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INTRODUCTION

Microorganisms in salt marsh estuarine ecosystems
perform critical functions in the processing of organic
matter and the mineralization of important nutrients. The
diagenesis of macrophyte biomass, the uptake of nutri-
ents by bacteria, and the subsequent transfer to higher
trophic levels through grazing form the basis of the com-
plex heterotrophic food webs that support much of the
secondary production in these estuaries. Primary pro-

duction in estuaries also depends upon microbial pro-
cesses because bacteria fix and remineralize the inor-
ganic nutrients that limit phytoplankton growth and pro-
duction. The importance of these bacterial processes to
the trophic interactions and overall ecology of aquatic
systems has inspired extensive study of bacterial com-
munities. Despite this attention, fundamental questions
remain regarding bacterial community distribution and
the factors that contribute to the structuring of bacterial
assemblages in estuarine habitats.
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ABSTRACT: Microorganisms are among the most important organisms to the ecology of salt marsh
estuaries; however, fundamental questions regarding their distribution, environmental controls, and
interactions with phytoplankton remain unanswered. We used denaturing gradient gel electrophore-
sis (DGGE) of bacterial rRNA genes and high performance liquid chromatography (HPLC) of phyto-
plankton photopigments to characterize planktonic communities from the Ashepoo, Combahee, and
Edisto (ACE) Basin and North Inlet (NI) estuaries on the South Carolina coast, USA. Multivariate
comparisons of the planktonic community profiles revealed that the 2 estuaries supported distinct
bacterial communities. Furthermore, bacterial communities in both systems were partitioned into
separate particle-associated (PA) and free-living (FL) components. Differences in bacterial popula-
tions were also observed along the salinity gradient within each system. Comparisons of water
physicochemistry with bacterial profiles indicated significant correlation of PA bacterial community
structures with temperature, salinity, organic carbon, total phosphorus, and ammonium, whereas FL
communities were affected by nitrate, ammonium, total phosphorus and orthophosphate. PA bacteri-
oplankton community structures were also associated with diatoms, dinoflagellates, haptophytes and
cryptophytes, while FL assemblages corresponded to prasinophytes, chlorophytes, and cyanobacte-
ria. Comparisons between estuaries further demonstrated that ACE Basin communities were mostly
associated with the same pigments as PA samples, and that NI assemblages correlated with FL-
associated phytoplankton, suggesting different trophodynamics of particles in the 2 systems.
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In some aquatic ecosystems abiotic factors such as
riverine input, salinity, temperature, or availability of
nutrients have been shown to control the composition
of the plankton communities present (Lind & Barcena
2003, Smith & Kemp 2003, Kirchman et al. 2004). In
estuarine systems in particular, phytoplankton and
bacterioplankton productivity and taxonomic composi-
tion have been shown to be sensitive to changes in
nutrient concentrations (Noble et al. 1997, Seitzinger &
Sanders 1999, Kirchman et al. 2004, Lagus et al. 2004).
However, other research has demonstrated that the
structure of complex, natural communities as well as
relatively simple bacterial assemblages may remain
unchanged when exposed to significant shifts in nutri-
ent chemistry (Fernandez et al. 1999, Piceno & Lovell
2000, Lovell et al. 2001, LaPara et al. 2002). The impor-
tance of such bottom-up controls on community com-
position is often assumed for ecosystems; however,
owing to the inherent complexity of bacterial commu-
nities and the practical difficulty of making compar-
isons of small-scale phenomena across large spatial
scales, such controls are difficult to determine. Addi-
tionally, the abiotic factors that influence community
dynamics appear to vary among different ecosystems,
and among different zones within an ecosystem (Noble
et al. 2003, Pinhassi et al. 2003, Bordalo & Vieira 2005).

The composition of bacterioplankton populations is
also influenced by the composition of phytoplankton
communities. In lakes, estuaries, and the marine envi-
ronment, bacterial production, function, and commu-
nity composition change as phytoplankton blooms
form, develop, and then collapse (Kirchman et al. 1991,
Fandino et al. 2001, Riemann & Winding 2001). Fur-
thermore, these changes appear to vary with respect to
the species that dominates the bloom (Pinhassi et al.
2004), suggesting specific interactions between phyto-
plankton and bacteria, which may remain even in the
absence of a bloom event.

Until recently, the ability to measure and interpret
such community dynamics in situ has been limited by
the complexity of bacterial communities and the
difficulties and biases associated with culturing and
identifying organisms. However, molecular methods
developed in the past 2 decades have allowed for cul-
ture-independent comparisons between communities.
In particular, denaturing gradient gel electrophoresis
(DGGE) of 16S rRNA gene fragments has come to the
forefront of bacterial community structure analysis
(Boon et al. 2002). This technique allows for the simul-
taneous comparison of multiple samples by creating
‘fingerprints’ of the bacterial community, which can be
compared visually. The differences in these banding
patterns indicate differences in the composition of the
communities from which they are generated. This
technique has been used successfully to characterize

bacterial community diversity and composition in a
number of aquatic ecosystems, including estuaries
(Trimmer et al. 1997, Hollibaugh et al. 2000, Sekiguchi
et al. 2002, Wetz et al. 2002, Selje & Simon 2003,
Lassen et al. 2004). Additionally, bands in these pat-
terns can be excised and sequenced to identify the
taxa that are observed in the gel images.

The composition and successional dynamics of
phytoplankton communities have been similarly diffi-
cult to assess as a result of the high species diversity,
multiple life stages, interspecific morphologies, and
complex interactions between community members
and their environment. High performance liquid chro-
matography (HPLC) of photopigments has been
recently used in numerous studies to generate a com-
posite profile of the phytoplankton community (Hig-
gins & Mackey 2000, Pinckney et al. 2001, Rodriguez
et al. 2002). Group-specific pigments in particular offer
information on the relative abundance of phytoplank-
ton taxa within the community, while the relative
amounts of all pigments measured give a broad picture
of the whole community.

In the present study, we used both HPLC of photo-
pigments collected in the summer of 2000 by Noble et al.
(2003) and DGGE of bacterial 16S rRNA genes to com-
pare communities within and between 2 estuaries on the
South Carolina coast, USA. The primary objectives of
this study were to (1) assess in situ patterns of bacterial
community distribution within and between 2 pristine
salt marsh estuaries, (2) determine the ecological factors
that control phytoplankton and bacterial community
structures, and (3) identify potential associations be-
tween phytoplankton and bacterial community struc-
tures in these ecosystems. As the interface between ter-
restrial and marine ecosystems, estuaries exhibit distinct
spatial gradients of chemical and physical characteristics
on a landscape scale. We hypothesized that bacterial
community composition will differ and vary according to
differences in environmental state variables along the
chemical gradients. Furthermore, we expected that
differences in phytoplankton community compositions
will correspond to distinct and predictable shifts in the
composition of bacterial assemblages.

