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Quasirandom distributed Gaussian bases for bound problems
Sophya Garashchuk and John C. Light
James Franck Institute, University of Chicago, Chicago, Illinois 60637

~Received 13 June 2000; accepted 18 December 2000!

We introduce quasirandom distributed Gaussian bases~QDGB! that are well suited for bound
problems. The positions of the basis functions are chosen quasirandomly while their widths and
density are functions of the potential. The basis function overlap and kinetic energy matrix elements
are analytical. The potential energy matrix elements are accurately evaluated using few-point
quadratures, since the Gaussian basis functions are localized. The resulting QDGB can be easily
constructed and is shown to be accurate and efficient for eigenvalue calculation for several
multidimensional model vibrational problems. As more demanding examples, we used a 2D
QDGB-DVR basis to calculate the lowest 400 or so energy levels of the water molecule for zero
total angular momentum to sub-wave-number precision. Finally, the lower levels of Ar3 and Ne3
were calculated using a symmetrized QDGB. The QDGB was shown to be accurate with a small
basis. © 2001 American Institute of Physics.@DOI: 10.1063/1.1348022#

I. INTRODUCTION

The evaluation of highly excited vibrational states of
polyatomic molecules and clusters is of interest for a number
of fields. The theoretical spectra, when compared with ex-
periment, yield information about the accuracy of the poten-
tial energy surfaces, predictions of levels not yet observed,
information on the chaotic or regular character of the dynam-
ics, etc. Most theoretical calculations on large systems now
use direct product discrete variable representations~DVR!,
introduced in Refs. 1 and 2, and reviewed recently in Ref. 3,
or DVR’s in combination with basis representations for some
coordinates. The most sophisticated calculations to date,
such as those of Viel and Leforestier4 for HFCO, utilize six-
dimensional DVR’s of over 107 points, truncated by poten-
tial energy to some 500 000 points. The sophisticated adia-
batic pseudo-spectral method due to Friesner5 was then used
to obtain about 150 accurate eigenvalues and eigenstates.
Other large systems such as the dimer of rigid water mol-
ecules have been solved by combinations of DVR’s and
coupled angular bases.6

Although DVR’s greatly simplify the construction of
Hamiltonian matrix elements and lead to a structured Hamil-
tonian which can be exploited in the solution, the sheer size
of the basis, which scales asnd, whered is the dimension
andn is some average number of basis functions per dimen-
sion ~say 10 or so! will pose a major challenge for systems
with five or more atoms~d>9!. We have thus begun looking
for methods to define more compact multidimensional corre-
lated bases for which the scaling might be more closely pro-
portional to the number of desired eigenstates. Obviously if
we could magically choose the eigenstates as the basis the
problem would be solved.

Some time ago distributed Gaussian basis sets7,8 were
introduced for multidimensional vibrational problems with
semiclassical criteria governing the parameters of the Gaus-
sians. Davis and Heller7 examined complex Gaussian basis
sets distributed in phase space~Wigner distribution!. Later

we demonstrated that real distributed Gaussian basis sets
~DGB’s! ~Ref. 8! gave comparable or improved efficiency
and accuracy. In one dimension we made the distance be-
tween neighboring Gaussians proportional to the local de
Broglie wavelength, and chose the exponents to give a de-
sired average overlap. These were later used very effectively
in conjunction with DVR’s~usually in angles! for a number
of triatomic systems.9–13 DGB were also used for
distances14,15 and for distances and angle.16

There were, however, some inconveniences associated
with using even real DGB’s which are not orthogonal. The
orthogonalization of the basis, the problem of maintaining
linear independence, and the choice of Gaussian centers and
widths make them somewhat awkward to use, despite their
high efficiency. However, optimization of DGB’s for higher
dimensional systems has not been investigated. As a first
step in such an approach, we recently showed that fully op-
timized DGB’s can be extraordinarily efficient and accurate
for 1D systems.17 One interesting result was the demonstra-
tion that the most accurate results were obtained with very
large condition numbers for the overlap matrix,S. A large
condition number, the ratio of the largest eigenvalue to low-
est eigenvalue, implies near linear dependence of the basis.

In this paper we look toward developing efficient DGB’s
for multidimensional systems. We look at three questions:
the optimum or nearly optimum placement of DGB’s in
model potentials in one to three dimensions; the optimum
condition numbers of the overlap matrix, and the scaling of
the number of basis functions with the number of desired
accurate solutions and with dimension. We build on the
semiclassical criteria for placement of Gaussians proposed
long ago,8 but look at quasirandom methods of placement
which will be applicable to arbitrary dimensionality and po-
tentials. We will first apply the quasirandom distributed
Gaussian basis~QDGB! approach to problems with simple
potentials, but we then do an accurate DVR-QDGB calcula-
tion of the vibrational levels of H2O (J50) up to about
28 000 cm21. The DVR-QDGB appears to be substantially
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more accurate than the earlier DVR-DGB calculation11 for
the same basis size. Finally, we use a QDGB for the rare gas
trimers ~Ar3 and Ne3) using bond distance coordinates.
Again the quasirandom placement is shown to be more effi-
cient than the recent DGB on a grid calculation of Ref. 15.

In the next section we ‘‘optimize’’ the placement of the
centers of the Gaussian basis functions and their widths in
1D potentials and study the effects of scaling the Gaussian
widths ~varying the condition number ofS) on the relative
accuracy of vibrational eigenvalues. Both the ‘‘optimal’’
widths and the density of Gaussians are found to be the lin-
ear functions of the potential. We also found that a range of
fairly large condition numbers of the overlap matrix give
accurate energy eigenvalues. In Sec. III we transfer our ex-
perience with the 1D ‘‘optimized’’ Gaussian bases into many
dimensions and construct DGB’s using QDGBs whose
widths and density are linear functions of the potentials. We
analyze the effectiveness and the performance of the quasi-
random DGB for 1D–3D Morse potentials and for the
Henon–Heiles potential. The accuracy of the numerical
quadrature integration for the potential matrix elements and
the dependence on the two parameters determining the basis
are also tested. In Sec. IV A we present the results for H2O
(J50), using a combination of QDGB for the two radial
coordinates and a DVR for the angular coordinate. In Sec.
IV B we present the 3D QDGB results for Ne3 and Ar3.
Section V concludes.

