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WHOLE GENOME DUPLICATIONS AND CONTRACTED
BREAKPOINT GRAPHS*

MAX A. ALEKSEYEVT AND PAVEL A. PEVZNER'

Abstract. The genome halving problem, motivated by the whole genome duplication events
in molecular evolution, was solved by El-Mabrouk and Sankoff in the pioneering paper [SIAM J.
Comput., 32 (2003), pp. 754-792]. The El-Mabrouk—Sankoff algorithm is rather complex, inspiring
a quest for a simpler solution. An alternative approach to the genome halving problem based on
the notion of the contracted breakpoint graph was recently proposed in [M. A. Alekseyev and P.
A. Pevzner, IEEE/ACM Trans. Comput. Biol. Bioinformatics, 4 (2007), pp. 98-107]. This new
technique reveals that while the El-Mabrouk—Sankoff result is correct in most cases, it does not
hold in the case of unichromosomal genomes. This raises a problem of correcting a flaw in the El-
Mabrouk—Sankoff analysis and devising an algorithm that deals adequately with all genomes. In this
paper we efficiently classify all genomes into two classes and show that while the El-Mabrouk—Sankoff
theorem holds for the first class, it is incorrect for the second class. The crux of our analysis is a new
combinatorial invariant defined on duplicated permutations. Using this invariant we were able to
come up with a full proof of the genome halving theorem and a polynomial algorithm for the genome
halving problem.

Key words. genome duplication, genome halving, genome rearrangement, breakpoint graph,
de Bruijn graph
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1. Introduction. In 1970 Susumu Ohno came up with two fundamental theories
of chromosome evolution that were the subjects of many controversies in the last
35 years [31]. The first, random breakage theory, was embraced by biologists from
the very beginning but was refuted by Pevzner and Tesler in 2003 [35] and Murphy
et al. in 2005 [30]. The second, whole genome duplication theory, postulated a new
type of evolutionary event and had a very different fate. It was subject to controversy
in the first 35 years and only recently was proven to be correct [27, 15]. Kellis, Birren,
and Lander in 2004 [27] sequenced the yeast K. waltii genome, compared it with the
yeast S. cerevisiae genome, and demonstrated that nearly every region in K. waltii
corresponds to two regions in S. cerevisiae, thus proving that there was a whole
genome duplication event in the course of yeast evolution. This discovery was quickly
followed by the discovery of whole genome duplications in vertebrates [24, 36, 12] and
plants [21]. Finally, in September, 2005 Dehal and Boore [14] found evidence of two
rounds of whole genome duplications on the evolutionary path from early vertebrates
to humans. Shortly afterwards, Meyer and Van de Peer [28] found evidence of yet
another (third) round of whole genome duplications in ray-finned fishes, thus implying
that nearly every human gene could have existed in as many as eight copies at different
stages of evolution.

These recent studies provided irrefutable evidence that whole genome duplica-
tions represent a new type of event that may explain phenomena which classical
evolutionary studies have had difficulty explaining (e.g., emergence of new metabolic
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Fic. 1. (a) Whole genome duplication of genome R = +a + b — ¢ into a perfect duplicated
genome RS R=+a+b—c+a+b—c followed by three reversals. (b) Whole genome duplication
of a circular genome R (center) resulting in R ® R (left) or 2R (right). (c) Breakpoint graph of
genomes +a +b—c and +a+ b+ c.
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pathways [27]). At the same time, they raised the problem of reconstructing the ge-
nomic architecture of the ancestral preduplicated genomes. Unfortunately, since the
El-Mabrouk—Sankoff algorithm for solving this problem [20] has not yet resulted in a
software tool, the recent studies of whole genome duplications did not attempt to rig-
orously reconstruct the architecture of the preduplicated genomes. We revisited the
El-Mabrouk—Sankoff result, found a flaw in their approach, reformulated and proved
the genome halving theorem, and developed a new algorithm and software tool for
studies of genome duplications.

Whole genome duplications double the gene content of a genome R and result in a
perfect duplicated genome R® R that contains two identical copies of each chromosome.
The genome then becomes subject to rearrangements that shuffle the genes in R&® R,
resulting in some rearranged duplicated genome P. The genome halving problem is
to reconstruct the ancestral preduplicated genome R from the rearranged duplicated
genome P (Figure 1(a)).

From an algorithmic perspective, the genome is a collection of chromosomes, and
each chromosome is a signed sequence over a finite alphabet. DNA has two strands,
and genes on a chromosome have directionality that reflects the strand of the genes.
We represent the order and directions of the genes on each chromosome as a sequence
of signed elements, i.e., elements with signs “+” and “-”. In this paper we focus on the
basic unichromosomal case, where the genomes consist of just one chromosome, and
assume that the genomes are circular. A unichromosomal genome, where each gene
appears in a single copy, is referred to as signed permutation. For unichromosomal
genomes the rearrangements are limited to reversals that “flip” genes z;...z; in a
genome 1Ty ...T, as follows:

L1...Tj—1 Ty Tj41.-- l’iijrl...ZL'n — T1...Tj17Lj —Tj—1""" — TiTj41-.- Ty

The reversal distance between two genomes is defined as the minimum number of
reversals required to transform one genome into the other (see Chapter 10 of [34] for
a review of genome rearrangement algorithms).

