these results of the optimiza-
problem may be solved by singular value decompositiorfion of one dimensional bases using &8). suggest that after
which removes eigenvectors 8fwith very small eigenval- scaling, the choice given by E@6) for the basis function
ues. When this was applied to the overlap matrices withidth {e;} and by Eq.(7) for the distribution of Gaussians
RCNs in the rangg.=10 °-10 '3 we found that remov-
ing these few orthogonalized basis functions also increases
the eigenvalues dfl. Thus, there is an optimal range of 2—4
orders of magnitude for the RCN, that yields the lowest ei- 3 |
genvalues oH. We found this to be true for higher dimen-
sions and all potentials examined. The RCN is adjusted by
scaling of the widthsy; for all basis functiong; by the same
factor.

This procedure, which produces an extremely efficient,g2 i
basis, permits us to examine the dependence of the widthg
and density on the potential. In Fig. 1 we plot the width g
parametersy; and the density of Gaussian centers, defined a
p(x))=0.5(x;;—X;_1) ", as functions of the Gaussian cen-
ter position. Both functions, the width and the density, can be
accurately fit by linear functions of the potential energy,
f(x)=ao(a;—V(x)).

Figure 2 shows the relative accuracy of the energy levels
on a logarithmic scale fofx;} and {«;} obtained by the 0
minimization of the functional and after scaling all by 0.4 =10
and by 0.13 yielding RCN’s of the overlap matrix @f

=0.00435, u=1.92x 10—6, and u=1.47<10" 13 Relative FIG. 1. The widths{«;}, and the density of Gaussians as a function of their
accuracy is defined as centers{x;}, for the Mors~e oscillator: circles marwd; found from the mini-
mization of the functionalF, Eq.(8); solid line is the fit ofa; with the linear
function of the potential; squares mark the optimized density; and the
(Ei— Ei exact/ Ei exact: (100  dashed line is its linear fit.
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FIG. 2. Logarithm of the relative accuracy of the levels of the Morse oscil- ) . . . .
lator, plotted as a function of the quantum number. The energy levels arE1G. 4. The widths{«;}, and the density of Gaussians as a function of their

calculated with the optimized and scaled basis function parameters for seentersix;}, for the double well potential: circles mark the optimized
eral reciprocal condition numbeys of the overlap matrixS: circles, dia- solid line is the fit ofa; with the linear function of the potential; squares
monds, and triangles correspond ta=4.35<10 3,1.92x10 ©,1.47 mark the optimized density; and the dashed line is its linear fit.

X 10 13, respectively.

(with y = 1) will produce efficient basis sets in higher di- advantage of the simple functional form of the basis function

mensions. Therefore for multidimensional problems we willParameters, a linear dependence on the potential, which
use the functional form of Eq¢6) and(7) for the width and yielded excellent results above after scaling of the widths.
density of Gaussians and use the RCN of the overlap matrix FOr multidimensional problems we wish to use a DGB

as a criterion for choosing the overall scaling factor of theWith the appropriate varying density of centers. Since this
widths a; . cannot be done simply on a grid, we will use a quasirandom

procedure to distribute the Gaussian basis functions with
IIl. QUASIRANDOM DISTRIBUTION OF GAUSSIANS potential-dependent density_ and width_s within the_energy
contourV(x;) <E.. (Herex is the coordinate vector in the

As was fs%u?zd previously, DGB’s based on semiclassicamultidimensional spaceThus we take

considerations ““are difficult to construct in more than one

dimension, and, of course, the optimization procedure ogi(x):eXp(_(X_Xi)TAi(X—Xi))(ZN de(A)/7™)¥. (12

Sec. Il becomes expensive, if feasible at all. Thus, we tak&he width parameters may be a matAx with or without