II. OPTIMIZED GAUSSIAN BASIS SET IN ONE
DIMENSION

For 1D systems and small Gaussian basis sets a full op-
timization can be carried out,17 where it was shown that the
lower eigenvalues are slowly varying with basis parameters
near the optimum basis. However the full optimization
method scales as thefifth power of the basis size. We seek,
therefore, a more practical approach to finding agood if not
optimum Gaussian bases.

Our initial goal is to construct an efficient basis consist-
ing of real normalized Gaussians,$gi%, in coordinate space,

gi5~2a i /p!1/4 exp~2a i~x2xi !
2! ~1!

for a one-dimensional Hamiltonian,

Ĥ52
1

2

d2

dx2
1V~x!. ~2!

We want the basis to describe adequately the energy eigen-
functions below a certain cutoff energyEcut. The Gaussian
basis is not orthogonal, and in order to find the eigenvalues
of Ĥ one has to construct the overlap matrixS with the
elementsSi j 5^gi ugj&, the Hamiltonian matrixH with the
elementsHi j 5^gi uĤugj& and to solve the generalized eigen-
value problem

HB5SBE. ~3!

The overlap matrix elements

Si j 5A2Aa ia j

a i1a j

expS 2
a ia j

a i1a j

~xi2xj !
2D , ~4!

and the kinetic energy matrix elements

Ti j 5^gi u2
1

2

d2

dx2
ugj&5S a ia j

a i1a j
22S a ia j

a i1a j
~xi2xj ! D 2DSi j

~5!

have simple analytic forms. The potential matrix elements
Vi j 5^gi uVugj& can be accurately calculated using low order
Gauss–Hermite quadrature, since the basis functions are lo-
calized and a product of two Gaussian basis functions is a
single Gaussian. The diagonal matrixE gives the eigenval-
ues of the HamiltonianĤ and the columns of the matrixB
are the respective eigenvectors.

The ith diagonal matrix element of the kinetic energy is
Tii 5a i /2, so we expect the optimala i to be proportional to
the maximal kinetic energy at the centerxi of a correspond-
ing Gaussian,

a i;~Ecut2V~xi !!. ~6!

Semiclassical spacing of the Gaussian basis8 suggests
their separation should be proportional to the de Broglie
wavelength, and thus the density to be proportional to

r;~Ecut2V~xi !!g, ~7!

with g51/2. We show below that a linear dependence
(g51! is perhaps preferable.

These criteria yield basis functions which are narrower
in regions of low potential and, consequently, the centers
may be more dense where the de Broglie wavelength is
small, and they will be broader and further apart in the re-
gions of high potential.

To verify that this is a good choice, we show that it
results from the minimization of the following functional,

F̃5Tr~H!2l (
i j ,iÞ j

Si j

12Si j
~8!

with respect to the positions of Gaussians$xi% and to their
widths $a i%.

No functional form ofa i or the density is specified at
this stage, since the widths and positions are to be found
variationally. The functional includes the full trace of the
Hamiltonian and the artificial repulsion term whose strength
is determined by the parameterl.

While the functional is ad hoc, it is based on physical
considerations and does yield an excellent basis. If the basis
is orthogonal, the second term is zero and the trace of the
Hamiltonian will be minimized. For a normed but nonor-
thogonal basis, the minimum of the tr@H# term alone would
yield N replicas of the ground state, tr@H# 5 Neo . The sec-
ond term of the functional forces linear independence of the
functions and leads to acceptable bases. The repulsion term
prevents Gaussians from being placed too close to each other
during the minimization procedure and guarantees that the
overlap matrixS is not singular. The parameterl is nonva-
riational, and minimization of this functional will not pro-
duce the optimal Gaussian basis. However, the minimization
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procedure generates a basis that becomes very efficient after
Gaussian widths are scaleduniformly to optimize the accu-
racy with the full Hamiltonian diagonalization.

We apply the outlined procedure to the calculation of all
the bound energy levels of a one-dimensional Morse oscilla-
tor,

V~x!5D ~exp~2wx!21!2. ~9!

The dissociative character of the potential requires the intro-
duction of a finite coordinate range where Gaussians are be
placed. To limit the range toxi , xmax we simply add a step
potentialVstep5V0 u(xmax2x). We use the Morse potential
B in Ref. 8 with parametersD512.0 andw50.204 124 1
which supports 24 bound states. The amplitude of the step
potential is takenV0525.0, well above the energy cut-off.
The highest true bound state wave function has its broad
maximum atx'35.0; thus we setxmax570.

We found that the range of the nonvariational parameter
l for which the minimization procedure converges is
@0.5,1.5#. The optimization of$a i% and $xi% ~with l51.0)
produces the ‘‘expected’’ distribution of Gaussian centers
and widths, with thereciprocal condition number~RCN! of
the overlap matrixS, which is the ratio of the smallest eigen-
value to the largest eigenvalue, on the order of 1025. This
RCN is orders of magnitude higher than the minimum re-
quired to yield stable numerical inversion. Scaling of alla i

by a constant, such that the RCN of the overlap matrix is
reduced to 1029– 10212, increasesthe accuracy of the en-
ergy levels by about three orders of magnitude. We find that
if the RCN is still smaller the eigenvalues ofH increase.

For the very small RCN’s the generalized eigenvalue
problem may be solved by singular value decomposition
which removes eigenvectors ofS with very small eigenval-
ues. When this was applied to the overlap matrices with
RCNs in the rangem510215– 10213, we found that remov-
ing these few orthogonalized basis functions also increases
the eigenvalues ofH. Thus, there is an optimal range of 2–4
orders of magnitude for the RCN, that yields the lowest ei-
genvalues ofH. We found this to be true for higher dimen-
sions and all potentials examined. The RCN is adjusted by
scaling of the widthsa i for all basis functionsgi by the same
factor.