We represent a circular genome R as a cycle formed by directed edges encoding
the genes and their directions (Figure 2(b), center). There are two natural ways to
represent duplication of the genome R resulting in a unichromosomal genome R & R
(Figure 1(b), left) and a multichromosomal genome 2R (Figure 1(b), right) but only
the former is applicable to unichromosomal genomes.
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Fic. 2. (a) Circular genome P = +a — b+ a + b represented as a cycle with directed edges.
(b) 01-labeling of the vertices of the cycle defined by P. (c) Induced labeling of the genes of P that is
consistent. (d) For some genomes consistent labelings do not exist: for genome Q = +a+b—b—a
the labels of both copies of gene a start with the same digit (“x”) so they cannot be inversions of
each other.

For unichromosomal genomes, whole genome duplication is a concatenation of the
genome R with itself, resulting in a perfect duplicated genome R & R. The genome
R & R becomes subject to reversals that change the order and signs of the genes
and transform R @ R into a duplicated genome P. The genome halving problem is
formulated as follows.

GENOME HALVING PROBLEM. Given a duplicated genome P, recover an ancestral
preduplicated genome R minimizing the reversal distance d(P, R® R) from the perfect
duplicated genome R® R to P.

The genome halving problem was solved in a series of papers [18, 19, 17] cul-
minating in a rather complex algorithm by El-Mabrouk and Sankoff in [20]. The
El-Mabrouk—Sankoff algorithm is one of the most technically challenging results in
computational biology and its proof spans over 30 pages in [20]. Recently Alekseyev
and Pevzner [1] revisited the El-Mabrouk—Sankoftf work and presented an alternative
approach based on the notion of a contracted breakpoint graph.

After paper [1] was submitted, our studies of the contracted breakpoint graph led
us to realize that the El-Mabrouk—Sankoff analysis has a flaw and that the problem of
finding ming d(P, R ® R) remains unsolved in the simplest case when P is a unichro-
mosomal genome. Below we show that this flaw is a rule rather than a pathological
case: it affects a large family of duplicated genomes. We further proceed to give a
full analysis of the genome halving problem that is based on introducing an invariant
that divides the set of all rearranged duplicated genomes into two classes. We show
that the El-Mabrouk—Sankoff formula is correct for the first class but is off by 1 for
the second class. We remark that our approach is very different from [20] and we
do not know whether the technique in [20] can be adjusted to address the described
complication.

To introduce a new combinatorial invariant of duplicated genomes, consider la-
belings of vertices in the cycle defined by the duplicated rearranged genome P with
numbers 0 and 1 (Figure 2(b)). Every such labeling induces a two-digit labeling of
the genes (edges): a label of each gene is formed by the labels of the incident vertices
(Figure 2(c)). A 0l-labeling of the vertices is called consistent if for every pair of
identical genes in P the label of one copy is an inversion of the other. If there exists
a consistent labeling of genome P, we define the parity index of P as the number of
genes labeled “01” modulo 2. Below we prove that the parity index is well defined,
i.e., the parity index is the same for all consistent labelings of a genome. It turns out
that the El-Mabrouk—-Sankoff theorem fails on genomes with the parity index 0.

The paper is organized as follows. Section 2 presents the concept of contracted
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breakpoint graph and reviews some results from [1]. Section 3 describes a flaw in the
El-Mabrouk—Sankoff analysis. Section 4 presents a solution to the genome halving
problem (for unichromosomal circular genomes) and a classification of the genomes
for which the original El-Mabrouk—Sankoff theorem is incorrect. Section 5 outlines our
genome halving algorithm. Finally, section 6 discusses potential biological applications
of the presented algorithm.

2. Reversal distance between duplicated genomes and contracted
breakpoint graphs. A duality theorem and a polynomial algorithm for comput-
ing reversal distance between two signed permutations was proposed by Hannenhalli
and Pevzner [23] and later was generalized for multichromosomal genomes [22]. The
algorithm was further simplified and improved in a series of papers [6, 25, 3, 7, 42, 26]
and applied in a variety of biological studies [29, 10, 8, 33, 5].

A signed permutation on n elements can be transformed into an unsigned per-
mutation on 2n elements (see [4]) by substituting every element x in the signed per-
mutation with two elements ! and z” in the unsigned permutation (indices ¢ and
h stand for tail and head, respectively). Each element +z in the permutation P is
replaced with zfz", and each element —z is replaced with 2"z, resulting in an un-
signed permutation 7(P). For example, a permutation +a + b — ¢ will be transformed
into ata”btb"clct. Element xt is called the obverse of element z”, and vice versa.

Let P and @Q be two circular signed permutations on the same set of elements
G, and let 7(P) and 7(Q) be corresponding unsigned permutations. The breakpoint
graph G = G(P,Q) is defined on the set of vertices V = {z!, 2" | x € G} with edges
of three colors: obverse, black, and gray (Figure 1(c)). Edges of each color form a
matching on V as follows:

e pairs of obverse elements form an obverse matching;
e adjacent elements in 7(P), other than obverses, form a black matching;
e adjacent elements in 7(Q), other than obverses, form a gray matching.

Every pair of matchings forms a collection of alternating cycles in G, called black-
gray, black-obverse, and gray-obverse, respectively (a cycle is alternating if colors of
its edges alternate). The permutation 7(P) can be read along a single black-obverse
cycle, while the permutation 7(Q) can be read along a single gray-obverse cycle in G.
The black-gray cycles in the breakpoint graph play an important role in computing
the reversal distance. According to the Hannenhalli-Pevzner theorem, the reversal
distance between permutations P and @ is given by the formula

where |P| = |Q| is the size of P and Q, ¢(P, Q) = ¢(G(P, Q)) is the number of black-
gray cycles in the breakpoint graph G, and h(G) is an easily computable combinatorial
parameter. While this result leads to a fast algorithm for computing reversal distance
between two signed permutations, the problem of computing reversal distance between
two genomes with duplicated genes remains unsolved.