off-diagonal elements, in general. We considgrto be a

diagonal matrix with equal elementg for Cartesian coor-

dinates. We choose the scaled widths of Gaussians according

to Eq (6) (for simplicity the minimum of the potential is

taken to be zerg

a;=¢ m(Egu— V(X)) +A) (13

with the same value of for all functions and dimensions
chosen to yield the RCN of the overlap matrix on the order
of 107 6-10 % This is consistent with the results of optimi-
~~~~~~~ zation for the one-dimensional problems of Sec. Il.

The density of centers is also a linear function of the
potential,

i P(X)NEcut_ V(x;)+A. (14)

The parameteA defines the ratio of the maximal; to its
02 ‘ minimal value. The limit of large\, A>E_, corresponds to
-10 Coordin:tg a uniformly dense quasirandom distribution of Gaussians of
equal width. Small values ok, A<E.,, correspond to a
FIG. 3. The eigenfunction of the highest=23, energy level for the Morse  distribution where the density and the width of the basis
pot.ent!al in coordinate space: dashed line shows the analyt!cal result and t finctions are determined by the potential as in the “Opti-
solid line shows the numerical eigenfunction corresponding to the mos " . .
mal” basis of Sec. Il. A suitable value afto produce a good

accurate calculation in Fig. 2. The centers of basis functiensles are . i
also shown. RCN is chosen after a few tries. The parameatetan be

0.3

0.2

Wave function

OO0 000000000
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estimated from the lowest eigenvalue es Eq/E,, or 0
from a problem with a reduceH; and a small number of
Gaussians. The procedure has only two parameters and pr¢c -2 |
duces an efficient correlated basis for multidimensional sys-
tems. 2
In multidimensional systems we wish to distribute the .
Gaussian basis functions with varying density. This can be&g
done with a random procedure accepting Gaussian center§
with a probability proportional to the desired density and
rejecting them if they exceed a maximum overlap with other
members of the basis. A more efficient procedure is to use ¢
quasirandom(or subrandom sequence of numbers rather  _jo|
than random numbers. This has the advantage that the point
X; in the “random” sequence are generated as far apart as . .
possible for a given density, thus reducing the probability 20 10 20
that two points will be rejected because of too much overlap. Number
(This greatly increases the efficiency of accepting a new baFIG. 5. Logarithm of the accuracy of the energy levels for one-dimensional
sis function into the basis sgThe convergence of eigenval- Morse potential calculated with nonuniform QDGB of 48 basis functions
ues with respect to the number of basis functions can bEd: (191 is shown with circles. The same, obtained with 80 Gaussians
. . ) . istributed uniformly on a grid, is shown with squares.
monitored while the sequence is being generated.
We used the Sobol sequence to generate quasirandom
points*® The density of points can be modified according todefined by Eq(9). We look at the accuracy of the lowest 23
Eq. (14) with therejectionmethod!® the pointx; is accepted eigenvalues with the energies below 11.99 a.u. The energy
if levels are calculated with 48 Gaussians with widths that de-
. V(x)+A]” pend on the potential energy of their centers according to Eq.
—t T s, (15  (13) and distributed quasirandomly using the rejection
Ecurt A method(QDGB), Egs.(14) and (15). We compare with 80
where numbery;=[0,1] belong to an independent sequenceGaussians of equal width distributed on a grid. The energy
of random numbers. The choice g&=1 is the linear rela- cutoff is the same for all basis sets,,=11.99 a.u., and\
tionship found above.¥=0.5 is the semiclassical chofte =0.1 a.u. The exponent scaling parametéor the QDGB,
tested below. We will refer to the basis constructed in this as defined in Eq.15) and the width of Gaussians for the grid
way with y=1 as the nonunifornguasirandom distributed basis, yielding the most accurate energy levels, were
Gaussian basisQDGB. 0.164 025 and 1.62 yielding the RCNs of the overlap matri-