This procedure, which produces an extremely efficient
basis, permits us to examine the dependence of the widths
and density on the potential. In Fig. 1 we plot the width
parametersa i and the density of Gaussian centers, defined as
r(xi)50.5(xi 112xi 21)21, as functions of the Gaussian cen-
ter position. Both functions, the width and the density, can be
accurately fit by linear functions of the potential energy,
f (x)5a0(a12V(x)).

Figure 2 shows the relative accuracy of the energy levels
on a logarithmic scale for$xi% and $a i% obtained by the
minimization of the functional and after scaling alla i by 0.4
and by 0.13 yielding RCN’s of the overlap matrix ofm
50.00435,m51.9231026, and m51.47310213. Relative
accuracy is defined as

~Ei2Ei ,exact!/Ei ,exact. ~10!

Thus, we obtained all 24 energy levels using 48 Gaussian
basis functions with relative accuracy better than 1025, ab-
solute accuracy better than 1024. This gives a ratio of just 2
basis functions per accurate eigenvalue. The efficiency and
accuracy of this basis with density scaling linearly with the
potential (g51! is nearly identical to that found earlier8 with
semiclassical spacing (g50.5!. Note that the density is de-
termined by minimizing the functional and was not imposed.

In Fig. 3 we show the analytical and numerical eigen-
functions for the highest vibrational level, which requires the
Gaussians to be placed far into the dissociation region. A
uniform grid of identical Gaussians with optimized expo-
nents is much less efficient, requiring more than twice as
many basis functions to obtain comparable accuracy.

To verify the dependence on potential of the ‘‘opti-
mized’’ Gaussian parameters, we repeat the same variational
procedure to obtain the basis set for the Gaussian double
well potential as in8

V~x!52D~exp~2w~x2x0!2!1exp~2w~x1x0!2!! ~11!

with the parametersD512.0, w50.1, andx055.0. This po-
tential also supports 24 bound states.

We used a basis of 54 Gaussians~without taking into
account the symmetry of the potential!. After uniform scal-
ing of the exponents to yield the RCN of 1029, we obtained
all the vibrational levels with the relative accuracy better
than 1025. ~Comparable accuracy requires 250 uniformly
distributed Gaussians of equal width.! The distribution ofa i

and the density of centers were once again accurately fit with
linear functions of the potential energy, as shown in Fig. 4.

Full optimization ofF̃ for large multidimensional bases
may be impractical. However, these results of the optimiza-
tion of one dimensional bases using Eq.~8! suggest that after
scaling, the choice given by Eq.~6! for the basis function
width $a i% and by Eq.~7! for the distribution of Gaussians

FIG. 1. The widths,$a i%, and the density of Gaussians as a function of their
centers,$xi%, for the Morse oscillator: circles marka i found from the mini-

mization of the functionalF̃, Eq.~8!; solid line is the fit ofa i with the linear
function of the potential; squares mark the optimized density; and the
dashed line is its linear fit.
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~with g 5 1! will produce efficient basis sets in higher di-
mensions. Therefore for multidimensional problems we will
use the functional form of Eqs.~6! and~7! for the width and
density of Gaussians and use the RCN of the overlap matrix
as a criterion for choosing the overall scaling factor of the
widths a i .

III. QUASIRANDOM DISTRIBUTION OF GAUSSIANS

As was found previously, DGB’s based on semiclassical
considerations9–12 are difficult to construct in more than one
dimension, and, of course, the optimization procedure of
Sec. II becomes expensive, if feasible at all. Thus, we take

advantage of the simple functional form of the basis function
parameters, a linear dependence on the potential, which
yielded excellent results above after scaling of the widths.

For multidimensional problems we wish to use a DGB
with the appropriate varying density of centers. Since this
cannot be done simply on a grid, we will use a quasirandom
procedure to distribute the Gaussian basis functions with
potential-dependent density and widths within the energy
contourV(xi),Ecut. ~Herex is the coordinate vector in the
multidimensional space.! Thus we take

gi~x!5exp~2~xÀxi !
TA i~xÀxi !!~2N det~Ai!/p

N!1/4. ~12!

The width parameters may be a matrixA i with or without
off-diagonal elements, in general. We considerA i to be a
diagonal matrix with equal elementsa i for Cartesian coor-
dinates. We choose the scaled widths of Gaussians according
to Eq ~6! ~for simplicity the minimum of the potential is
taken to be zero!,

a i5c mi~Ecut2V~xi !1D! ~13!

with the same value ofc for all functions and dimensions
chosen to yield the RCN of the overlap matrix on the order
of 1026– 10214. This is consistent with the results of optimi-
zation for the one-dimensional problems of Sec. II.

The density of centers is also a linear function of the
potential,

r~x…;Ecut2V~xi !1D. ~14!

The parameterD defines the ratio of the maximala i to its
minimal value. The limit of largeD, D@Ecut corresponds to
a uniformly dense quasirandom distribution of Gaussians of
equal width. Small values ofD, D,Ecut, correspond to a
distribution where the density and the width of the basis
functions are determined by the potential as in the ‘‘opti-
mal’’ basis of Sec. II. A suitable value ofc to produce a good
RCN is chosen after a few tries. The parameterc can be

FIG. 2. Logarithm of the relative accuracy of the levels of the Morse oscil-
lator, plotted as a function of the quantum number. The energy levels are
calculated with the optimized and scaled basis function parameters for sev-
eral reciprocal condition numbersm of the overlap matrixS: circles, dia-
monds, and triangles correspond tom54.3531023,1.9231026,1.47
310213, respectively.

FIG. 3. The eigenfunction of the highest,n523, energy level for the Morse
potential in coordinate space: dashed line shows the analytical result and the
solid line shows the numerical eigenfunction corresponding to the most
accurate calculation in Fig. 2. The centers of basis functions~circles! are
also shown.

FIG. 4. The widths,$a i%, and the density of Gaussians as a function of their
centers,$xi%, for the double well potential: circles mark the optimizeda i ;
solid line is the fit ofa i with the linear function of the potential; squares
mark the optimized density; and the dashed line is its linear fit.
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estimated from the lowest eigenvalue asc;E0 /Ecut, or
from a problem with a reducedEcut and a small number of
Gaussians. The procedure has only two parameters and pro-
duces an efficient correlated basis for multidimensional sys-
tems.