Let P and @ be duplicated genomes on the same set of genes G. If one labels copies
of each gene x as 1 and x5, then the genomes P and @ become signed permutations
and (1) applies. The breakpoint graph G(P, Q) of the labeled genomes P and @ has
a vertex set V = {zt, 27 2%, 28 | 2 € G} and uniquely defines permutations 7(P) and
m(Q). We remark that different labelings may lead to different breakpoint graphs (on
the same vertex set) for the same genomes P and @ (Figure 3) and it is not clear how
to choose a labeling that results in the minimum reversal distance between the labeled
copies of P and ). We also remark that pairs of vertices ] and 2 form yet another
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Fic. 3. Breakpoint graphs for P = 4+a—a—b+b and four different labelings Q@ = +a—b+a+b
(we assume that the labeling of P = +a1 — a2 — by + bz is fized). Two out of four breakpoint graphs
have ¢(G) = 1, while two others have ¢(G) = 2. The counterpart matching in these graphs is formed
by pairs (atlz ag)’ (a}f’ alzl), (b?u bé)’ (b]fv bg)

matching in the breakpoint graph G called counterpart. Counterpart of a vertex v is
denoted v so that 7] = 22 and 7 = =7 (see legend for Figure 3).

Recently there were many attempts to generalize the Hannenhalli-Pevzner theory
for genomes with duplicated and deleted genes [9, 11, 16, 37, 40, 41]. However, the only
known option for solving the reversal distance problem for duplicated genomes ezactly
is to consider all possible labelings, to compute the reversal distance problem for each
labeling, and to choose the labeling with the minimal reversal distance. For dupli-
cated genomes with n genes this leads to 2™ invocations of the Hannenhalli-Pevzner
algorithm, rendering this approach impractical. Moreover, the problem remains open
if one of the genomes is perfectly duplicated (i.e., computing d(P, R ® R)). Surpris-
ingly, the problem of computing ming d(P, R ® R) that we address in this paper is
solvable in polynomial time.

Using the concept of the breakpoint graph and formula (1), the genome halving
problem can be posed as follows. For a duplicated genome P, find a perfect duplicated
genome RP R and a labeling of gene copies such that the breakpoint graph G(P, R®R)
of the labeled genomes P and R @ R attains the minimum value of |P| — ¢(P, Q) +
h(P,Q). Since |P| is constant and h(G) is typically small (see [34]), the value of
d(P, Q) depends mainly on ¢(P, Q). El-Mabrouk and Sankoff [20] established that the
problems of maximizing ¢(P, Q) and minimizing h(P, Q) can be solved separately in
a consecutive manner.! In this paper we focus on the former and harder problem as
follows.

WEAK GENOME HALVING PROBLEM. For a given duplicated genome P, find a
perfect duplicated genome R & R and a labeling of gene copies that maximizes the
number of black-gray cycles ¢(P, R ® R) in the breakpoint graph G(P, R @ R) of the
labeled genomes P and R @ R.

From now on, we will find it convenient to represent a circular signed permutation
as an alternating cycle formed by edges of two colors with one color reserved for obverse
edges. For example, Figures 4(a),(b) show a black-obverse cycle representation of
permutation P = +a—a—b+0b and a gray-obverse cycle representation of permutation
@ = +a—b+a+b (the obverse edges in these cycles are labeled and directed). Given
a set of edge-labeled graphs, the de Bruijn graph of this set is defined as the result of
“gluing”? edges with the same label in all graphs in the set (compare with Pevzner,

'In paper [2] we describe an analogue of formula (1) without the “h(G)” term and give a short
proof of the genome halving theorem (for multichromosomal genomes) that does not rely on the
analysis in [20].

2Gluing takes into account the directions of edges; i.e., tails (or heads) of all edges with a given
label are glued into a single vertex.
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F1G. 4. (a) Genome P = +a —a — b+ b as a black-obverse cycle and its transformation into
P by gluing identically labeled edges. (b) Genome Q = 4+a — b+ a + b as a gray-obverse cycle
and its transformation into Q by gluing identically labeled edges. (c) Two-chromosomal genome
Q' = (+a — b)(+a + b) that is equivalent to the genome Q (i.e., Q' = Q). (d) The de Bruijn graph
of genomes P and Q. (e) The contracted breakpoint graph G'(P, Q).

k4
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b

Tang, and Tesler [32]). The de Bruijn graph for two cycles in Figures 4(a),(b) is shown
in Figure 4(d).

For any genome P (represented as a cycle) we define P as the graph obtained
from P by gluing identically labeled edges. Obviously, the de Bruijn graph of P and
Q coincides with the de Bruijn graph of P and Q (Figure 4). For a duplicated genome
P, the black edges of P form a set of vertex-disjoint black cycles. We denote by b.(P)
the number of even black cycles in P.

The conventional breakpoint graph [4] of signed permutations P and @ on n
elements can be defined as the gluing of n pairs of identically labeled obverse edges
in the corresponding permutations (represented as black-obverse and gray-obverse
cycles). The contracted breakpoint graph of duplicated genomes P and @ on n elements
is simply the gluing of n quartets of obverse edges. Below we give a somewhat more
formal definition of the contracted breakpoint graph.

Let P and @ be duplicated genomes on the same set of genes G and let G be a
breakpoint graph defined by some labeling of P and @. The contracted breakpoint
graph G'(P, Q) is the result of contracting every pair of vertices z},z} (where z € G,
j € {t,h}) in the breakpoint graph G into a single vertex x/. So the contracted
breakpoint graph G’ = G'(P,(Q) is a graph on the set of vertices V' = {xzf 2" |
x € G} with each vertex incident to two black, two gray, and a pair of parallel obverse
edges (Figure 4(e)). The contracted breakpoint graph G’ (P, Q) does not depend on
a particular labeling of P and @). The following theorem gives a characterization of
the contracted breakpoint graphs (for unichromosomal genomes).