MATERIALS AND METHODS

Site description. The Ashepoo, Combahee, and
Edisto (ACE) Basin and the North Inlet (NI) systems
are located ca. 100 km apart on the coast of South Car-
olina. The 2 estuaries are similar in temperature, salin-
ity, tidal range and tidal frequency, and, as reserve
sites of the National Estuarine Research Reserve Sys-
tem, both drainages are almost entirely undeveloped.
The ACE Basin has a relatively large watershed of
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approximately 8000 km2 that drains into 3 major rivers,
the Ashepoo, the Combahee, and the Edisto. The
freshwater input of these rivers to the system is roughly
41% of the total volume of the estuary (Dame et al.
2000). In contrast, NI is tidally dominated and features
very little freshwater input. Morris (2000) estimated
the freshwater input to be 3% of the total tidal volume.
These inter-estuary differences in freshwater cycling
result in variations in nutrient dynamics. The terrestrial
input in the ACE Basin system leads to higher concen-
trations of dissolved nutrients than in NI, where avail-
able nutrients are predominantly derived from sedi-
ment processes and the influx of seawater. 

Four sampling stations were selected within each
estuary to reflect the salinity gradient in each system
(Fig. 1). ACE Stn 1 was located at the outflow of a small
tributary into the Edisto River. Stn 2 was located in St.
Pierre Creek, and Stn 3 was located at the confluence
of St. Pierre Creek and the Edisto River. The most sea-
ward station (Stn 4) was located on the eastern margin
of St. Helena Sound. NI Stn 1 was a tributary of Crab-
haul Creek, Stn 2 was at Oyster Landing, Stn 3 was
located in the main body of Clambank Creek, and Stn
4 was in Town Creek.

Sample collection. Samples were collected from
each station monthly from April to October 2000 begin-
ning at solar noon during the spring tide. Temperature,

salinity, and pH were measured in situ using a Hydro-
lab datasonde (Hydrolab-Hach Company), and water
samples for chemical analyses, bacterial counts, and
photopigment determination were collected in tripli-
cate from ~30 cm depth at each site in sterile 1 l screw
top jars. Water for bacterial community analysis was
collected in duplicate 8 l containers with sealing lids.
All water samples were stored in the dark on ice until
processed (3 h maximum). 

Bacterial communities were separated into particle-
associated (PA) and free-living (FL) fractions by
sequentially filtering through a 3 µm pore-size poly-
carbonate filter (47 mm; Millipore), and then by pass-
ing the filtrate through a 0.22 µm pore-size Sterivex
filter (Millipore), following the protocol of Bidle &
Fletcher (1995). These filters were placed immediately
on dry ice and stored at –80°C until processed.

Bacterial abundance. Direct bacterial cell counts were
performed by fixing 50 ml of each water sample in glu-
taraldehyde (5% final concentration w/v). A subsample
(2 ml) of each fixed sample was filtered through a sterile
3 µm pore-size polycarbonate filter, and 1 ml of the
filtrate was stained with 50 µl of 10 µM Sytox Green
nucleic acid stain (Molecular Probes) for 30 min. Due to
high background fluorescence and the opacity of the
particles themselves, accurate direct counts of PA organ-
isms were not possible, and are absent from this study.

Stained samples were diluted in
5 ml phosphate-buffered saline (0.1 M
NaCl, 3 mM K2HPO4, pH 7.2) and
filtered at 250 mm Hg vacuum
onto black polycarbonate filters with
0.22 µm pore-size (25 mm; Millipore).
Filters were mounted onto glass micro-
scope slides with 10 µl DABCO-
glycerol (1,4-diazobicyclo[2.2.2]octane)
to stabilize fluorescence (Lovell et
al. 1999). Filters were viewed at
600 × magnification using an Olympus
BX40 microscope equipped with a 
BX-FLA (Olympus) reflected light flu-
orescence attachment and an acridine
orange filter cube set (488 nm excita-
tion, 630 nm emission). Images of the
filters were captured using a digital
camera driven by the V5 acquire mod-
ule of IPLab Spectrum 3.1 image
analysis software (Scanalytics). Cells
were enumerated by segmenting and
counting using the IPLab Spectrum
software as recommended by the soft-
ware manufacturer. 

Water chemistry. Concentrations of
nitrate + nitrite (NN), ammonium
(NH4), total nitrogen (TN), total dis-
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Fig. 1. Sampling stations in the Ashepoo,
Comabahee, Edisto (ACE) Basin and
North Inlet (NI) estuaries. Stns 1 to 4
follow typical salinity gradients within
each system from low (Stn 1) to high
(Stn 4). NC, North Carolina; SC, South 

Carolina; GA, Georgia
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solved nitrogen (TDN), orthophosphate (PO4), total
phosphorus (TP), total dissolved phosphorus (TDP),
and silicate (Si) were measured with a Technicon
Autoanalyzer (Pulse Instrumentation) according to the
manufacturer’s instructions. Dissolved organic carbon
(DOC) was measured using a Shimadzu TOC-500 car-
bon analyzer following filtration through 0.22 µm
polypropylene filters (Millipore). Statistical analyses of
chemical data were conducted by ANOVA and multi-
ple regression analysis using the Statistical Analysis
Software package (SAS).

HPLC. HPLC was used to detect 18 pigments that
can be used as indicators of specific phytoplankton
taxa (Table 1). Pigments were extracted in 100% ace-
tone using a tissue grinder. The resulting slurry was
then filtered through a Teflon HPLC syringe filter
(0.45 µm). HPLC was performed according to a proto-
col modified from Van Heukelem & Thomas (2001).
Briefly, pigments were separated using a Beckman
System Gold HPLC with an external column heater,
125 solvent module dual pump, and photodiode array
detector with deuterium lamp (monitoring 450 nm),
using temperature-control and a polymeric column.
Pigment standards were obtained from L. Van Heu-
kelem (Horn Point Laboratory, University of Mary-
land). For composition analysis, all pigment concentra-

tions were normalized to the chl a concentration from
each sample. Phytoplankton community profiles were
compared by cluster analysis as described by Noble et
al. (2003). Additional analysis of community structures
and their relationships to environmental state vari-
ables were performed using canonical correspondence
analysis (CCA) in the Multi-Variate Statistical Package
(MVSP; Kovach Computing Services).