In multidimensional systems we wish to distribute the
Gaussian basis functions with varying density. This can be
done with a random procedure accepting Gaussian centers
with a probability proportional to the desired density and
rejecting them if they exceed a maximum overlap with other
members of the basis. A more efficient procedure is to use a
quasirandom~or subrandom! sequence of numbers rather
than random numbers. This has the advantage that the points
xi in the ‘‘random’’ sequence are generated as far apart as
possible for a given density, thus reducing the probability
that two points will be rejected because of too much overlap.
~This greatly increases the efficiency of accepting a new ba-
sis function into the basis set.! The convergence of eigenval-
ues with respect to the number of basis functions can be
monitored while the sequence is being generated.

We used the Sobol sequence to generate quasirandom
points.18 The density of points can be modified according to
Eq. ~14! with the rejectionmethod;18 the pointxi is accepted
if

FEcut2V~xi !1D

Ecut1D Gg

.bi , ~15!

where numbersbi5@0,1# belong to an independent sequence
of random numbers. The choice ofg51 is the linear rela-
tionship found above. (g50.5 is the semiclassical choice8

tested below.! We will refer to the basis constructed in this
way with g51 as the nonuniformquasirandom distributed
Gaussian basis, QDGB.

To test the effect of the distribution of the basis function
widths and density we compare with two other bases of
Gaussians. One, with Gaussians of equal width distributed
quasirandomly with the uniform density will be referred to as
‘‘uniform quasirandom DGB.’’ The other is a uniform grid
of Gaussians of equal width. Both are optimized with respect
to the width parameter of the Gaussians.

A. The one-dimensional Morse potential

As a first test we look at the performance of quasiran-
dom DGB for a one-dimensional Morse oscillator of Sec. II,

defined by Eq.~9!. We look at the accuracy of the lowest 23
eigenvalues with the energies below 11.99 a.u. The energy
levels are calculated with 48 Gaussians with widths that de-
pend on the potential energy of their centers according to Eq.
~13! and distributed quasirandomly using the rejection
method~QDGB!, Eqs. ~14! and ~15!. We compare with 80
Gaussians of equal width distributed on a grid. The energy
cutoff is the same for all basis sets,Ecut511.99 a.u., andD
50.1 a.u. The exponent scaling parameterc for the QDGB,
as defined in Eq.~15! and the width of Gaussians for the grid
basis, yielding the most accurate energy levels, were
0.164 025 and 1.62 yielding the RCNs of the overlap matri-
ces 1.6310213 and 2.631025 for the QDGB and the basis
set on a grid, respectively. The relative accuracy of the en-
ergy levels is shown in Fig. 5. The 48 Gaussians generated
with the rejection method give accuracy which is better by at
least one order of magnitude for 16 out of 23 levels, when
compared to the calculation with 80 Gaussians on the grid.

The QDGB depends on two parameters2D, controlling
the sensitivity of the widths to the potential, and thus the
variations of the density of the basis functions with potential,
and c, which scales the widthsa i of all the Gaussians and
controls the overlap of basis functions. The dependence of

FIG. 5. Logarithm of the accuracy of the energy levels for one-dimensional
Morse potential calculated with nonuniform QDGB of 48 basis functions
@Eq. ~15!# is shown with circles. The same, obtained with 80 Gaussians
distributed uniformly on a grid, is shown with squares.

TABLE I. The numerical parameters used to calculate the energy levels for system of Morse oscillators given
by Eqs.~9!, ~16!, and~17!. The dissociation energy isD512.0.

Frequency wx50.204 124 1wy50.183 711 69 wz50.163 299 28
Dimension basis set type Nlevels NGaus Ecut Width, c RCN

1 grid 23 48 11.99 1.62 2.631025

1 nonuniform 23 48 11.99 0.164025 1.6310213

2 grid 122 482 11.5 1.28 6.431028

2 uniform 122 482 11.5 0.832 3.9310210

2 nonuniformg51 122 482 11.5 0.12005 1.2310212

2 nonuniformg51/2 122 482 11.5 0.12005 5.2310211

3 grid 124 939 7.4 1.0 7.731028

3 uniform 124 939 7.4 0.704 1.131028

3 nonuniform 124 939 7.4 0.6336 9.2310212
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the energy levels on the overall scaling of Gaussian width
through the parameterc ~or on the RCN of the overlap ma-
trix! is shown in Fig. 6. The RCN changes by three orders of
magnitude from 10210 to 10213, which affects the accuracy
of the energy levels. However overall accuracy remains bet-
ter than 1024 for 20 out of 23 levels for all calculations and
the accuracy of the remaining 3 levels depends on the RCN
only weakly, being more strongly affected by the energy
cutoff parameterEcut. The dependence of the energy levels
on the parameterD is shown in Fig. 7. Calculations per-

formed with the smallestD, that was about 1% ofEcut, i.e.,
the most sensitive to the potential, gives the most accurate
results. The choice ofD of about 10% and 50% ofEcut also
give quite accurate results, whileD'Ecut gives significantly
lower accuracy for all energy levels.

We also examine the accuracy of the numerical evalua-
tion of the potential matrix elements for the Morse potential.
Our basis functions are localized, but fairly strongly overlap-
ping. We use Gauss–Hermite quadratures, since a product of
two Gaussians is a Gaussian. In Table II we compare the
energy levels if one- , two-, and three-point quadratures are
used to compute the potential matrix elements. One can see
that three-point quadrature gives accurate results, basically to
six significant figures, and even a two-point quadrature might
be sufficient if lower accuracy (1024 in this example! is
acceptable. We note that the accuracy of low order Gaussian
quadratures depends on both the potential and the width of
the Gaussians, and must be checked.