THEOREM 1 (see [1]). A graph H with black, gray, and obverse edges is a con-
tracted breakpoint graph for some duplicated genomes if and only if

e cach vertex in H is incident to two black edges, two gray edges, and two
parallel obverse edges;

o H is connected with respect to black and obverse edges (black-obverse con-
nected);

e H is connected with respect to gray and obverse edges (gray-obverse con-
nected).
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ORI b)

F1c. 5. (a) Contracted breakpoint graph G'(P,R® R) for P=+a+b—a—b and R=+a+b.
(b) Black-gray cycle decomposition C' of G’ which is not induced by any labeling of P and R ® R.
(¢) Breakpoint graph G(P,2R) inducing C. (d) Breakpoint graph G(P, R®&R) (unique up to relabeling
of vertices) with ¢(G) =2 < |C| = 3.

In the case when Q = R® R is a perfect duplicated genome, the gray edges in the
contracted breakpoint graph G’(P, @) form pairs of parallel gray edges that we refer
to as double gray edges. Similar to the double obverse edges, the double gray edges
form a matching in G’ (Figure 5(a)).

Let G(P, Q) be a breakpoint graph for some labeling of P and Q. A set of black-
gray cycles in G(P, Q) is contracted into a set of black-gray cycles in the contracted
breakpoint graph G’(P, @), thus forming a black-gray cycle decomposition of G'(P, Q).
Therefore, each labeling induces a black-gray cycle decomposition of G'(P, Q). We
are interested in the reverse problem as follows.

LABELING PROBLEM. Given a black-gray cycle decomposition of the contracted
breakpoint graph G' (P, Q) of duplicated genomes P and Q, find a labeling of P and Q
that induces this cycle decomposition.

This problem may not always have a solution for unichromosomal genomes (Fig-
ure 5) and this is exactly the factor that leads to a counterexample in section 3. This
complication will be addressed in section 4 using the following three theorems proved
in [1].

THEOREM 2 (see [1]). Let P and R @ R be unichromosomal duplicated genomes
and C be a black-gray cycle decomposition of the contracted breakpoint graph G'(P,
R ® R). Then there exists some labeling of P and either R ® R or 2R that induces
the cycle decomposition C.

Let ¢maz (P, R ® R) = Cimae(G'(P, R ® R)) be the number of cycles in a maximal
black-gray cycle decompositions of the contracted breakpoint graph G'(P,R ¢ R).
Theorem 2 motivates the following problem that will later help us to solve the weak
genome halving problem.

CYCLE DECOMPOSITION PROBLEM. For a given duplicated genome P, find a
perfect duplicated genome R & R mazimizing cpmaz(P, R ® R).

Although the maximal black-gray cycle decomposition of G'(P, R & R) may cor-
respond to a breakpoint graph G(P,2R) (Figure 5), we will prove below that there
exists a breakpoint graph G(P, R® R) having “almost” the same number of black-gray
cycle as G(P,2R) (Figure 5(d)). Later we will classify all the cases in which there
exists a labeled genome R’ @ R’ such that ¢(P,R' @ R') = ¢(P,2R).

The solution to the cycle decomposition problem is given by the following two
theorems.

THEOREM 3 (see [1]). For a given duplicated genome P and any perfect duplicated
genome R ® R,

Cmaa:(PuR@R) S |P|/2+b€(P)7
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F1G. 6. (a) A set of black edges forming the partial graph G(V, A) corresponding to the genome
P = +a+b—ct+b—d—e+a+c—d—e. (b) Natural graphs as connected components in the partial graph
with counterpart edges. (c) A completed graph G(V, A, T') with mazimum number of cycles ¢(G) = 8.
G(V,A,T) is a breakpoint graph of the circular genome P = +a1+b1—c1+ba—di —e1+azs+ca—da—e2
and a perfect duplicated genome (—a1 + e2 +da — c2 + b1)(—ba + ¢1 — d1 — e1 + a2) (of the form
ROSR).

where |P|/2 represents the number of unique genes in P and b.(P) is the number
of even black cycles in P. Moreover, if ¢pman(P,R® R) = |P|/2 + b(P), then each
black-gray connected component of G'(P,R @& R) contains either a single even black
cycle (simple component) or a pair of odd black cycles (paired component).

THEOREM 4 (see [1]). For any duplicated genome P, there exists a perfect dupli-
cated genome R @ R such that

Cmax (P, R© R) = |P[/2+ bc(P)

and each paired component of G'(P, R® R) contains a single interedge (a double gray
edge connecting distinct black cycles).

3. A flaw in the El-Mabrouk—Sankoff analysis. El-Mabrouk and Sankoff
came up with a theorem describing the minimum distance from the given rearranged
duplicated genome to a perfect duplicated genome. Given a rearranged duplicated
genome P, the crux of their approach is an algorithm for computing ¢(G)—the number
of cycles of a so-called mazimal completed graph, i.e., a breakpoint graph® with the
maximum number of black-gray cycles. In [20] they demonstrate that ¢(G) equals
the number of genes plus v(G), where v(G) is the parameter defined below. We
illustrate the concepts from [20] using the genome P = +a+b—c+b—d—e+
a+ ¢ —d— e on the set of genes B = {a,b,¢,d,e} (page 757 in [20]). El-Mabrouk
and Sankoff first arbitrarily label two copies of each gene x as z; and xo for each
x € B and further transform the signed permutation G into an unsigned permutation
alalbibhchct bivhdrdt elelabalchchdhdbelel.