DNA extraction. Community DNA was extracted
from PA and FL samples using a modified nucleic acid
extraction protocol described by Bidle & Fletcher
(1995). FL cells were lysed directly in the Sterivex filter
cartridges using 1% sodium dodecyl sulfate (SDS)
solution in TE (10 mM TRIS, 1 mM EDTA, pH 7.9), and
heated to 65°C for 30 min. The solution was drawn out
and extracted once with an equal volume of saturated
phenol (pH 7.9), and once with an equal volume of
chloroform. PA cells were lysed by cutting the 3 µm fil-
ters into small pieces using a sterile scalpel and heat-
ing them to 65°C in 3 ml of 1% SDS in TE for 30 min.
The solution was then drawn off using a pipette and
phenol/chloroform extracted as above. DNA solutions
were precipitated in an equal volume of ethanol and
centrifuged for 30 min at 10 000 × g. The pellets were
air-dried and resuspended in 100 µl TE; 1:10 dilutions
of the samples were used as working stocks for poly-
merase chain reaction (PCR)/DGGE and the remaining
samples were preserved in 50% ethanol/TE at –20°C. 

PCR/DGGE. A ~195 bp fragment of the hyper-vari-
able V3 region of the 16S rRNA gene was amplified
using the 341f, 5’-CGCCCGCCGCGCCCCGCGCC
CGGCCCGCCGCCCCCGCCCCCCTACGGGAGGC
AGCAG-3’ and 534r, 5’-ATTACCGCGGCTGCTGG-3’
oligonucleotide primers as described by Muyzer et al.
(1993). The underlined portion of the forward primer is
a 40 bp G/C clamp, described by Ferris et al. (1996).
Each sample was amplified in 4 separate 25 µl reac-
tions, which were pooled before running on DGGE.
Each 25 µl reaction contained 1 µl of the template DNA
described above or 25 ng of purified genomic DNA (for
markers), 0.2 U Taq DNA polymerase (Promega), 2.5 µl
of 10 × reaction buffer supplied with the polymerase by
the manufacturer, 200 µM final concentration each of
deoxyribonucleoside triphosphate (dNTP), 0.5 pmol
µl–1 of each primer, 0.4 µg µl–1 BSA, and 1.5 mM
MgCl2. Reactions were run in a MJ Research PTC-200
thermal cycler equipped with a heated lid using a
touchdown protocol with an initial denaturing step at
94°C for 3 min followed by 20 cycles of 94°C for 60 s,
62°C for 30 s (decreasing by 0.5°C cycle–1), and 72°C
for 30 s. An additional 15 cycles of 94°C for 30 s, 52°C
for 30 s, and 72°C for 30 s were performed followed by
a final extension of 72°C for 4 min. All reactions were
run on 2% agarose to confirm adequate amplification,
and samples were ethanol precipitated and centri-
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Table 1. Photopigments used for phytoplankton community
analysis and their corresponding taxa as indicated by Noble
et al. (2003) and Paerl et al. (2003). 19’-but: 19’-butanoyloxy-

fucoxanthin; 19’-hex: 19’-hexanoyloxyfucoxanthin

Photopigment Associated taxa

Chl a All photosynthetic algae
Chl b Chlorophytes, prasinophytes
Chl c1 Diatoms, dinoflagellates, 

prymnesiophytes, cryptophytes
Chl c2 Diatoms, dinoflagellates, 

prymnesiophytes, cryptophytes
Fucoxanthin Bacillariophytes, prymnesiophytes, 

cryptophyes
Prasnioxanthin Some prasinophytes
Violaxanthin Chlorophytes, prasinophytes, 

eustigmatophytes
Zeaxanthin Cyanobacteria, prochlorophytes, 

rhodophytes, chlorophytes
Neoxanthin Chlorophytes
Diatoxanthin Diatoms, prymnesiophytes
Diadinoxanthin Diatoms, prymnesiophytes, chrysophytes, 

euglenophytes
Alloxanthin Cryptophytes
Peridinin Dinoflagellates
19’-but Some prymnesiophytes, some 

dinoflagellates
19’-hex Prymnesiophytes, chrysophytes
Lutein Chlorophytes
Canthaxanthin Benthic cyanobacteria
Carotenes Most photosynthetic algae
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fuged and the pellets air-dried. Amplimers were re-
suspended in 10 µl TE and 5 µl loading dye (0.25%
bromophenol blue, 0.25% xylene cyanol FF, 40%
sucrose) for loading into DGGE.

DGGE was performed on polyacrylamide gels con-
taining a double gradient: 8 to 10% acrylamide/bis-
acrylamide (37.5:1) and 54 to 70% denaturants with a
stacking gel of 8% acrylamide/bis-acrylamide con-
taining no denaturants. Samples were loaded onto
preheated (60°C) gels in 7 l of TAE buffer (0.04 M
Tris, 0.02 M acetic acid, 1 mM EDTA) in a BioRad
DCode apparatus. Gels were run at 60°C at 100 V for
21 h, stained in 1× ethidium bromide in TAE for 30
min, destained twice in deionized water for 10 min,
and imaged on a BioRad GelDoc 2000 transillumina-
tor. Images were captured by a digital camera using
the VG5 acquire module of the IPLab Spectrum image
analysis software package. Statistical analyses of
DGGE results were performed by first scoring the
banding patterns using the GelCompar 4.0 software
package (Applied Maths). Band positions were nor-
malized to a Bacillus licheniformis 16S rRNA gene
marker (3 lanes per gel), and the intensity of each
band was measured. Intensity values for every band
were normalized to the maximum intensity in the
respective lane. For simultaneous comparisons across
all samples, 45 potential band positions were used to
generate an operational community unit (OCU) for
each sample. Because DGGE analysis is subject to
PCR bias (Hansen et al. 1998, Stephen et al. 1998,
Kanagawa 2003, Lueders & Friedrich 2003), each
OCU was constructed by converting the intensity
measurements of the brightest 14 bands (the mini-
mum number of bands observed in any single sample)
to a binary score indicating absence (0) or presence
(1) of a band at each position in a gel lane. The result-
ing data were analyzed using the unweighted pair-
wise group method analysis (UPGMA) protocol in the
MVSP. Similarity matrices were calculated using Jac-
card’s coefficient. The resulting similarity matrices
were analyzed for differences using a Monte-Carlo
permutation significance test described by Kropf et al.
(2004). Briefly, comparisons were made of within- and
between-group correlations using the test statistic d =
rwithin – rbetween, where rwithin and rbetween are the arith-
metic mean over all Jaccard coefficients within and
between groups, respectively. In the permutation test,
values in the similarity matrices were moved ran-
domly within the matrix and the effect on d was mea-
sured. If the random movement of elements among
groups did not systematically decrease the value of d,
then the null hypothesis of d = 0 is rejected. For more
detailed description of this statistical method, refer to
Kropf et al. (2004). In addition, CCA was performed
using the PA/FL fractions as nominal environmental

variables, as described by Rooney-Varga et al. (2005).
Here we assigned PA samples a value of 0 and FL
samples a value of 1. CCA was also applied to pig-
ment profiles, DGGE banding patterns, and environ-
mental data simultaneously to examine direct rela-
tionships between state variables and community
profiles.