To test the effect of the distribution of the basis functionces 1.6<10 '3 and 2.6<10°° for the QDGB and the basis
widths and density we compare with two other bases ofet on a grid, respectively. The relative accuracy of the en-
Gaussians. One, with Gaussians of equal width distributeérgy levels is shown in Fig. 5. The 48 Gaussians generated
quasirandomly with the uniform density will be referred to aswith the rejection method give accuracy which is better by at
“uniform quasirandom DGB.” The other is a uniform grid least one order of magnitude for 16 out of 23 levels, when
of Gaussians of equal width. Both are optimized with respeceompared to the calculation with 80 Gaussians on the grid.
to the width parameter of the Gaussians. The QDGB depends on two parameterd, controlling
the sensitivity of the widths to the potential, and thus the
variations of the density of the basis functions with potential,
As a first test we look at the performance of quasiran-and c, which scales the widtha; of all the Gaussians and
dom DGB for a one-dimensional Morse oscillator of Sec. Il, controls the overlap of basis functions. The dependence of

s

Relativ

A. The one-dimensional Morse potential

TABLE I. The numerical parameters used to calculate the energy levels for system of Morse oscillators given
by Egs.(9), (16), and(17). The dissociation energy 3=12.0.

Frequency w,=0.204 124 1w, =0.183 711 69 w,=0.163 299 28

Dimension basis set type Nlevels NGaus Ecut Width, ¢ RCN
1 grid 23 48 11.99 1.62 2610 °
1 nonuniform 23 48 11.99 0.164025 K80 18
2 grid 122 482 115 1.28 641078
2 uniform 122 482 11.5 0.832 3910710
2 nonuniformy=1 122 482 11.5 0.12005 2210712
2 nonuniformy=1/2 122 482 11.5 0.12005 5@0
3 grid 124 939 7.4 1.0 771078
3 uniform 124 939 7.4 0.704 141078
3 nonuniform 124 939 7.4 0.6336 x40 *?
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-2 : TABLE II. The difference in the energy levels for the 1D Morse potential
//;ﬂ calculated with the analytical potential matrix elemektts and with the
numerically evaluated;; using one-, two-, and three-point Gauss—Hermite
% quadratures.
-4 | o R i
o® 9 09 g . , ,

//|zr 0\\\ /,g‘\ OZ Level, N One-point Two-point Three-point
g .l ,/ﬂz AGIAY Qo\i‘y;f‘ | 1 0.051 864 0.000 264 0.000 000 5
g g DX R A 2 0.051 675 0.000 273 0.000 000 6
3 0, Qé,’// 4 R 3 0.051 380 0.000 283 0.000 000 7
2 0 5o o o2y ‘X’ 4 0.050 933 0.000 293 0.000 000 7
5 8 o (9oeg%% - 5 0.050 288 0.000 302 0.000 000 8
& B o f')/o'?'AfA / 6 0.049 401 0.000 310 0.000 000 9
0/0 A \0 /A,A’A e X 7 0.048 232 0.000 316 0.000 001 0
ol &N x | 8 0.046 749 0.000 320 0.000 001 0
AT KX 9 0.044 929 0.000 322 0.000 001 1
5 X 10 0.042 758 0.000 321 0.000 001 2

11 0.040 228 0.000 317 0.000 001
-12 : L 12 0.037 338 0.000 309 0.000001 3
0 " umber 20 13 0.034 088 0.000 297 0.0000 01 3
14 0.030 487 0.000 280 0.0000 01 4
FIG. 6. The dependence of the accuracy of the energy levels for one- 15 0.026 578 0.000 257 0.000001 4
dimensional Morse potential, calculated with uniform QDGB of 48 basis 16 0.022 348 0.000 228 0.0000 01 4
functions, on their width(parameterc): circles, squares, diamonds, tri- 17 0.017856 0.000 191 0.000001 4
angles, and crosses correspond to values béing equal to 0.25, 0.225, 18 0.013 210 0.000 144 0.000 001 4
0.2025, 0.18225, and 0.164025 yielding the overlap matrix reciprocal con- 19 0.008 370 0.000 082 0.000 001 2
dition numbers of 1.5810° %, 3.06x10 ™, 5.67x10 '3 9.87x10 3, 20 0.003 594 0.000 001 0.000 000 7

and 1.6 1072 respectively. The ordinate is the logarithm of the relative 21 —0.000 966 —0.000 119 —0.000 000 7

accuracy of the energy levels. 22 —0.003 225 —0.000 211 —0.000 002 6

23 —0.003 656 —0.000 324 —0.000 015 4

the energy levels on the overall scaling of Gaussian width
through the parameter (or on the RCN of the overlap ma-

trix) is_ shown in Figl.06. The I1?3CN qhanges by three orders oty med with the smallesh, that was about 1% dE, i.e.,
magnitude from 107" to 10", which affects the accuracy {he most sensitive to the potential, gives the most accurate