B. Two and three dimensional systems

The QDGB method can easily be extended to two and
higher dimensional systems. We test the performance of
three basis sets for two and three-dimensional Morse oscil-
lators; QDGB’s where positions of Gaussians are chosen
quasirandomly with the densityr(xi);(Ecut2V(xi)1D)g

with g51.0,0.5; a uniform width quasirandom basis and the
uniform basis on a grid. All bases are truncated to include
only Gaussians with centers within the energy contour Ecut.
The oscillators in the Hamiltonian are uncoupled for the sake
of comparison with analytical energy levels, but nothing in

FIG. 6. The dependence of the accuracy of the energy levels for one-
dimensional Morse potential, calculated with uniform QDGB of 48 basis
functions, on their width~parameterc): circles, squares, diamonds, tri-
angles, and crosses correspond to values ofc being equal to 0.25, 0.225,
0.2025, 0.18225, and 0.164025 yielding the overlap matrix reciprocal con-
dition numbers of 1.55310210, 3.06310211, 5.67310212, 9.87310213,
and 1.62310213, respectively. The ordinate is the logarithm of the relative
accuracy of the energy levels.

FIG. 7. The dependence of the accuracy of the energy levels for one-
dimensional Morse potential, calculated with uniform QDGB of 48 basis
functions, on the parameterD: circles, squares, diamonds, and triangles
correspond toD being equal to 0.1, 1.0, 6.0, and 12.0 with the values ofc
being equal to 0.164025, 0.13122, 0.054675, and 0.0405, respectively. The
ordinate is the logarithm of the relative accuracy of the energy levels.

TABLE II. The difference in the energy levels for the 1D Morse potential
calculated with the analytical potential matrix elementsVi j and with the
numerically evaluatedVi j using one-, two-, and three-point Gauss–Hermite
quadratures.

Level, N One-point Two-point Three-point

1 0.051 864 0.000 264 0.000 000 5
2 0.051 675 0.000 273 0.000 000 6
3 0.051 380 0.000 283 0.000 000 7
4 0.050 933 0.000 293 0.000 000 7
5 0.050 288 0.000 302 0.000 000 8
6 0.049 401 0.000 310 0.000 000 9
7 0.048 232 0.000 316 0.000 001 0
8 0.046 749 0.000 320 0.000 001 0
9 0.044 929 0.000 322 0.000 001 1

10 0.042 758 0.000 321 0.000 001 2
11 0.040 228 0.000 317 0.000 001
12 0.037 338 0.000 309 0.0000 01 3
13 0.034 088 0.000 297 0.0000 01 3
14 0.030 487 0.000 280 0.0000 01 4
15 0.026 578 0.000 257 0.0000 01 4
16 0.022 348 0.000 228 0.0000 01 4
17 0.017856 0.000 191 0.0000 01 4
18 0.013 210 0.000 144 0.000 001 4
19 0.008 370 0.000 082 0.000 001 2
20 0.003 594 0.000 001 0.000 000 7
21 20.000 966 20.000 119 20.000 000 7
22 20.003 225 20.000 211 20.000 002 6
23 20.003 656 20.000 324 20.000 015 4

3934 J. Chem. Phys., Vol. 114, No. 9, 1 March 2001 S. Garashchuk and J. C. Light



the construction of the basis sets depends on the separability
of the potential. The values of all of the numerical param-
eters of the bases are shown in Table I.

First, consider the two-dimensional Hamiltonian,

H52
1

2

d2

dx2
2

1

2

d2

dy2
1D ~exp~2wxx!21!2

1D ~exp~2wyy!21!2. ~16!

The Morse parameters are given in Table I. The dissociation
energy is 12 a.u. We calculate 122 energy levels below
Ecut511.5 a.u., using 482 basis functions for all four calcu-
lations. The positions of the basis function centers for the
QDGB’s is shown in Fig. 8 for bothg values.

The logarithm of the relative accuracy is plotted in Fig.
9. The QDGB gives the most accurate results across the
whole energy range, with theg51 results being more accu-
rate than theg50.5 results for about the lowest 100 levels.

For the three-dimensional case we consider the follow-
ing Hamiltonian:

H52
1

2

d2

dx2
2

1

2

d2

dy2
2

1

2

d2

dz2
1D~~exp~2wxx!21!2

1~exp~2wyy!21!1~exp~2wzz!21!2! ~17!

with parameters shown in Table I The number of energy
eigenvalues belowEcut57.5 is 124. The size of the basis sets
is 939 functions. The logarithm of the relative accuracy, av-
eraged over 5 levels, is shown in Fig. 10. The accuracy of
the nonuniform basis set is two orders of magnitude better
than that of the grid basis for most energy levels. Interest-
ingly, the accuracy given by the uniform quasirandom DGB
is somewhat better and more consistent for these two and
three-dimensional systems than the results obtained with
Gaussians on a grid. The number of basis functions required
per accurate eigenvalue scales exponentially with the dimen-
sion but with a very smalln: Nbasis;Nsoln 2d.

The 2D Henon–Heiles problem was also solved, with all
99 bound states given by QDGB basis sets of 300 and 462
functions. Accuracy was comparable to that reported by
Hamilton8 for the same basis size.

IV. CALCULATION OF THE ENERGY LEVELS FOR
TRIATOMIC MOLECULES

A. Water molecule

To go beyond simple test problems we calculate the vi-
brational energy levels of water forJ50 total angular mo-
mentum for an accurate potential energy surface.19 Conver-

FIG. 8. The positions of 482 basis set functions for nonuniform QDGB with
g51 ~open circles! and g51/2 ~filled circles! for the two-dimensional
Morse potential.

FIG. 9. Logarithm of the relative accuracy of the lowest 122 energy levels,
averaged over five levels, for the two-dimensional Morse potential, calcu-
lated with 482 Gaussian basis functions distributed on the grid~squares!,
uniform width QDGB~triangles!, variable width QDGB withg51 ~circles!
and withg51/2 as a function of the level number.