Band sequencing. Prominent bands that appear to
align across multiple gels were sequenced from each
gel to assess the number of sequences present in the
bands and to confirm the correct alignment of the band
positions for all gels used in this study. The positions of
the excised bands are shown in Fig. 2. Bands from each
sample lane in which a particular band appeared were
excised directly from denaturing gradient gels using a
wide-orifice pipette tip and stored in 50 µl TE at 4°C.
The band products were reamplified and separated by
DGGE to confirm their positions on the gels and to dis-
qualify heteroduplexes for cloning. Selected band
products were then PCR-amplified using the same
reaction conditions as the community DNA amplifica-
tions, except that the forward primer did not include
the 40 bp G/C clamp. The resulting amplimers were
cloned into JM109 competent cells using the pGEM-T
vector kit (Promega) following the protocol of the man-
ufacturer. Ten colonies from each band amplification
were selected and transferred to LB/Ampicillin plates
and grown at 37°C overnight before plasmid isolation.
pGEM plasmids were recovered from 5 colonies
from each of the original band amplimers by heating
cells at 100°C for 10 min followed by centrifugation at
10 000 × g for 30 s. Samples were immediately put on
ice, and 15 µl of the supernatant was used as template
for PCR amplification of the insert with T7 and Sp6
primers. Inserts were amplified in 25 µl reactions con-
taining 2.5 µl 10× reaction buffer, 100 µM final concen-
tration of each dNTP, 1.5 mM final concentration
MgCl, 12.5 pmol each primer, and 0.1 U Taq poly-
merase (Promega). Reactions were run in a MJ
Research thermal cycler by the following protocol: ini-
tial denaturing at 94°C for 2 min followed by 30 cycles
of 94°C, 47°C, then 72°C for 30 s each, and a final
extension at 72°C for 2 min. The resulting amplimers
were digested with Hae III and Msp I and separated
on agarose to determine the number of different
sequences comprising each band. Each unique restric-
tion digest pattern from every band was used in cycle
sequence reactions using the BigDye v3.1 system
(Applied Biosystems) following the manufacturer’s in-
structions. Sequences were obtained using an ABI
autosequencer, and aligned using BioEdit software
(Ibis Therapeutics). Sequences were compared to
existing sequences in the GenBank database to con-
firm that bands represented organisms likely to be
found in salt marsh estuaries. 
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RESULTS

Water chemistry

The water chemistry results from both estuaries are
summarized in Table 2. Grand means indicated
greater concentrations of NN, TP, TDP, and PO4 in
ACE than in NI (α = 0.05). In contrast, NH4 concentra-
tion and salinity were both significantly greater in NI
samples than in ACE samples. Within the ACE estuary,
salinity followed the expected gradient, with the low-
est salinities recorded at Stn 1 and increasing in the
seaward direction to Stn 4 for all months sampled
(Table 2). In contrast, the patterns of salinity in NI were
only consistent with predicted gradient in samples
collected in April, August, and September (Table 2).
For all other months, salinity remained essentially un-
changed from station to station.

Within each estuary, the nutrient patterns typically
followed the salinity gradient, with lower nutrient con-
centrations generally found in the seaward direction,
presumably as a result of dilution in seawater
(Table 2). These trends were more apparent in the
ACE Basin, where concentrations of DOC, TN, NN,
NH4, and TP were all negatively correlated with salin-
ity (α = 0.05), exhibiting a significant decrease in the
seaward direction. TDP concentration and pH were
both positively correlated with salinity in ACE sam-
ples. NI samples revealed similar patterns in nutrient
distributions, with DOC, NN, and NH4 negatively cor-
related with salinity and PO4 directly correlated with
salinity. These patterns of nutrient distribution are
indicative of riverine influence in each estuary.

NI samples from August were collected a few
hours following a rain event, which is reflected in the
anomalous water chemistry data from Stn 1. Salinity
at Stn 1 averaged 33.3 psu throughout the sampling
period, but fell to 2 psu in samples from that time
point. PO4 concentrations were also significantly
lower in this sample than at any point in the sam-
pling season. In contrast, concentrations of NH4 and
DOC at NI Stn 1 were significantly higher in August
than in any other month.

Bacterial abundance

Distributions of FL bacterial abundance of ACE and
NI samples are represented in Fig. 3. Direct counts of
FL cells from ACE samples were significantly higher
than those from NI samples in April, May and October
(p < 0.0001). This pattern was reversed in July, when
NI cell counts were significantly higher than those
from ACE (p = 0.0120). Within both estuaries bacterial
abundance generally decreased with increasing
salinity; however, this trend is significant only for ACE
samples (α = 0.05).

Photopigments

The photopigment data presented here are a subset
of those presented by Noble et al. (2003). Specifically,
the present study compared pigment data collected in
the 2000 sampling season and did not include samples
collected in 1999 and 2001. Chl a concentrations were
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Fig. 2. DGGE image of North Inlet (NI) and Ashepoo, Combahee, and Edisto (ACE) Basin samples collected in April. Lanes are la-
beled according to station number; FL: free-living fraction; PA: particle-associated fraction; M: positive control markers. Relative 

positions of bands that were excised and sequenced are indicated by arrows
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significantly higher in ACE than in NI (α = 0.05) and
exhibited significant differences along the salinity
gradients in both estuaries, with concentrations
greater at stations with lower salinity (Table 2). NI
samples collected in August from Stn 1 were notable
exceptions to this trend, showing both the lowest chl a
concentration and lowest salinity of all
samples collected (data not shown).
ANOVA of pigment data from both estuar-
ies showed that most pigment concentra-
tions were significantly higher at the land-
ward stations than at the seaward stations
for all months. However, peridinin and chl
c1 followed the opposite trend in NI sam-
ples, with higher concentrations at Stn 4
that decreased in the landward direction.
Similarly, 19’-hexanoyloxyfucoxanthin (19’-
hex) showed a significant increase from
Stn 1 to Stn 4 in both estuaries. Linear
regressions of absolute pigment concentra-
tions against salinity showed significant
negative correlations for all pigments mea-
sured except peridinin, neoxanthin, 19’-
hex, zeaxanthin, and chl b.