of the energy levels. However overall accuracy remains betr'esults. The choice ok of about 10% and 50% ., also

4 .
ter than 10“ for 20 out of_ 2.3 levels for all calculations and ive quite accurate results, while~E, gives significantly
the accuracy of the remaining 3 levels depends on the RCI wer accuracy for all energy levels

only weakly, being more strongly affected by the energy We also examine the accuracy of the numerical evalua-
cutoff parametek,. The dependence of the energy IeVelstion of the potential matrix elements for the Morse potential.

on the paramete is shown in Fig. 7. Calculations per- Our basis functions are localized, but fairly strongly overlap-

ping. We use Gauss—Hermite quadratures, since a product of
0 two Gaussians is a Gaussian. In Table Il we compare the
energy levels if one- , two-, and three-point quadratures are
used to compute the potential matrix elements. One can see
that three-point quadrature gives accurate results, basically to
six significant figures, and even a two-point quadrature might
be sufficient if lower accuracy (I in this examplg is
acceptable. We note that the accuracy of low order Gaussian
quadratures depends on both the potential and the width of
the Gaussians, and must be checked.

2t

4|

-6 +

Relative accuracy, log

-8 +
B. Two and three dimensional systems

-10 ¢ The QDGB method can easily be extended to two and

higher dimensional systems. We test the performance of

o ‘ ‘ three basis sets for two and three-dimensional Morse oscil-

0 10 Number 20 lators; QDGB’s where positions of Gaussians are chosen
quasirandomly with the densitp(X;) ~ (Ecu— V(X)) +A)”

FIG. 7. The dependence of the accuracy of the energy levels for onewith y=1.0,0.5; a uniform width quasirandom basis and the

dimensional Morse potential, calculated with uniform QDGB of 48 basis niform basis on a grid. All bases are truncated to include

functions, on the parametek: circles, squares, diamonds, and triangles - . e
correspond ta\ being equal to 0.1, 1.0, 6.0, and 12.0 with the values of only Gaussians with centers within the energy contoyy.E

being equal to 0.164025, 0.13122, 0.054675, and 0.0405, respectively. ThEN€ oscillgtors in_the Hami_ltonian are uncoupled for th_e Sake
ordinate is the logarithm of the relative accuracy of the energy levels. ~ Of comparison with analytical energy levels, but nothing in
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Coordinate, Y
Relative accuracy, log
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Coordinate, X 0 20 40 60 80 100 120

Numb:
FIG. 8. The positions of 482 basis set functions for nonuniform QDGB with umber

y=1 (open circley and y=1/2 (filled circleg for the two-dimensional  F|G. 10. Logarithm of the relative accuracy of the lowest 124 energy levels,

Morse potential. averaged over 5 levels, for the three-dimensional Morse potential, calcu-
lated with 939 Gaussian basis functions distributed on the @qdares
uniformly (triangles, and nonuniformly(circles, on the logarithmic scale as

a function of the quantum number.
the construction of the basis sets depends on the separability d

of the potential. The values of all of the numerical param-
eters of the bases are shown in Table I.

First, consider the two-dimensional Hamiltonian, The logarithm of the relative accuracy is plotted in Fig.

9. The QDGB gives the most accurate results across the

1 d2 1 d? whole energy range, with the=1 results being more accu-
H=—5——5—+D (exp—wx)—1) rate than they=0.5 results for about the lowest 100 levels.
2dx?> 2dy \ ) .
For the three-dimensional case we consider the follow-
+D (exp(—wyy)—1)% (16)  ing Hamiltonian:

The Morse parameters are given in Table I. The dissociation 1 d2 1 d2 1 d? )
energy is 12 a.u. We calculate 122 energy levels below H:_EE_EP_E iz — T D((exp(—w,x)—1)
E.~=11.5 a.u., using 482 basis functions for all four calcu- y
lations. The positions of the basis function centers for the +(exr(—wyy)—1)+(exp(—wzz)f1)2) (17)

QDGB's is shown in Fig. 8 for botly values. with parameters shown in Table | The number of energy

eigenvalues belo = 7.5 is 124. The size of the basis sets