Let V = {zf, 27, x4, 2% | * € B}. The partial graph G(V, A) associated with P
has the edge set A of black edges linking adjacent terms (other than obverses x! and
z”) in the corresponding unsigned permutation (Figure 6(a)).

Black edges together with counterpart edges (i.e., edges between z! and x} or
between z% and x%) form a graph shown in Figure 6(b). The connected components
of this graph are called natural graphs in [20]. There are four connected components
(natural graphs) in the graph in Figure 6(b), two of them have three black edges (odd

3Following El-Mabrouk and Sankoff [20] we ignore obverse edges in breakpoint graphs throughout
section 3.
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Q=+a,+btazb, Q= +ab,+azb, Q=+a,~b+a,-b, Q=+a,—b+a,~b
b; by b; by b, by by by

b b by b} b; b; b; b;
Q=+a+b-b-a Q=+a+b,~b—3 Q=+a-b+b,—a Q=+a-b+b—a
b b b b b b b b
alf/ at aj ah a) ab 4 \a"
a a al 3 al a al a,
b b by b} b; b; b; b;

FiG. 7. Breakpoint graphs of the circular genome P = +a + b — a — b and all possible labelings
of all possible perfect duplicated genomes @ (without loss of generality, we assume that labeling of
P = +a1 + b1 —az — b is fized). In terms of [20], the top four graphs correspond to an R ® R
duplication pattern, while the bottom four graphs correspond to an R & R duplication pattern.

natural graphs) and two of them have two black edges (even natural graphs). Let
NE be the number of even natural graphs (NE = 2 in Figure 6(b)).
El-Mabrouk and Sankoff define the parameter

(@) = NE if all natural graphs are even,
TH=1 NE+1 otherwise.

A graph G(V,A,T) obtained from the partial graph G(V,A) by introducing a set
of gray edges I' is called a completed graph if G(V,A,T") is a breakpoint graph for
some genomes on the set of genes {z1,22 | * € B}. The following theorem (Theo-
rem 7.7 in [20]) characterizes the maximum number of cycles in the completed graph
G(V,AT).

THEOREM. The mazimal number of cycles in a completed graph of G(V,A) is
c(G) =4 +4(a).

For the genome in Figure 6 we have v(G) = NE+1 =3 and ¢(G) = I—'g‘ +7(G)
% +3 =8. A completed graph G(V, A,T) with eight cycles is shown at Figure 6(c).
Below we provide a counterexample to Theorem 7.7 from [20].

Consider a circular genome P = +a + b — a — b labeled as +a; + by — ag — bs.
The genome P defines a partial graph G(V, A) with a single natural graph of even
size implying v(G) = 1. It follows from Theorem 7.7 in [20] that there exists a
perfect duplicated genome @ such that the breakpoint graph G = G(P, Q) consists
of l%‘ + 7(G) = 3 cycles. However, the direct enumeration of all possible perfect
duplicated genomes @ shows that there is no breakpoint graph G(P, Q) with three
cycles. There exist eight distinct labeled perfect duplicated genomes ) giving rise
to eight breakpoint graphs G(P, Q) shown in Figure 7. All of them have less than
three cycles. In the next section we explain what particular property of the genome
+a + b — a — b was not addressed properly in the El-Mabrouk—Sankoff analysis.

~ |l

4While we do not explicitly consider RO R duplications shown in this figure (see [20] for details),
our counterexample works for both R @ R and R & R duplications.
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4. Classification of duplicated genomes. The labeling problem can be ad-
dressed by considering multichromosomal genomes.® A multichromosomal duplicated
genome is a set of circular chromosomes with every gene present in two copies. For
example, Figure 4(c) presents a multichromosomal duplicated genome @’ consisting of
two circular chromosomes +a—b and +a+b, each of which forms a gray-obverse cycle.
We remark that the de Bruijn graph of the genome @’ coincides with the de Bruijn
graph of a unichromosomal genome @ = +a — b+ a + b (Figure 4(b)) and, hence, the
contracted breakpoint graphs G'(P, Q) and G'(P, Q') are the same for any genome P
(Figure 4(d)). We call genomes Q and Q' equivalent if their de Bruijn graphs are the
same, i.e., Q = Q’.

It is easy to see that R R is equivalent to 2R and, thus, G'(P, R®R) = G'(P,2R)
for any duplicated genome P. But in contrast to the breakpoint graph G(P, R&R) (for
any labeling of P and R® R) that contains a single gray-obverse cycle, the breakpoint
graph G(P,2R) contains two gray-obverse cycles. The following theorem reveals the
relationship between G(P, R & R) and G(P,2R).

THEOREM 5. For any labeling of the genomes P and 2R, there exists a labeling
of the genome R & R such that |¢(P,R @ R) — c¢(P,2R)| < 1. Moreover, if there are
two gray edges (x,y) and (z,y) belonging to the same black-gray cycle in G(P,2R),
then there exists a labeling of R ® R with ¢(P,R® R) > ¢(P,2R).

Proof. Let (z,y) be a gray edge in the breakpoint graph G(P,2R). Since the
genome 2R is perfect duplicated there exists a gray edge (Z, §) connecting counterparts
of z and y. Define a graph H having the same vertices and edges as G(P,2R) except
the gray edges (z,y) and (Z, §) that are replaced with the gray edges (z,y) and (Z,y).
Since the graph G(P,2R) consists of two gray-obverse cycles, the gray edges (z,y)
and (Z,7) belong to different gray-obverse cycles. Therefore, the graph H contains
a single gray-obverse cycle (as well as a single black-obverse cycle inherited from
G(P,2R)). This implies that H is a breakpoint of the genomes P and R ® R (i.e.,
H = G(P,R® R)), where the labeling of P is the same as in G(P,2R).