Cluster analysis of HPLC profiles using
Pearson’s correlation coefficient revealed 4
major clusters (Fig. 4). Clusters A, B, and D
were composed of several sub-clusters,
whereas Cluster C was made up of a single
OCU collected in September from ACE Stn
1. Cluster A1 was represented by samples
from NI Stns 1, 2, and 3, with the excep-
tional addition of 1 sample from ACE Stn 2.
Cluster A2 was mainly composed of sam-
ples from ACE Stns 1 and 2, with 2 samples
from NI Stns 2 and 3. All but one of the
samples in Cluster A2 was collected in
April. Cluster B was divided into 3 sub-

clusters at the 0.998 level: B1 represented samples
from both estuaries throughout the sampling season,
B2 was mostly made up of ACE samples, and B3 sam-
ples were all collected in September or October from
both estuaries. Cluster D comprised exclusively sam-
ples from NI Stns 1 and 2, and could be further divided

135

Table 2. Salinity, chl a, dissolved organic carbon (DOC), nitrate + nitrite (NN), ammonium (NH4), total N (TN), total dissolved N (TDN),
orthophosphate (PO4), total phosphorus (TP), and total dissolved P (TDP) from Ashepoo, Combahee, and Edisto (ACE) Basin and North Inlet

(NI) samples pooled over all months samples. Values are mean ± SD

Stn Salinity Chl a DOC NN NH4 TN TDN PO4 TP TDP
(psu) (mg l–1) (mg l–1) (µM) (µM) (µM) (µM) (µM) (µM) (µM)

ACE 1 27.57 ± 3.7 12.86 ± 5.20 5.82 ± 1.1 2.01 ± 2.5 1.43 ± 1.4 56.11 ± 13.6 39.22 ± 12.8 0.79 ± 0.1 2.48 ± 0.5 0.66 ± 0.6
ACE 2 31.85 ± 2.5 8.68 ± 2.1 4.86 ± 1.0 0.87 ± 1.0 1.13 ± 0.5 51.94 ± 10.4 38.52 ± 15.9 0.71 ± 0.2 2.40 ± 0.5 0.67 ± 0.6
ACE 3 33.42 ± 1.6 8.15 ± 2.9 3.78 ± 1.6 0.50 ± 0.7 0.94 ± 0.8 45.66 ± 14.4 37.39 ± 11.1 0.55 ± 0.2 1.95 ± 0.6 0.58 ± 0.5
ACE 4 34.85 ± 0.6 5.87 ± 2.3 3.53 ± 0.5 0.20 ± 0.2 0.80 ± 0.9 44.92 ± 14.3 32.52 ± 9.60 0.38 ± 0.2 1.48 ± 0.6 0.33 ± 0.5
Pooled 31 ± 3.6 8.89 ± 4.1 4.50 ± 1.4 0.90 ± 1.5 1.08 ± 1.0 49.66 ± 13.7 36.91 ± 12.6 0.61 ± 0.2 2.08 ± 0.7 0.56 ± 0.5

NI 1 28.28 ± 11.8 6.16 ± 4.2 17.83 ± 22.0 0.39 ± 0.2 3.32 ± 2.7 59.04 ± 13.9 46.03 ± 22.0 0.27 ± 0.1 1.33 ± 0.8 0.46 ± 0.5
NI 2 34.85 ± 2.2 8.18 ± 3.0 4.18 ± 1.2 0.17 ±0.1 1.26 ± 1.2 46.50 ± 26.1 36.24 ± 10.0 0.22 ± 0.1 1.28 ± 1.1 0.30 ± 0.4
NI 3 35.57 ± 0.7 5.64 ± 1.8 3.61 ± 1.1 0.17 ± 0.1 1.42 ± 0.5 46.08 ± 18.3 39.83 ± 15.9 0.24 ± 0.1 1.15 ± 0.7 0.26 ± 0.4
NI 4 35.85 ± 0.6 5.78 ± 1.3 3.42 ± 0.8 0.13 ± 0.1 0.85 ± 0.8 34.39 ± 21.3 28.78 ± 10.5 0.16 ± 0.1 0.78 ± 0.7 0.13 ± 0.3
Pooled 33.78 ± 6.5 6.44 ± 2.9 7.26 ± 12.4 0.21 ± 0.2 1.71 ± 1.8 45.88 ± 22.1 37.41 ± 16.0 0.22 ± 0.1 1.14 ± 0.8 0.29 ± 0.4
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(B) NI. Error bars = SD from triplicate samples
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into 3 sub-clusters: D1 was composed of samples from
May and June, D2 from October and May, and D3
from April. 

ANOVA of normalized pigment concentrations of
OCUs within clusters showed that all pigments except
diadinoxanthin and alloxanthin varied significantly
among clusters (α = 0.05). Cluster B showed signifi-
cantly higher concentrations of fucoxanthin, chl c, and
19’-hex than the other clusters. The sample that repre-
sented Cluster C had significantly higher levels of peri-
dinin than all other samples (α = 0.05). Cluster D OCUs
were characterized by higher concentrations of 19’-
butanoyloxyfucoxanthin (19’-but), neoxanthin, prasino-
xanthin, violaxanthin, lutein, chl b, and total carotenes
than those of other clusters. 

Comparisons of nutrient data across clusters showed
no significant correlations between cluster groups and
water chemistry except for Clusters A1 and C. Cluster
A1 showed elevated DOC concentrations, and the
OCU that makes up Cluster C was related to higher
concentrations of NN and PO4. Both sub-clusters in
Cluster A corresponded to significantly higher bacter-
ial cell counts (α = 0.05). Permutation tests on the simi-
larity matrix generated in the cluster analysis showed
ACE samples to be significantly different from NI sam-
ples. Furthermore, the composite photopigment pat-
terns differed significantly from month to month in the
sampling season, and exhibited significant grouping
by station.

CCA comparing phytoplankton community profiles
with environmental state variables gave similar pat-
terns to those generated by permutation testing of
cluster analysis, with ACE and NI samples forming

distinct groups (Fig. 5). Additionally, ACE OCUs
corresponded to higher concentrations of PO4 and NN,
whereas NI samples corresponded to both higher con-
centrations of NH4 and warmer temperatures.

DGGE

DGGE-generated community banding patterns
ranged from 14 to 28 distinct bands (of 45 possible
band positions) in each sample, and the most promi-
nent 14 from each were used in the analysis. An exam-
ple of the gels used in this study is shown in Fig. 2.

136

0.988

0.990

0.992

0.994

0.996

0.998

1.000

A1 A2 B1 B2 B3 C D1 D2 D3

P
ea

rs
on

’s
 C

oe
ffi

ci
en

t

Fig. 4. HPLC profiles determined by Pearson’s coefficient. Clusters at 0.996 similarity are indicated by letters, sub-clusters
(similarity > 0.998) by letter-number combinations

–3

–1

1

3

–3 –1 1 3 5

Sal

PO4

NN
NH4

TemppH TDP

Fig. 5. Phytoplankton operational community units (OCUs)
from HPLC of photopigments relative to environmental vari-

ables showing ACE (s) and NI (m) OCUs



Johnson et al.: Linking bacterioplankton and phytoplankton communities

UPGMA and permutation testing of the clustering pat-
terns pooled across all samples demonstrated OCUs to
group significantly into distinct PA and FL clusters as
well as significant ACE and NI clusters (Table 3). Addi-
tionally, CCA of bacterial community profiles using
PA/FL fractions as a dummy environmental variable
indicated that ACE OCUs tended to associate with PA
characteristics, whereas NI OCUs tended to group
toward the FL portion of the gradient (Fig. 6). Separate
cluster analyses of PA and FL fractions further
revealed OCUs to group significantly by sampling
month for both fractions (Fig. 7). Station-to-station
comparisons of bacterial profiles did not show any
significant patterns in their distribution. 