FIG. 10. Logarithm of the relative accuracy of the lowest 124 energy levels,
averaged over 5 levels, for the three-dimensional Morse potential, calcu-
lated with 939 Gaussian basis functions distributed on the grid~squares!,
uniformly ~triangles!, and nonuniformly~circles!, on the logarithmic scale as
a function of the quantum number.
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gence of the 252 levels below 25 118 cm21 to 0.1 cm21 was
desired and achieved. The triatomic vibrational Hamiltonian
in Radau coordinates is

Ĥ5K2D1Ku1V~R1 ,R2 ,u!, ~18!

where the two-dimensional Hamiltonian is

K2D52
\2

2m1R1
2

]

]R1
S R1

2 ]

]RD2
\2

2m2R2
2

]

]R2
S R2

2 ]

]R2
D ~19!

and the angular part is

Ku52
\2

2 S 1

m1R1
2

1
1

m2R2
2D j2 ~20!

with

j25
1

sin u

]

]u S sin u
]

]u D . ~21!

The volume element isR1
2R2

2 sinudR1dR2du.11,20

We use the QDGB for the distancesR1 andR2 and the
Legendre DVR for the angleu. This particular form of the
Hamiltonian is used in order to calculate all of the kinetic
energy operators analytically. Since the potential matrix is
diagonal in the DVR with respect to the discretized angle
variable, we can construct individual two-dimensional
Gaussian bases$ga% for the two-dimensional Hamiltonians
for each DVR angle9,20 ua ,

H j
2D5K2D1V~R1 ,R2 ,ua!. ~22!

Two-dimensional Hamiltonians for differentua are coupled
via Ku terms with the DVR expression for thej2

operator.21,22 The distancesR1 and R2 vary from zero to
infinity, and the kinetic energy matrix elements are actually
integrated forR1(2)5@0,̀ #. A low order Gauss–Hermite
quadrature is used to evaluate the potential matrix elements.
The 2D basis consists of Gaussians of variable width distrib-
uted quasirandomly within the energy contourEcut as de-
scribed in Sec. III with the rejection method@Eq. ~14!#. The
width parameter ofith Gaussian centered at (R1i ,R2i) is
scaled by massesm1 andm2,

a1(2)i5cm1(2)~Ecut2V~R1i ,R2i !1D!. ~23!

The ‘‘optimal’’ value of c is found from a one-dimensional
minimization~with respect toc) of the trace ofH2D. In gen-
eral, one may try a few values ofc and choose the value that
gives the lowest eigenvalues, instead of this optimization, as
was done in Sec. III. The convergence of the energy levels
belowEcut is monitored as the basis set is being constructed.
The number of Gaussians varies withu j . The final size of
the 2D Hamiltonian matrix is defined by the number of its
eigenvalues below the truncation energyEtr . The diagonal-
ized H j

2D make the diagonal blocks in angle of the full
Hamiltonian matrix. The angular part of the Hamiltonian,
Ku, is transformed into the bases diagonalizing the 2D
Hamiltonians, is truncated and then is added to the full
Hamiltonian matrix. We do not take advantage of the sym-
metry of the molecule. We calculate energy levels for the
H2O molecule using the PJT2 potential surface of Polyansky,

Jensen, and Tennyson and compare our results with the band
origins published in Ref. 19. The highest published energy
level is 25 118.31 cm21. The numerical parameters for 10
different calculations, performed to test the convergence of
the results and relative importance of several aspects of the
calculation, are listed in Table III. The parameterD of Eq.
~23! is 0.01 hartree ('1800 cm21) for all calculations. The
physical constants and conversion factors are given in Table
VI.

The typical potential energy cutoff for Gaussian centers
is Ecut50.16 hartree ('35 000 cm21) and the truncation
energy for 2D Hamiltonian eigenvalues isEtr50.22 hartree
('48 000 cm21). The number of angular DVR points is 39.

The 2D QDGB basis is increased until the accuracy of
the 2D eigenvalues belowEcut is e51.0 cm21 and the mini-
mum RCN for the 2D overlap matrix ism510213. The 2D
Gaussians are added in increments of 20 until the conver-
gence criterion is met or until their number exceeds 300, or

FIG. 11. The size of the 2D quasirandom DGB before and after truncation
procedure as a function of angle.

TABLE III. Maximal deviation for energy levels of water in cm21. Nu is
the number of angular DVR points.Nq is the number of quadrature points
per dimension for radial integrals. The cutoff energy for the placement of
Gaussians,Ecut , and the truncation energy for the 2D eigenvalues,Etr are in
hartree. The convergence criterion for energy levels in 2D,e, is in cm21.
Nmax is the total size of the truncated matrix.

Number of energy levels
Basis Nu Nq Etr Ecut e2D Nmax 400 350 300 250 200

I 43 5 0.23 0.165 1.0 3551 ••• ••• ••• ••• •••
II 39 5 0.23 0.165 1.0 3232 0.43 0.35 0.17 0.08 0.03

III 43 5 0.22 0.16 1.0 3129 1.02 0.33 0.18 0.07 0.02
IV 39 5 0.22 0.16 1.0 2834 0.62 0.42 0.09 0.05 0.03
V 39 5 0.23 0.16 1.0 3198 0.60 0.41 0.09 0.05 0.03

VI 39 7 0.22 0.16 1.0 2838 0.64 0.43 0.11 0.07 0.03
VII a 39 5 0.22 0.16 1.0 2777 8.38 3.76 1.90 0.50 0.09
VIII b 39 5 0.22 0.16 1.0 2838 0.73 0.34 0.10 0.06 0.03

IX 39 5 0.20 0.15 2.0 2138 6.02 3.80 1.26 0.31 0.12
X 39 4 0.18 0.145 2.0 1574 12.29 4.70 2.50 0.87 0.24

aSmall angles are excluded.
bDifferent seed for the random sequence in Eq.~15! is used.
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until the RCN criterion is not satisfied. In Fig. 11 we show at
each angle the number of Gaussians and the number of basis
functions kept after truncation of the 2D calculations with
basis IV. About 40% of the energy levels were retained after
the truncation procedure. For several angles the convergence
criterion for the 2D eigenvalues of 1 cm21 is not met, but the
convergence of all retained levels below 32 000 cm21 is bet-
ter than 1.3 cm21 and convergence of all the levels below
30 000 cm21 is better than 0.55 cm21.