If the gray edges (x,y) and (Z,y) belong to the same black-gray cycle in G(P,2R),
then this cycle may be split into two in H, while the other black-gray cycles are not
affected. Conversely, if the gray edges (z,y) and (Z,§) belong to different black-gray
cycles in G(P,2R), then these cycles may be joined into a single cycle in H. In either
case the difference |¢(P, R @ R) — ¢(P,2R)| does not exceed 1. ad

We redefine the notion of parity of a genome P in terms of the de Bruijn graph
P. A genome P is called singular if all black cycles in P are even. For a nonsingular
genome P, define parity(P) = co. For a singular genome P, we clockwise label edges
of each black cycle in P with alternating numbers {0, 1} so that every two adjacent
edges are labeled differently (Figure 8(a)). Labels of black edges in cycle P classify
obverse edges in P into two classes: even if its flanking black edges have the same
labels, and odd if its flanking black edges have different labels (Figure 8(b)). Let meyen
and m,gqq be the number of even/odd obverse edges in P correspondingly. Obviously,
both Mmeyen and myqq are even numbers. We define parity (P) = myqq/2 mod 2.

This definition of the parity index coincides with the one given in the introduction.
To establish a correspondence between them one can consider a genome P as a black-
obverse cycle and contract each black edge into a single vertex that inherits the label
from the black edge. Since every pair of adjacent black edges of P islabeled differently,
every pair of counterpart vertices is labeled differently as well. This implies that two-

5We emphasize that in this paper we consider only the genome halving problem for unichromo-
somal genomes and use multichromosomal genomes only to prove some auxiliary results.
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Fi1G. 8. For the genome P = +a—b—b—d+c—a—d+c, (a) 01-labeling of the de Bruijn graph
p; (b) induced labeling of black-obverse cycle P with myqq = 4 and meyen = 4; (¢) transformation
of the graph H into H' by removing vertices x,y,z,t and incident edges and adding a black edge
(u,v) labeled the same as (u,z) and (v,t).

digit labels of every pair of obverse edges are inversions of each other.

THEOREM 6. The parity index of a singular genome is well defined.

Proof. Let P be a singular genome. If P has k black cycles, then there are
2F different 01-labelings of its black edges (two possible labelings per cycle). Therefore,
it is sufficient to show that a change of 0l-labeling of a particular black cycle ¢ does
not affect parity(P).

Let m¢,.,, and m¢,,; be the number of even/odd obverse edges in cycle P con-
necting black edges of ¢ with black edges outside ¢. Since double obverse edges form
a matching in the de Bruijn graph ]5, the total number of double obverse edges con-
necting c¢ with other black cycles is even and, thus, m¢,.,, +m¢,, is a multiple of 4.

Changing the 0l-labeling of the black cycle ¢ reverses the labels 0 < 1 in c.
Reversed labeling of ¢ does not change parity of obverse edges connecting two black
edges in ¢ (since both endpoint labels change) or two black edges outside of ¢ (since
neither of the endpoint labels changes). At the same time, each of the m¢, ., +mS,,
obverse edges connecting black edges in ¢ with black edges outside of ¢ changes its

parity (i.e., even edges become odd and vice versa). Then m,qq changes as follows:
/ _ c c _ c c c
Mogd = Modd — Moqq + Meyen = Modd — (modd + meven) + zmeven‘

Since both m¢,,; + m¢,., and 2m¢,.,, are multiples of 4, the parity of m/;,;/2 and
Modq/2 is the same, implying that parity(P) is well defined. d
Our goal is to prove the following theorem.

THEOREM 7. For a duplicated genome P,

[P[/2 4 be(P) if parity(P) # 0,

max c¢(P,R®R) = { IP|/2 +b.(P) — 1 otherwise.

The proof of Theorem 7 is split into two cases depending on whether P is singular
or nonsingular.

THEOREM 8. For a nonsingular genome P, maxg ¢(P,R® R) = |P|/2 + b.(P).

Proof. If P is a nonsingular genome, then P has an odd black cycle. According to
Theorem 4 there exists a perfect duplicated genome R® R such that ¢4, (P, ROR) =
|P|/2 + be(P). Theorem 2 ensures that the maximum cycle decomposition of the
contracted breakpoint graph G’(P, R @ R) is induced by a labeling of either R @ R
or 2R. If it is R® R, then the theorem holds. Otherwise, consider a paired component
in G'(P,R® R) (which exists since P has an odd black cycle) and an interedge e in
it. Let (x,y) and (Z,y) be gray edges in G(P,2R) corresponding to the interedge e in
G'(P, R®R). Since e is the only bridge between two different black cycles (Theorem 4)
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in G'(P,R ® R), the gray edges (z,y) and (Z, ) must belong to the same black-gray
cycle in G(P,2R). Applying Theorem 5 to these gray edges, we obtain a labeled
genome R @ R with ¢(P,R® R) = ¢(P,2R) = |P|/2 + b.(P). |

For a singular genome P, we first fix some alternating 01-labeling of black edges
in every black cycle of P. The labeling of edges imposes labeling of vertices of any
breakpoint graph G(P,Q) (for any genome @) so that each vertex inherits a label
from an incident black edge. Note that every pair of counterpart vertices get different
labels, as their incident black edges are adjacent in P. A labeling of vertices of G (P,Q)
is called uniform if endpoints of every gray edge have identical labels (i.e., every gray
edge is even). We will need the following theorem.