At a Jaccard’s coefficient level of 0.50, PA OCUs
grouped into 10 clusters (Fig. 7A). ANOVA performed
on the physical and chemical parameters of samples
within clusters revealed significant differences in tem-
perature, salinity, pH, DOC, TP and NH4 among clus-
ters (Table 4). In pair-wise comparisons, Clusters A and
F had TP concentrations that were significantly higher
than those of other cluster groups. These clusters were
populated almost exclusively by ACE samples col-
lected from April to July, with a single OCU from NI in
September. Cluster G OCUs exhibited concentrations
of both DOC and NH4 that were significantly higher
than in all other clusters. Inversely, this cluster exhib-
ited pH and salinity levels that were significantly lower
than in all the other clusters except Cluster J. Cluster G
was made up of a single OCU from NI Stn 1 water sam-
ples from August, which were collected following a
rain event, and Cluster J was composed of a single
OCU representing the May sample from NI Stn 4. Pair-
wise comparisons further revealed that the lowest con-
centrations of DOC were from Cluster E, which was
composed of 2 OCUs collected from ACE Stns 3 and 4
in September. Although the global p-value for ANOVA
of temperature effects showed the differences to be
significant, the only significant pair-wise contrast was
that between Cluster C (May and June samples) and
Cluster I (April samples) OCUs, with Cluster C exhibit-
ing higher temperatures. 

FL samples grouped into 11 clusters at Jaccard’s co-
efficient level of 0.50 (Fig. 7B). ANOVA of the physico-
chemical factors of these OCUs showed temperature,
salinity, NH4, NN, TP, and PO4 to differ significantly
among clusters (Table 5). Pair-wise comparisons
showed that Clusters D and H exhibited higher sal-
inities than other clusters. Clusters D and H were both
composed primarily of NI samples, with Cluster D
largely comprising samples collected from June and
July, and Cluster H entirely comprising samples col-
lected in May. Cluster D also exhibited higher temper-
atures than all other clusters except Cluster I, which
was composed of OCUs from ACE samples collected in
June. NH4 concentrations were highest in Cluster E
(NI, samples collected from September and October)
and significantly lower in Clusters H, I, and J. Cluster J
OCUs exclusively comprised ACE samples collected in
June, August, and September. Pair-wise comparisons
also showed Cluster J to have the highest NN concen-
trations of all the clusters. Concentrations of TP and
PO4 were highest in Clusters B and J, respectively.
Both of these clusters were populated entirely by ACE
OCUs: Cluster B was composed of samples collected in
May, and Cluster J OCUs of samples collected from
June to September. 

ANOVA of photopigment concentrations (normal-
ized to chl a) from the bacterial community clusters
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Table 3. Summary of permutation tests of UPGMA cluster
patterns. rwithin and rbetween: arithmetic mean over all Jaccard
coefficients within and between groups, respectively; 

d: difference between the 2 r-values

rwithin rbetween d p

ACE vs. NI 0.4736 0.4178 0.0557 <0.0001
PA vs. FL 0.4528 0.4383 0.0144 <0.0003
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Fig. 6. Bacterial OCUs from DGGE banding patterns with
particle-associated (PA)/free-living (FA) fraction as an envi-
ronmental dummy variable. Gradient vector indicates the 

direction of increasing FL characteristics
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identified by UPGMA revealed significant differ-
ences in photopigments for both PA and FL com-
munity profiles. ANOVA of photopigments from PA
community clusters showed significant differences in
chl b, chl c1, fucoxanthin, alloxanthin, diadinoxan-
thin, and diatoxanthin at the 0.05 α-level (Table 4).
Pair-wise comparisons of relative chl b concentra-
tions indicated that only Clusters B (ACE May and
NI April) and I (ACE and NI April) differed signifi-
cantly from one another after Tukey corrections for

multiple comparisons. Comparisons of chl c1 values
showed that the 2 OCUs from Cluster E (ACE Sep-
tember samples) had the highest relative concentra-
tions of this pigment. Although globally significant
(α = 0.05), the differences in both fucoxanthin and
alloxanthin concentrations among clusters were not
significant in any pair-wise comparisons. Both dia-
dinoxanthin and diatoxanthin were highest in the
single NI October OCU in Cluster H, and lowest in
OCUs from Clusters B and I. 
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ANOVA of relative photopigment concentrations
classified by FL bacterial clusters revealed significant
differences in chl b, neoxanthin, prasinoxanthin, viola-
xanthin, diadinoxanthin, alloxanthin, lutein, and α-
and β-carotenes (Table 5). In pair-wise comparisons,
Cluster H (NI May) exhibited the highest concentra-
tions of chl b, neoxanthin, violaxanthin, lutein, and α-
and β-carotenes. This cluster also corresponded to the
lowest concentrations of alloxanthin. Relative concen-
trations of diadinoxanthin were highest in Clusters G
and E, which are composed of OCUs from NI and ACE
from September and October. Significantly lower con-
centrations of diadinoxanthin were found in OCUs
from Cluster B (ACE May). Normalized concentrations
of prasinoxanthin were significant globally, but no sig-
nificant pair-wise differences were detected. 

Sequence data from excised bands representing 10
of the 45 potential band positions confirmed the posi-
tioning determined by image analysis among DGGE
gels. Furthermore, comparisons of these sequences
to known sequences in GenBank indicated that the
bands were indeed representative of marine or estuar-
ine organisms. Specifically, the bands at Positions 1
and 4 were each composed of a single sequence with
100% homology to several uncultured marine Bactero-
idetes organisms and were found in 85 and 92 OCUs,
respectively. Three organisms were represented in
Band 16; Acinetobacter sp. 11, an uncultured salt
marsh Ectothiorhodospiraceae sp., and an uncultured
α-Proteobacterium. This band was scored in 97 of the
109 OCUs. It should be noted that because DGGE sep-
arates fragments based on melting characteristics
rather than strictly by sequence, it is quite common to
find bands that are composed of multiple sequences.
For this study we assumed that bands at the same posi-
tion between gels were identical in composition even
though they were not all sequenced. Although this
limited our ability to perform detailed analyses of the
actual compositions of the communities, it provided
for conservative measure of pattern differences and
greatly reduced any Type II error in our analysis. Band
20 was present in 66 of the community profiles and was
made up of 2 distinct sequences, one with 100%
homology to an uncultured marine Bacteroidetes
organism and the other matching the V3 16S rRNA
gene sequence of Marinobacter arcticus. Band 23
included sequences with 100% similarity to uncul-
tured marine γ- and β-Proteobacteria. Eighty OCUs
contained bands at Position 27 that showed 100%
homology to uncultured Bacteroidetes and Roseobac-
ter 16S r RNA gene sequences. Band 36, which was
seen in 72 of the bacterial community profiles, was
composed of a single sequence that matched the 16S
rRNA gene sequence from a Sphingomonas sp. organ-
ism. The most common bands were those at Positions