is 939 functions. The logarithm of the relative accuracy, av-
eraged over 5 levels, is shown in Fig. 10. The accuracy of
the nonuniform basis set is two orders of magnitude better
than that of the grid basis for most energy levels. Interest-
ingly, the accuracy given by the uniform quasirandom DGB
is somewhat better and more consistent for these two and
three-dimensional systems than the results obtained with
Gaussians on a grid. The number of basis functions required
per accurate eigenvalue scales exponentially with the dimen-
sion but with a very smaih: Npasis~Ngopn 2°.

The 2D Henon—Heiles problem was also solved, with all
99 bound states given by QDGB basis sets of 300 and 462
functions. Accuracy was comparable to that reported by
Hamiltor? for the same basis size.

-2 T T T

Relative accuracy, log

6 I N 1

-8

60 80 100 120 IV. CALCULATION OF THE ENERGY LEVELS FOR

Number TRIATOMIC MOLECULES

FIG. 9. Logarithm of the relative accuracy of the lowest 122 energy levelsA- Water molecule

averaged over five levels, for the two-dimensional Morse potential, calcu- To go bevond simple test problems we calculate the Vi-
lated with 482 Gaussian basis functions distributed on the (@ddares Y y p P

uniform width QDGB(triangles, variable width QDGB withy=1 (circles  Prational energy levels of water far=0 total angular mo-
and with y=1/2 as a function of the level number. mentum for an accurate potential energy surfdo8onver-
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gence of the 252 levels below 25 118 ¢hto 0.1 cm  was

desired and achieved. The triatomic vibrational Hamiltonia

in Radau coordinates is

H=K?+K’+V(Ry,R,,6), (18)
where the two-dimensional Hamiltonian is
w29 d w29 J
K2P=— 2—( 2 ——2—<R§—) (19
2m,RT IRy "R 2m,R35 IRz | TR,
and the angular part is
21 1
Kfi=—— + j2 (20)
2 (mlRi mzRg)J
with
o L g 6 i 21
Y =sing a0\ %" 58 21

The volume element iR{R3 sin 6dR,dR,d6.*%°
We use the QDGB for the distancB®s andR, and the

S. Garashchuk and J. C. Light

TABLE lIl. Maximal deviation for energy levels of water in chh. N, is
the number of angular DVR point8l, is the number of quadrature points

nper dimension for radial integrals. The cutoff energy for the placement of

Gaussianst;, and the truncation energy for the 2D eigenvallgsare in
hartree. The convergence criterion for energy levels in 20s in cm L.

Nax is the total size of the truncated matrix.

Number of energy levels

Basis Ny Ng Ey Eq €® Npo 400 350 300 250 200

| 43 5 023 0165 1.0 3551 - - e e e

Il 39 5 023 0165 1.0 3232 043 035 0.17 0.08 0.03
43 5 022 016 1.0 3129 102 0.33 0.8 0.07 0.02
IV 39 5 022 016 1.0 2834 0.62 0.42 0.09 0.05 0.03
V 39 5 023016 1.0 3198 060 041 0.09 0.05 0.03
VI 39 7 022 016 1.0 2838 064 043 0.11 0.07 0.03
VII® 39 5 022 016 1.0 2777 838 3.76 1.90 0.50 0.09
VII® 39 5 022 016 1.0 2838 073 0.34 0.10 0.06 0.03
IX 39 5 020 015 20 2138 6.02 3.80 1.26 0.31 0.12
X 39 4 018 0.145 2.0 1574 1229 470 250 0.87 0.24

aSmall angles are excluded.
bDifferent seed for the random sequence in BEd) is used.

Jensen, and Tennyson and compare our results with the band

Legendre DVR for the angl@. This particular form of the origins published in Ref. 19. The highest published energy
Hamiltonian is used in order to calculate all of the kineticlevel is 25118.31 cm'. The numerical parameters for 10
energy operators analytically. Since the potential matrix iglifferent calculations, performed to test the convergence of
diagonal in the DVR with respect to the discretized anglethe results and relative importance of several aspects of the
variable, we can construct individual two-dimensionalcalculation, are listed in Table Ill. The parameterof Eq.
Gaussian basegy®} for the two-dimensional Hamiltonians (23) is 0.01 hartree £ 1800 cni t) for all calculations. The

for each DVR angle® 4,

HPP=K®+V(Ry,R;,0,). (22

Two-dimensional Hamiltonians for differertt, are coupled
via K terms with the DVR expression for thg?
operato?? The distancesR; and R, vary from zero to

infinity, and the kinetic energy matrix elements are actually

physical constants and conversion factors are given in Table