We have found that keeping Gaussians forall angles,
even thoughV(R1 ,R2 ,u).Ecut for u,39°, has improved
the convergence, since these 2D Hamiltonians have a few
eigenvalues belowEtr . In practice, we raisedEcut for small
angles until at least 40 Gaussians were generated.

We also have checked the dependence of the results on
the initial seed of the random sequence of the rejection
method, the number of quadrature points forR1 andR2 and
on the eigenvalue truncation energy parameter. Parameters
and results for two smaller calculations, yielding conver-
gence of band origins under 0.5 cm21 and 1.0 cm21 are also
included in Table III. Table III shows themaximaldifference
of the energy levels in comparison with the largest~basis I!
calculation for M levels. M5400, 350, 300, 250, and 200
correspond to energies of 29 520, 28 183, 26 714, 25 069,
and 23 153 cm21, respectively. The number of levels ob-

tained with the bases II, III, and IV that differ from the levels
of the largest calculation by less than 1.0, 0.5, 0.2, 0.1, and
0.05 cm21 is shown in Table IV. The total matrix size varies
from 1574 to 3551 without taking symmetry into account.
This is approximately the same as in Ref. 19~1000–2000
functions for each of the two symmetries!.

Comparison of our results to the energy levels of Ref. 19
is shown in Table V. There is a systematic discrepancy with
the results of Polyansky, Jensen, and Tennyson that varies
linearly with energy reaching20.3 cm21 for the highest
levels. This may be explained by a difference in the energy
conversion factor. Levelsn56 and n539 differ by more
than 1 cm21, which is apparently due to typographical errors
in Ref. 19. Their highest energy level,n5252 is about 0.6
cm21 higher than the present calculation with the systematic
discrepancy taken into account. This appears to be a varia-
tional error.

We also can compare the performance of the QDGB
with the earlier work of Bacic, Watt, and Light11 for the H2O
system, in which a distributed Gaussian basis was used. The
location of the basis functions was chosen non-uniformly
according to semiclassical considerations, but their width
was potential-independent. The full size of the basis in Ref.
11, if adjusted for the difference in the number of angular
points, was approximately the same as in our basis X, and
the energy levels under 27 000 cm21 were calculated with
the reported convergence of about 5–8 cm21. Our calcula-
tion with the basis X gave the energy levels to 1 cm21 ac-
curacy. Although our calculation is performed with a differ-
ent potential surface and larger number of angles, we believe
that the QDGB with its potential-dependent width and den-
sity is responsible for superior accuracy of the present calcu-
lation.

TABLE IV. The number of levels obtained with the bases II–IV, that are
converged to a given accuracy~for all three bases! when compared to the
levels of basis I.

Accuracy, cm21 1.02 0.50 0.20 0.10 0.05
Number

of levels
413 378 321 292 211

Maximal energy,
cm21

29 785 28 908 27 357 26 489 23 552

TABLE V. Energy levels for H2O. (dE15Epresent2EPJT2, dE25Epresent2Eexperimental, EPJT2–energies from
Ref. 19.!

N Eexp dE1 dE2 N Eexp dE1 dE2 N Eexp dE1 dE2

2 1594.6 20.04 20.06 28 10600.7 20.17 1.00 69 15348.0 20.26 0.06
3 3151.5 20.07 20.14 29 10613.7 20.17 0.27 72 15742.6 20.26 20.21
4 3657.1 20.06 20.01 30 10868.4 20.19 20.46 74 15833.0 20.29 0.24
5 3755.8 20.03 20.13 31 11032.5 20.22 20.25 84 16822.6 20.29 0.02
6 4666.8 21.10 20.01 36 11812.4 20.23 20.76 85 16823.4 20.27 21.84
7 5234.9 20.10 20.11 38 12139.5 20.21 0.62 86 16897.9 20.26 20.53
8 5331.3 20.11 0.04 39 12151.1 21.22 20.22 87 16898.0 20.26 20.76
9 6133.0 20.13 20.97 41 12406.8 20.23 20.85 91 17227.2 20.29 20.50

10 6775.1 20.12 0.03 43 12565.2 20.24 0.24 92 17313.5 20.31 0.97
11 6871.5 20.14 20.03 49 13642.6 20.24 0.38 96 17460.4 20.27 2.08
12 7202.1 20.12 0.61 50 13652.6 20.24 0.40 97 17496.6 20.29 1.10
13 7249.8 20.13 0.00 53 13829.1 20.22 0.77 99 17750.5 20.30 2.36
14 7444.6 20.14 20.49 54 13831.2 20.23 0.31 110 18393.6 20.30 0.62
16 8273.8 20.16 20.24 55 13910.1 20.25 20.77 111 18394.1 20.30 0.81
17 8373.9 20.17 0.06 56 14066.7 20.27 0.49 119 18991.7 20.32 1.76
18 8761.7 20.15 0.68 57 14221.7 20.23 0.51 132 19780.4 20.27 20.65
19 8806.7 20.16 20.28 58 14319.3 20.26 0.49 146 20545.2 20.32 2.14
21 9000.0 20.18 20.14 59 14538.6 20.27 1.66 158 21222.9 20.32 20.71
23 9832.6 20.20 21.03 65 15107.1 20.27 0.10 159 21223.4 20.32 20.32
25 10284.5 20.18 0.06 66 15118.6 20.27 20.35 187 22528.6 20.27 20.78
26 10328.4 20.20 20.32 68 15345.3 20.26 0.81 252 25117.3 20.97 21.06
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B. Neon and argon trimers

To test the effectiveness of QDGB we also calculate
several low-lying energy levels of Ne3 and Ar3 following
Ref. 15 using a 3D QDGB. The Hamiltonian of a trimer has
a simple form in the atom-atom pair coordinatesR1 , R2, and
R3

H5(
i 51

3 H 2
\2

m F 1

Ri
2

]

]Ri
Ri

2 ]

]Ri
1

Rj
21Rk

22Ri
2

2RjRk

]2

]Rj]Rk
G

1V~Ri !J , iÞ j Þk.

The distancesR1 , R2, and R3 must satisfy the triangle in-
equality,

uR32R1u<R2<R11R3 .