39 and 40, which were observed in 105 and 104 OCUs,
respectively. Band 39 contained sequences homo-
logous to an uncultured γ-Proteobacterium, an un-
cultured β-Proteobacterium, and an uncultured Bac-
teroidetes organism. Band 40 was composed of a single
sequence that matched 16S rRNA from a different
uncultured α-Proteobacterium. Band 41 was also com-
posed of a single α-Proteobacterium sequence and was
observed in 47 of the 109 OCUs. Unfortunately, the
sequences obtained from gel bands predominantly
matched 16S rRNA from uncultured or unidentified
organisms, and because they are relatively short frag-
ments, each sequence has 100% similarity to several
taxa from available DNA sequence databases. As a
result, clear identification of the specific taxa involved
is not possible from our data; however, results from
BLAST searches do show 100% homology of the
most frequently occurring bands to uncultured or un-
identified organisms collected from marine or estuar-
ine environments.

DISCUSSION

Water chemistry, photopigment distribution, and
bacterial community composition all demonstrated
clear differences between the ACE Basin and NI
estuaries. The differences in nutrient concentrations
between ACE and NI samples correlated closely with
salinity differences between the systems, indicating
that the larger drainage basin and higher riverine
input in ACE affect the overall chemistry of the estu-
ary; in contrast, the NI is more tidally dominated,
reflecting its relatively small drainage. The influence
of freshwater, riverine inflow on overall nutrient chem-
istry may have been further indicated by the increase
in TDP in the seaward direction as observed for ACE
samples. Total suspended solids in ACE were shown to
be significantly higher than in NI (Noble et al. 2003),
and, as reported by Gardolinski et al. (2004), bound
phosphorus tends to be released into the water column
from river-borne particles as salinity increases. Addi-
tional evidence for the influence of freshwater input on
total water chemistry was apparent in NI Stn 1 samples
from August, which were collected only a few hours
after a rain event. Freshwater loading into the systems
was indicated by lower salinity and higher concentra-
tions of NH4 and DOC than samples previously, or
subsequently, collected from that station; however, the
TDP and PO4 concentrations on that date were signifi-
cantly lower than those of all other samples collected at
that site, whereas TP measurements were not. There-
fore, although the total amount of P in the water at this
station remained unchanged, it was almost entirely
associated with particles. These deviations in water
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chemistry were likely due to inflow of freshwater that
had been enriched with DOC, NH4, and P-rich particu-
late material from the terrestrial component of the
estuary.

Within each estuary the nutrient patterns typically
followed the salinity gradient, with lower nutrient con-
centrations generally found in the seaward direction,
presumably due to dilution in seawater. These trends
were more apparent in ACE than in NI, and are similar
to trends in nutrient chemistry found in other estuaries
on the eastern seaboard of North America that are
characterized by large river inputs and relatively little
oceanic influence (Christian et al. 1991, Bouvier & del
Giorgio 2002). In contrast, NI nutrient patterns showed
decreasing concentrations of NN and PO4, similar to
results obtained by Verity (2002) in a study of hydrol-
ogy and nutrient dynamics within a tidally dominated
salt marsh estuary on the Georgia coast.

Results of phytoplankton community analysis largely
agree with those of Noble et al. (2003), with greater
phototrophic biomass in the ACE Basin, consistent
with the influence of riverine input on increasing nutri-
ent availability and consequent stimulation of phyto-
plankton production. The findings of Noble et al.
(2003) further indicated spatial and temporal changes,
with higher concentrations of pigments indicative of
diatoms, dinoflagellates, haptophytes, and crypto-
phytes in ACE samples and higher levels of pigments
associated with chlorophytes, prasinophytes and/or
cyanobacteria in NI samples. 

For most of the pigments measured, absolute con-
centrations were negatively correlated with salinity
but relative concentrations were not, indicating that
although the salinity gradient and corresponding
nutrient gradients had an effect on the overall size of
the population, under most conditions they had little
direct effect on the structure of the community. How-
ever, comparisons of water chemistry with photopig-
ments do suggest that the composition of the phyto-
plankton community may have changed in response to
sufficiently large shifts in nutrient concentration.
Specifically, samples from ACE Stn 1 in September
showed a 2-fold increase in NN concentration relative
to other samples from that estuary. This corresponded
to a greater than 2-fold increase in both the absolute
and relative concentrations of peridinin, a dinoflagel-
late pigment, indicating an increase in dinoflagellate
biomass and an increase in their relative abundance
within the phytoplankton community, and may be
indicative of a small-scale bloom event.

As with the pigment profiles, DGGE banding pat-
terns showed some overlap among samples, yet still
showed significant differences based on cluster analy-
sis. Cluster analysis of all samples as a single data set
revealed significant grouping of community profiles

into ACE and NI clusters, demonstrating that each
estuary supported a measurably different bacterial
community. Additionally, both estuaries exhibited sig-
nificant differences in FL and PA bacterial communi-
ties. The absence of systematic variation in station-to-
station comparisons within the estuaries suggests that,
although there may be differences in bacterial commu-
nity composition along the chemical gradients, these
differences are much smaller than the variation
between estuaries and the differences between FL and
PA fractions of the bacterioplankton.

Comparisons made among ecological properties of
the clusters defined in UPGMA demonstrated compo-
sitional differences in bacterial communities that cor-
responded to differences in several state variables.
Although differences in community patterns did not
strictly follow the salinity gradients observed within
the 2 estuaries, there was a clear effect of salinity on
the composition in general, mostly due to salinity dif-
ferences between ACE and NI. Other research has
shown measurable changes along salinity gradients in
other estuaries as well as differences between estuar-
ies (Schultz & Ducklow 2000, Bouvier & del Giorgio
2002, del Giorgio & Bouvier 2002). Our work is not nec-
essarily in disagreement with such findings. Rather, we
suggest that the narrow range of bacterial groups
observed in our gels did not allow for the scale neces-
sary to reveal broad differences in community struc-
tures. For example, although a clear shift in community
composition from β-Proteobacteria in the freshwater
regions of the Choptank River (a sub-estuary of Chesa-
peake Bay) to α-Proteobacteria further down the estu-
ary was shown using fluorescent in situ hybridization
with group-specific probes (Bouvier & del Giorgio
2002, del Giorgio & Bouvier 2002), the gradient we
selected predominantly resolved unidentified mem-
bers of the α-subclass of Protebacteria and uniden-
tified members of the class Bacteroidetes, and only
detected a single unidentified β-proteobacterial se-
quence. 