VI.

The typical potential energy cutoff for Gaussian centers
is E.,=0.16 hartree £35000 cm!) and the truncation
energy for 2D Hamiltonian eigenvalues 5, =0.22 hartree
(=48 000 cm ). The number of angular DVR points is 39.

The 2D QDGB basis is increased until the accuracy of

integrated forRy;=[0]. A low order Gauss—Hermite the 2D eigenvalues belo#, is e=1.0 cm ' and the mini-
quadrature is used to evaluate the potential matrix element§um RCN for the 2D overlap matrix ig=10""3. The 2D
The 2D basis consists of Gaussians of variable width distribGaussians are added in increments of 20 until the conver-
uted quasirandom|y within the energy contdty,; as de- gence criterion is met or until their number exceeds 300, or
scribed in Sec. Il with the rejection methglq. (14)]. The

width parameter ofith Gaussian centered aR{;,R,;) is :
scaled by massas; andms,,

300 o oo

(23) [e] [e]e]

The “optimal” value of c is found from a one-dimensional o oo o oo
minimization (with respect tac) of the trace oH?P. In gen- o o
eral, one may try a few values ofand choose the value that 200
gives the lowest eigenvalues, instead of this optimization, as o
was done in Sec. lll. The convergence of the energy levels o o oo
belowE_ is monitored as the basis set is being constructed. o
The number of Gaussians varies with. The final size of e ©
the 2D Hamiltonian matrix is defined by the number of its 190 | ° < <44q
eigenvalues below the truncation enetgy. The diagonal- ° < Qg
ized H?® make the diagonal blocks in angle of the full <
Hamiltonian matrix. The angular part of the Hamiltonian, <
K is transformed into the bases diagonalizing the 2D ‘ .
Hamiltonians, is truncated and then is added to the full “o 50 100 150
Hamiltonian matrix. We do not take advantage of the sym- Angls; degress

metry of the mo!ecule. We calculatg energy levels for therig. 11. The size of the 2D quasirandom DGB before and after truncation
H,O molecule using the PJT2 potential surface of Polyanskyprocedure as a function of angle.

@1(2)i = CMy2)(Ecur— V(Ryj ,Ryi) +4).

Taqq




J. Chem. Phys., Vol. 114, No. 9, 1 March 2001 Quasirandom distributed Gaussian bases 3937

TABLE IV. The number of levels obtained with the bases II-IV, that are tained with the bases I, Ill, and IV that differ from the levels
converged to a given accuracfor all three basgswhen compared to the of the largest calculation by less than 1.0, 0.5, 0.2, 0.1, and
levels of basis I. ) _ Uy My Ul
0.05 cmi ! is shown in Table IV. The total matrix size varies
Accuracy, cm* 1.02 0.50 0.20 0.10 0.05 from 1574 to 3551 without taking symmetry into account.

NUOT?eevrels 413 38 821 292 211 This is approximately the same as in Ref. @I®00—2000

Maximal energy, 20785 28908 27357 26489 23552  functions for each of the two symmetrjes

cm! Comparison of our results to the energy levels of Ref. 19
is shown in Table V. There is a systematic discrepancy with
the results of Polyansky, Jensen, and Tennyson that varies
linearly with energy reaching-0.3 crmi ! for the highest

until the RCN criterion is not satisfied. In Fig. 11 we show at . . . .
each angle the number of Gaussians and the number of baglasvels. This may be explained by a difference in the energy

functions kept after truncation of the 2D calculations with conversm_nl factgr. .LeveI51=6 andn=39 differ bY more
basis IV. About 40% of the energy levels were retained aftef@0 1 cm *, which is apparently due to typographical errors
the truncation procedure. For several angles the convergen#® Ref. 19. Their highest energy level=252 is about 0.6
criterion for the 2D eigenvalues of 1 crhis not met, but the €M * higher than the present calculation with the systematic
convergence of all retained levels below 32 000 ¢éris bet- ~ discrepancy taken into account. This appears to be a varia-
ter than 1.3 cm! and convergence of all the levels below tional error.
30 000 cm! is better than 0.55 cm'. We also can compare the performance of the QDGB
We have found that keeping Gaussians &lir angles, with the earlier work of Bacic, Watt, and Lightfor the H,O