THEOREM 9. Let P be a singular genome and @ be a perfect duplicated genome
with ¢(P,Q) = |P|/2 + be(P). Then every alternating 01-labeling of P imposes a
uniform labeling on vertices of G(P, Q).

While the definition of the breakpoint graph does not explicitly specify the coun-
terpart edges, one can derive them for G(P, Q) in Theorem 9 from the vertex labels.
Also, it is easy to see that gray and counterpart edges in G(P,Q) form cycles of
length 4 as soon as @ is a perfect duplicated genome. We take the liberty of restating
the condition ¢(P, Q) = |P|/2 + be(P) as cpg(G) = n + cpe(G), where ¢pe(G) is the
number of black-gray edges in G, n is the number of unique genes in P, and ¢.(G) is
the number of black-counterpart cycles in G. Also, every alternating 01-labeling of P
corresponds to an alternating labeling of black edges within black-counterpart cycles.
This leads to the following reformulation of Theorem 9.

THEOREM 10. Let H be a graph on 4n vertices consisting of three perfect match-
ings black, gray, and counterpart such that (i) gray and counterpart matchings form
cycles of length 4, and (ii) cvg(H) = n+ cpe(H). Then every alternating 01-labeling
of black edges within black-counterpart cycles imposes a uniform labeling on vertices
of H.

Proof. The proof is done by induction on n. If n = 1, then the graph H consists
of a gray-counterpart cycle with two black edges parallel to the gray edges, and the
theorem holds. Assume that the theorem holds for graphs with less than 4n vertices.

Since H has 2n black edges and cpq(H) = n+cp(H) > n, the pigeonhole principle
implies that there exists a black-gray cycle ¢; of length 2 in H. Let e; = (z,y) be
a gray edge in the cycle ¢; (thus, e; is even) and let (z,2) and (y,t) be adjacent
counterpart edges. Then there is a gray edge e; = (z,t) belonging to the same gray-
counterpart cycle as e;. Let co be a black-gray cycle co containing the gray edge es.

If the cycle ¢ has length 2, then the endpoints of e; have identical labels. In this
case we define a new graph H' as the graph H without vertices x,y, z, ¢t and all incident
edges. It is easy to see that H' is a graph on 4(n — 1) vertices satisfying the conditions
of the theorem. Indeed, the number of black-gray cycles in H’ is reduced by 2 and
the number of black-counterpart cycles is reduced by 1 (as compared to H), i.e.,
cog(H') = cpg(H)—2 and cpe(H') = cpe(H)—1. Therefore, cpg(H') = (n—1)+cpc(H').
By the induction assumption, every alternating 0l-labeling of H’ imposes uniform
labeling on vertices of H'. It implies that every alternating 01-labeling of H imposes
uniform labeling on vertices of H.

If the cycle ¢o has length greater than 2, let (u, z) and (¢, v) be black edges adjacent
to es. These black edges are neighbors of the black edge (x,y) on a black-counterpart
cycle (passing through the vertices u, z, z, y, t,v), so they have the same label [ which
is different from the label of (x,y). Therefore, the endpoints of the gray edge es have
identical labels. We define a new graph H' as the graph H with vertices z,v, z,t
and all incident edges removed but with a single black edge (u,v) labeled | added
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(Figure 8(c)). The graph H' has 4(n—1) vertices, cpe(H') = ¢p.(H) black-counterpart
cycles, and cpq(H') = cpg(H) — 1 black-gray cycles; thus, cpg(H') = n — 1+ cp(H')
and the induction applies. 1]

To complete the proof of Theorem 7 we need one more theorem.

THEOREM 11. For a singular genome P and a perfect duplicated genome Q) with
¢(P,Q) = |P|/2+ be(P),

e Q = R® R if and only if parity(P) = 1;
e Q = 2R if and only if parity(P) = 0.

Proof. According to Theorem 2, the graph G(P,Q) has either a single gray-
obverse cycle (i.e., @ = R® R) or two symmetric gray-obverse cycles (i.e., @ = 2R).
Theorem 9 implies that all gray edges in G are even (i.e., have identically labeled
endpoints) for every alternating 01-labeling of black edges of P.

Case 1. Graph G has a single gray-obverse cycle ¢. Consider an arbitrary vertex
v in G and its counterpart T. Vertices v and T break ¢ into two paths: ¢’ (from v to
7) and ¢’ (from T to v). For every path (cycle) ¢ denote coqq4 as the number of odd
obverse edges in c¢. Note that obverse edges are evenly divided between ¢’ and ¢”, i.e.,
for every pair of obverse edges connecting counterpart vertices, one edge belongs to ¢’
and the other edge belongs to ¢”. Therefore, ¢/ ;; = c/,;. Note that the start (vertex
v) and the end (vertex ¥) vertices of path ¢’ are labeled differently. Since the total
number of odd edges is odd for every path with differently labeled ends, and since all
gray edges are even (Theorem 9), the total number of odd obverse edges in the path
¢’ is odd. Therefore, coqq/2 = c, 4, is odd, implying that parity(P) = 1.