Significant differences in the composition of both PA
and FL assemblages were associated with differences
in phosphorus and nitrogen concentrations; however,
the 2 fractions were affected by different species of
those elements. FL community clusters showed signifi-
cant differences in NH4 and NN concentrations,
whereas PA clusters exhibited differences only in lev-
els of NH4. Clusters from both fractions also showed
significant differences in the amount of TP present in
the water column; however, only the FL fraction exhib-
ited significant differences in the concentration of PO4

among clusters. This is consistent with the concept that
PA organisms use particles as refugia and as sources
for nutrition and are thereby subject to microzone
nutrient chemistry, whereas FL organisms are more
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directly influenced by bulk water chemistry (Cho &
Azam 1988). Additionally, NN and PO4 tend to be more
bioreactive than NH4 and particulate or organic phos-
phorus, and are likely to be rapidly scavenged directly
from the water column, thus affecting FL cells more
rapidly than PA cells. PA clusters also exhibited signif-
icant differences in DOC concentrations among cluster
groups; however, the cluster that exhibited the highest
concentration was composed of OCUs from samples
collected following a rain event. This cluster had DOC
concentrations more than 6 times greater than those of
other clusters and salinity that was uncharacteristic for
this site, indicating that this sample represented
allochthonous input of water, nutrients, and likely, par-
ticulates, thus physically introducing a new PA com-
munity rather than causing a compositional shift in the
preexisting PA assemblage. 

Comparisons of photopigment concentrations among
bacterial profile clusters demonstrated clear composi-
tional associations between PA and FL communities.
Clusters identified in PA OCUs demonstrated signifi-
cant differences in concentrations of pigments attribut-
able to diatoms, some dinoflagellates, haptophytes and
cryptophytes, with the lowest concentrations of these
pigments occurring in association with clusters com-
posed of OCUs from April and May. Relatively higher
levels of these pigments are associated with OCUs
from September and October, suggesting a seasonal
component that is consistent within both phytoplank-
ton and PA bacterial communities. 

A recent study by Rooney-Varga et al. (2005) showed
a similar association of the PA bacterial assemblage to
phytoplankton community composition in the Bay of
Fundy, particularly with respect to diatom abundance
within the community. Interestingly, these researchers
classified phytoplankton by morphology and 18S rRNA
genes (Savin et al. 2004), characterized bacterial com-
munities using a ~520 bp 16S rRNA gene fragment,
and employed a direct gradient multivariate statistical
test, and still detected strikingly similar patterns of
association between the phytoplankton and bacterial
communities. Similarly, Pinhassi et al. (2003) found
clear differences in the relative concentrations of
prymnesiophyte and diatom marker pigments that cor-
responded to measured differences in bacterial com-
munity compositions in the frontal zone between the
North and Baltic Seas; however, their study did not
separate the FL and PA communities. From these few
studies, it seems that these associations are robust
across large geographic scales and, because ecological
states vary widely among the study sites, are likely
indicative of specific interactions between organisms
rather than simultaneous response to state variables. 

In contrast, FL bacterial community clusters showed
significant differences in pigments that correspond

almost entirely to chlorophytes, prasinophytes, and
cyanobacteria. These organisms tend to dominate in
oligotrophic coastal systems that rely on remineraliza-
tion through microbial processes for much of the
community nutrient demand.

The present study’s findings extend those of Noble et
al. (2003) in comparisons of 2 southeastern salt marsh
estuaries minimally affected by anthropogenic activi-
ties, but differing in watershed area and therefore in
allochthonous nutrient and sediment loading. The fact
that the estuary with the higher watershed area (ACE
Basin) was characterized by relatively high contribu-
tions of PA bacteria and diatoms is understandable
because of their common associations with suspended
sediments (Millie et al. 2002). A greater dependency of
ACE microbial communities with new (allochthonous)
nitrogen sources is suggested by the predominant
contribution of diatom and dinoflagellate pigments
when normalized to chl a. An example of the positive
association of diatoms with nitrate is documented in
the spring bloom formation in temperate estuaries,
while a close relationship between peridinin and
nitrate was demonstrated in this study. One implica-
tion from these findings is that the relative contribution
of diatoms (and possibly some types of dinoflagellates)
to phytoplankton biomass, and of PA bacterial biomass
to total bacterial biomass, may correlate positively with
watershed area.

NI, the estuary with the smaller watershed and lower
nutrient and sediment loading, was characterized
by greater relative contributions of FL bacteria and
pigments indicative of chlorophytes, prasinophytes,
and/or cyanobacteria to microbial community composi-
tion. Noble et al. (2003) discussed inter-estuary differ-
ences in the seasonal timing of the phytoplankton
bloom, and suggested that these differences reflected a
prototypical spring phytoplankton bloom driven by al-
lochthonous nutrient loading in the ACE Basin versus a
summer bloom in NI. This was characterized by micro-
bial loop dynamics that included an important influ-
ence of microzooplankton grazing and regenerated nu-
trients, and a close coupling between phytoflagellates
and bacteria (Lewitus et al. 1998). Of the potential
phytoplankton groups implicated by the pigment pat-
terns, prasinophytes and cyanobacteria are most con-
sistent with results from previous studies in NI (Lewitus
et al. 1998, 2005, Kulkarni et al. 2005), and typify phyto-
plankton associated with microbial loop communities.
The inference that such microbial loop communities
would involve nutrient and energy cycling within
microaggregates (Caron et al. 1988) is rational for a
predominant involvement of FL bacteria rather than
macroaggregate-associated PA bacteria. 

In summary, pronounced differences in bacteria and
phytoplankton community structure were found in 2
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southeastern estuaries that could ultimately be attrib-
uted to differences in the size of their watershed and,
consequently, the relative influences of allochthonous
and autochthonous regulation. Both estuaries are mini-
mally affected by anthropogenic activities, and the
ACE Basin may therefore be considered to represent a
natural salt marsh in a more advanced state of eutroph-
ication than NI. In this sense, one can speculate
that the affects of urbanized development (increased
impervious surfaces, stream channelization, non-point
source nutrient loading etc.) on the NI ecosystem may
promote shifts in microbial community structure and
function toward those found in the ACE Basin. These
include higher primary and secondary productivity,
a change from a nanoflagellate-dominated phyto-
plankton assemblage to one dominated by diatoms,
and a trend toward an increased importance of macro-
aggregate- over microaggregate-associated trophic
dynamics. 
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