even thoughV(Ry,R,,6)>E, for #<39°, has improved system, in which a distributed Gaussian basis was used. The
the convergence, since these 2D Hamiltonians have a feygcation of the basis functions was chosen non-uniformly
eigenvalues belovi, . In practice, we raise&,, for small  according to semiclassical considerations, but their width
angles until at least 40 Gaussians were generated. was potential-independent. The full size of the basis in Ref.

\_Ng_also have checked the dependence of the fe?”"? oY, if adjusted for the difference in the number of angular
the initial seed of the random sequence of the rejection

method, the number of quadrature points RyrandR, and points, was approximately the same as in our basis X, and

on the eigenvalue truncation energy parameter. Parametetrrée energy levels under 27 000 ciwere calculated with

and results for two smaller calculations, yielding conver-I'€ reported convergence of about 5-8 ¢mOur calcula-
gence of band origins under 0.5 chand 1.0 cm* are also  ion with the basis X gave the energy levels to 1 criac-
included in Table III. Table Il shows theaximaldifierence ~ curacy. Although our calculation is performed with a differ-
of the energy levels in comparison with the largésasis ) ent potential surface and larger number of angles, we believe
calculation forM levels. M =400, 350, 300, 250, and 200 that the QDGB with its potential-dependent width and den-
correspond to energies of 29 520, 28 183, 26 714, 25 06Sity is responsible for superior accuracy of the present calcu-
and 23 153 cm?!, respectively. The number of levels ob- lation.

TABLE V. Energy levels for HO. (dE'=EP™esent EPIT2  dE2=gPresent pexperimental EPIT2_anergies from
Ref. 19)

ESP dE! dE? N ESP dE! dE? N ESP dE? dE?

P

15946 —-0.04 -0.06 28 10600.7 —0.17 1.00 69 15348.0 —0.26 0.06
31515 -0.07 -0.14 29 10613.7 —0.17 0.27 72 15742.6 —0.26 -0.21
3657.1 -0.06 -0.01 30 10868.4 —-0.19 -0.46 74 15833.0 —0.29 0.24
37558 —-0.03 -0.13 31 110325 —-0.22 -0.25 84 16822.6 —0.29 0.02
4666.8 —1.10 -0.01 36 118124 —-0.23 -0.76 85 168234 -0.27 -184
52349 -0.10 -0.11 38 12139.5 -0.21 0.62 86 16897.9 —0.26 —0.53
5331.3 -0.11 0.04 39 12151.1 —1.22 -0.22 87 16898.0 —0.26 —0.76
6133.0 -0.13 -0.97 41 12406.8 —-0.23 -0.85 91 172272 -0.29 -0.50
10 6775.1 —0.12 0.03 43 12565.2 —0.24 0.24 92 17313.5 -0.31 0.97
11 68715 —-0.14 -0.03 49 13642.6 —0.24 0.38 96 17460.4 —0.27 2.08
12 7202.1 -0.12 0.61 50 13652.6 —0.24 0.40 97 17496.6 —0.29 1.10
13 7249.8 —0.13 0.00 53 13829.1 —0.22 0.77 99 17750.5 —0.30 2.36
14 74446 —-0.14 —-049 54 138312 —0.23 0.31 110 18393.6 —0.30 0.62
16 8273.8 —-0.16 —-0.24 55 13910.1 -0.25 -0.77 111 18394.1 —0.30 0.81
17 8373.9 -0.17 0.06 56 14066.7 —0.27 0.49 119 18991.7 —0.32 1.76
18 8761.7 —0.15 0.68 57 14221.7 —0.23 0.51 132 19780.4 —0.27 —0.65
19 8806.7 —0.16 —-0.28 58 14319.3 —-0.26 0.49 146 20545.2 —0.32 2.14
21 9000.0 —-0.18 -0.14 59 14538.6 —0.27 1.66 158 212229 -0.32 -0.71
23 9832.6 —0.20 —-1.03 65 15107.1 —-0.27 0.10 159 212234 -0.32 -0.32
25 102845 -0.18 0.06 66 15118.6 —0.27 —-0.35 187 22528.6 —0.27 -—0.78
26 103284 —-0.20 -0.32 68 15345.3 —0.26 0.81 252 25117.3 —0.97 -1.06

©CoOo~NOUA~WN
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TABLE VI. Values of the physical constants and conversion factors used inTABLE VII. The lowest energy levels for Arobtained using the equidis-

the calculation.

Relative mass of &

Relative mass oH

Conversion to atomic units of mass
Conversion from hartree to cm
Conversion from bohr to A

15.994 914 64
1.007 825 037
1822.888 530 06

219 474.629
0.529 177 249

B. Neon and argon trimers

To test the effectiveness of QDGB we also calculate

several low-lying energy levels of Neand Ar following

Ref. 15 using a 3D QDGB. The Hamiltonian of a trimer has

a simple form in the atom-atom pair coordinal®s R,, and

Rs
H_% a2l 1 g 2 RA+RZ-R? 2
& m|R2 IR ' IR, 2RRy  JR;IR
+V(R), i#j#k.

The distance®R;, R,, andR; must satisfy the triangle in-
equality,

IR3—Ry|<R,<R;+Rj.
The volume element is
dQ =R;R,R;dR;dR,dR;.
The potential is
V(R)=D(exp(— a(Ri—R¢))— 1)