Case 2. Graph G has two gray-obverse cycles ¢’ and ¢”. Note that obverse edges
are evenly divided between ¢’ and c”; i.e., for every pair of obverse edges connecting
counterpart vertices, one edge belongs to ¢’ and the other edge belongs to ¢”’. There-
fore, ¢ 44 = clyq- Since the total number of odd edges in every cycle is even, and since
all gray edges are even (Theorem 9), the total number of odd obverse edges in every
cycle is even. Since ¢ ;,; is even, the overall number of odd obverse edges is a multiple
of 4, implying that parity(P) = 0. d

For a singular genome P with parity(P) = 1 Theorem 11 implies Theorem 7,
while for a singular genome P with parity(P) = 0 it implies that there is no genome
R for which ¢(P,R® R) = |P|/2 + b.(P). In the latter case, there exists a genome
R and a labeling of P and 2R for which ¢(P,2R) = |P|/2 + b.(P) (Theorem 4).
The genome 2R can be transformed into a labeled genome R ® R with ¢(P,R® R) =
¢(P,2R)—1 = |P|/2+b.(P)—1 (Theorem 5). This completes the proof of Theorem 7.

5. Genome halving algorithm. The classification of circular genomes leads
to the following algorithm for the weak genome halving problem.®

1. For a given duplicated genome P, find a perfect duplicated genome R® R such

that ¢maz (P, R®R) = |P|/24b.(P) (Theorem 4) and decompose G'(P, R®R)
into the maximum number of black-gray cycles [1].

2. Find a labeling of the genomes P and @ (Q = R® R or Q = 2R) and a break-
point graph G(P, Q) inducing the maximum black-gray cycle decomposition
of G'(P,R ® R) (Theorem 2).

If @ = R R, then output the breakpoint graph G(P, R ¢ R).
4. If @ = 2R and P is nonsingular, then there is a paired component in G'(P,
R @ R) with a single interedge (Theorem 4) that corresponds to two gray

@

6The algorithm outputs the breakpoint graph G(P,R @ R) (in addition to the preduplicated
genome R). This allows one to reconstruct a sequence of reversals transforming R @ R into P with
the reversal distance algorithm.
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edges (z,y) and (Z,7) in G(P,2R). Find a labeling of the genome R @& R for
which ¢(P,R® R) = ¢(P,2R) (Theorems 5 and 8) and output G(P, R & R).

5. If @ = 2R and P is singular, then parity(P) = 0 (Theorem 11). Find a
labeling of the genome R® R for which ¢(P, R®R) = ¢(P,2R)—1 (Theorem 5)
and output G(P, R ® R).

We illustrate the algorithm for a genome P = 4+a + b — a — b (assuming a fixed
labeling of P as (+aj + b1 — ag — b2)) using Figure 5. At step 1, we use the algo-
rithm from [1] to construct R = +a + b such that the contracted breakpoint graph
G'(P, R®R) (Figure 5(a)) has a black-gray cycle decomposition with | P|/2+b.(P) = 3
cycles (Figure 5(b)). At step 2, we find a breakpoint graph G(P, Q) (Figure 5(c)) in-
ducing this cycle decomposition (see [1]). The breakpoint graph G(P,Q) has two
gray-obverse cycles (Figure 5(c)), thus implying that @ = 2R. Since the genome P
is singular, we proceed to step 5 and perform a transformation of Q = 2R into a
new genome, as described in Theorem 5. We first find a pair of gray edges from two
different cycles in 2R as described in Theorem 5, for example, a pair of edges labeled
(a",b') in Figure 5(c). Afterwards, we replace these edges with a new pair of gray
edges also labeled (a”,b?), as shown in Figure 5(d). This operation transforms two
cycles in the genome @ into a single cycle (unichromosomal genome) that we represent
as R ® R. According to Theorems 5 and 7, this genome represents a solution to the
weak genome halving problem.

The first two steps of the genome halving algorithm can be implemented in
O(|P|?) time (see [1]) while the remaining steps fit this time bound as well. In
practice, our genome halving software takes less than a second to halve a “random”
duplicated genome with 1000 unique genes on a standard Intel PITI-900MHz CPU.

6. Conclusion. While whole genome duplications in multichromosomal ge-
nomes are well established, there are relatively few examples of whole genome dupli-
cations in unichromosomal genomes. Undoubtedly, bacterial genomes have undergone
a large number of duplications, but it is difficult to distinguish between partial and
whole genome duplication scenarios in the case of these genomes (Coissac, Maillier,
and Netter [13]). Matters are further complicated by the fact that even a few re-
arrangements can quickly “randomize” gene orders in bacterial genomes (due to a
relatively small number of genes).

Recently, Sugaya et al. [38] studied Cyanobacterium Anabaena and came to the
conclusion that it has undergone whole genome duplications rather than a series of
(tandem) segmental duplications. Indeed, the arrangement of genes in Cyanobac-
terium Anabaena points to whole genome duplications as the most likely scenario (it
also has an unusually large genome as compared to other organisms in the Cyanobac-
teria phylum). Also, the recent discovery and sequencing of Acanthamoeba polyphaga
(the largest known virus to date) revealed an unusually large number of duplicated
regions that point to a large duplication event (Suhre [39]). While it remains un-
clear whether this large segmental duplication represents whole genome duplications
or extremely large partial duplication(s), one can argue that it is only a matter of
time until ongoing sequencing efforts will reveal traces of whole genome duplications
in many unichromosomal (bacterial and viral) genomes.

These recent discoveries raise a new algorithmic challenge that we refer to as
the partial genome duplication problem. Let R be a genome with n unique genes
(represented as a signed permutation) and R’ be a set of m consecutive genes in
this genome. We define R @ R’ as a perfect partially duplicated genome. Let P be a
genome with n +m genes in which m genes from R’ are duplicated and the remaining
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n —m genes are unique. Given a genome P, the partial genome duplication problem
is to find a perfect partially duplicated genome R @ R’ such that the reversal distance
between R @ R’ and P is minimal.
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