The volume element is

dV5R1R2R3dR1dR2dR3 .

The potential is

V~Ri !5D~exp~2a~Ri2Re!!21!2.

The parameter values areD599.0 cm21, a51.72 Å21,
and Re53.757 Å for Ar and D529.36 cm21, a
52.088 Å21, andRe51.717 Å for Ne.

Unlike the standard Jacobi or hyperspherical coordinates
the pair coordinates are nonorthogonal, but they have the
advantage that the symmetry of the system can be easily
imposed. We construct a symmetrized basis out of quasiran-
dom Gaussians in the following way. The centers of Gauss-
ians with the potential-adapted width and density are chosen
as before, except that nowkth Gaussian center (R1

k ,R2
k ,R3

k)
satisfies the conditionR1

k,R2
k,R3

k and is omitted from fur-
ther considerations if it does not satisfy the triangle inequal-
ity. Then, five more Gaussians are obtained by permutation:
(R2

k ,R3
k ,R1

k), (R2
k ,R1

k ,R3
k) and so on. The final symmetrized

basis function is a normalized sum of thekth Gaussian and
its permutations. This generates the basis forA1 symmetry
appropriate for40Ar3 and20Ne3 ~Table VI!.

For comparison purposes we computed the energy levels
reported in Ref. 15~six for Ar3 and two for Ne3) to accura-
cies comparable to or better than reported earlier using small
QDGB’s. For Ar3 the six lowest states were obtained within
0.5 cm21 accuracy with respect to the converged energy lev-
els~below!, using 70 symmetrized basis functions. In Ref. 15
286 symmetrized DGB’s were used. The energy levels are
listed in Table VII. The QDGB parameters of Eq.~13! were
Ecut5114.0 cm21, D530.0 cm21, c50.01. The range of
Gaussian centers was from 3.37 Å to 5.53 Å in all coordi-

nates. The matrix elements were calculated using the 5-point
Gauss–Hermite quadrature with the infinite limits of integra-
tion. The size of the QDGB in our calculation was four times
smaller than that in Ref. 15, where Gaussian centers were
equidistant. For Ne3, following Ref. 15, we computed two
lowest energy levels using 150 Gaussians, whose centers
were distributed between 2.63 Å and 6.64 Å. The rest of
the QDGB parameters wereEcut575.0 cm21, D510.0
cm21, c50.007, and the number of quadrature points per
dimension was 7. The values of the energy levels areE0

5250.54 cm21 and E15234.67 cm21, which are lower
than those reported in Ref. 15 by 0.3 and 0.8 cm21, respec-
tively. The basis size in this calculation is also more than 4
times smaller than that of Ref. 15.

We also tried to compute the energy levels up to the
dissociation limit~208 cm21) for Ar3 for this potential and
found that the convergence above the isomerization limit
@130 cm21 ~Ref. 23!# was poor. The converged ten lower
states are presented in the last column of Table VII, labeled
QDGB†. We used 400 symmetrized Gaussians, distributed
between 3.36 Å and 8.17 Å. The parameters of Eq.~13!
were Ecut5135 cm21, D510.0 cm21, and c50.012. We
used seven quadrature points per dimension to compute the
matrix elements. The lower eight states are converged within
0.02 cm21 and the two remaining states are converged to
about 0.1 cm21. We believe that at the energies above the
isomerization barrier the collinear configuration of Ar3 be-
comes important and the eigenfunction amplitudes are non-
zero at the triangle inequality boundaries. Thus, proper~zero
derivative! boundary conditions on the basis functions at the
triangle inequality and finite integration limits have to be
imposed in order to obtain the higher energy states accu-
rately.

V. SUMMARY

The size of direct product basis sets scales exponentially
with the number of degrees of freedom. Thus, the use of
these basis sets becomes less efficient with the increase of
the dimensionality of systems. For such problems a multi-
center correlated basis is desirable. This is confirmed by the
results of multidimensional localized functions distributed
within an energy contour on the potential surface. In this

TABLE VI. Values of the physical constants and conversion factors used in
the calculation.

Relative mass of O16 15.994 914 64
Relative mass ofH 1.007 825 037
Conversion to atomic units of mass 1822.888 530 06
Conversion from hartree to cm21 219 474.629
Conversion from bohr to Å 0.529 177 249

TABLE VII. The lowest energy levels for Ar3 obtained using the equidis-
tant DGB~taken from Ref. 15! and using the QDGB in cm21. The QDGB†

is the largest basis that was used to calculate all bound states~see the details
in the text!.

Basis DGB QDGB QDGB†

Size 286 70 400

1 44.57 44.57 44.57
2 76.09 76.10 76.08
3 88.83 88.82 88.78
4 103.55 103.40 103.28
5 108.20 108.07 107.96
6 116.88 116.07 115.62
7 ••• ••• 119.76
8 ••• ••• 125.33
9 ••• ••• 128.37

10 ••• ••• 129.28
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paper we have proposed a quasirandom distributed Gaussian
basis~QDGB! that is well suited for multidimensional vibra-
tional problems. The advantage of this basis is that it is
adapted to a given potential and is correlated by construc-
tion, which makes it efficient in many dimensions. The lo-
calized character of the Gaussians requires low order quadra-
tures for the potential matrix evaluations. The simplicity of
generating this basis and the ability to check the convergence
of eigenvalues during its construction are also advantages for
multidimensional problems when the feasibility and the nu-
merical effort is ultimately defined by the size of the basis
set. A QDGB can be readily combined with a DVR in angle
~the DGB-DVR approach!,9–12 yielding a ‘‘customized’’ ba-
sis for each DVR angle. Although a DVR-DGB approach
was used before, the efficiency and accuracy is substantially
improved using QDGB’s as demonstrated in our calculation
of the J50 levels of H2O.

We also believe that QDGB can be useful for systems,
that are most conveniently represented in nonorthogonal pair
coordinates. As we have shown for Ne3 and Ar3, the proper
symmetry can be easily imposed on QDGB. The final QDGB
size required for the lower levels was four times smaller than
in the earlier calculation15 of comparable accuracy.
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