The parameter values a®=99.0 cm?!, a=1.72 A1,
and R,=3.757 A for Ar and D=29.36 cm?, «
=2.088 A1 andR,=1.717 A for Ne.

Unlike the standard Jacobi or hyperspherical coordinate
the pair coordinates are nonorthogonal, but they have th
advantage that the symmetry of the system can be easi
imposed. We construct a symmetrized basis out of quasiran-
dom Gaussians in the following way. The centers of Gauss-
ians with the potential-adapted width and density are chose

as before, except that nokth Gaussian centelRf,R%,R¥)
satisfies the conditioRY<R5<RY and is omitted from fur-

ther considerations if it does not satisfy the triangle inequal
ity. Then, five more Gaussians are obtained by permutatio
(RS,RE,RY), (R%,RX,R%) and so on. The final symmetrized

basis function is a normalized sum of tkéh Gaussian and
its permutations. This generates the basisAgrsymmetry
appropriate for*®Ar; and?°Ne, (Table V).

For comparison purposes we computed the energy leve

reported in Ref. 15six for Ar; and two for Ng) to accura-

n

tant DGB (taken from Ref. 15and using the QDGB in cit. The QDGE
is the largest basis that was used to calculate all bound $t#teshe details
in the tex).

Basis DGB QDGB QDGB
Size 286 70 400
1 4457 44,57 4457
2 76.09 76.10 76.08
3 88.83 88.82 88.78
4 103.55 103.40 103.28
5 108.20 108.07 107.96
6 116.88 116.07 115.62
7 119.76
8 125.33
9 128.37
10 129.28

nates. The matrix elements were calculated using the 5-point
Gauss—Hermite quadrature with the infinite limits of integra-
tion. The size of the QDGB in our calculation was four times
smaller than that in Ref. 15, where Gaussian centers were
equidistant. For Ng following Ref. 15, we computed two
lowest energy levels using 150 Gaussians, whose centers
were distributed between 2.63 A and 6.64 A. The rest of
the QDGB parameters wer&.,=75.0 cm!, A=10.0
cm 1, ¢=0.007, and the number of quadrature points per
dimension was 7. The values of the energy levels Efte
=-50.54 cm! and E'=—34.67 cm !, which are lower
than those reported in Ref. 15 by 0.3 and 0.8 énrespec-
tively. The basis size in this calculation is also more than 4
times smaller than that of Ref. 15.

We also tried to compute the energy levels up to the
dissociation limit(208 cri ) for Arg for this potential and
found that the convergence above the isomerization limit
[130 cmi'! (Ref. 23] was poor. The converged ten lower

tates are presented in the last column of Table VII, labeled
DGB'. We used 400 symmetrized Gaussians, distributed
etween 3.36 A and 8.17 A. The parameters of B@)

ere E.,=135 cm !, A=10.0 cm'!, and c=0.012. We
used seven quadrature points per dimension to compute the
atrix elements. The lower eight states are converged within
.02 cm'! and the two remaining states are converged to
about 0.1 cm!. We believe that at the energies above the
isomerization barrier the collinear configuration of;Are-

comes important and the eigenfunction amplitudes are non-
Zero at the triangle inequality boundaries. Thus, pr@gpero
derivative boundary conditions on the basis functions at the
triangle inequality and finite integration limits have to be
imposed in order to obtain the higher energy states accu-

réa\tely.

. SUMMARY

cies comparable to or better than reported earlier using small
QDGB's. For Ai the six lowest states were obtained within The size of direct product basis sets scales exponentially
0.5 cmi ! accuracy with respect to the converged energy levwith the number of degrees of freedom. Thus, the use of
els(below), using 70 symmetrized basis functions. In Ref. 15these basis sets becomes less efficient with the increase of
286 symmetrized DGB’s were used. The energy levels aréhe dimensionality of systems. For such problems a multi-

listed in Table VII. The QDGB parameters of E4.3) were
Ec=114.0 cm, A=30.0 cm?, ¢=0.01. The range of

center correlated basis is desirable. This is confirmed by the
results of multidimensional localized functions distributed

Gaussian centers was from 3.37 A to 5.53 A in all coordi-within an energy contour on the potential surface. In this
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