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Semiclassical dynamics with quantum trajectories: Formulation
and comparison with the semiclassical initial value
representation propagator

Sophya Garashchuk and Vitaly A. Rassolov
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208

(Received 7 October 2002; accepted 14 November 2002

We present a time-dependent semiclassical method based on quantum trajectories.
Quantum-mechanical effects are described via the quantum potential computed from the wave
function density approximated as a linear combination of Gaussian fitting functions. The number of
the fitting functions determines the accuracy of the approximate quantum potg@@g). One
Gaussian fit reproduces time-evolution of a Gaussian wave packet in a parabolic potential. The limit
of the large number of fitting Gaussians and trajectories gives the full quantum-mechanical result.
The method is systematically improvable from classical to fully quantum. The fitting procedure is
implemented as a gradient minimization. We also compare AQP method to the widely used
semiclassical propagator of Herman and Kluk by computing energy-resolved transmission
probabilities for the Eckart barrier from the wave packet time-correlation functions. We find the
results obtained with the Herman—KIluk propagator to be essentially equivalent to those of AQP
method with a one-Gaussian density fit for several barrier widths2003 American Institute of
Physics. [DOI: 10.1063/1.1535421

I. INTRODUCTION cedure, where the nonclassical effects come from quantized
initial conditions for the classical trajectories, and it is shown

to give accurate description of total and integral cross sec-
s and thermal rate constants in reaction dynamics, com-

Quantum-mechanicalQM) effects are essential in de-
scription of nuclear motion. They become especially signifi-
cant when hydrogen atoms or multiple electronic states arlon

involved, such as in solvation dynamics, in proton transfePar€d ! ator
processes in biomolecules, in photochemistry. Due to thd N® Wigner phase-space transform of the quantum Liouville

nonlocal character of QM traditional methods of solving thee_q“at'Oﬁ gives formally exact representations of QM densi-
time-dependent Schdinger equatiofSE) are based on spa- t|gs and serves as the basis for various semiclassical and
tial grids, basis sets of functions or discrete variableMixed quantum-classical methods, where the second and/or
representatioh. The numerical efforts for these exact QM higher order terms ik are neglt_ecteafs _
methods scale exponentially with the dimensionality of a Another class of semiclassical methods is based on the
system. Despite many recent advances in theoretical and ngtationary phase approximatidthe limit of #—0) to SE.
merical approaches and in the computer facilities, the currenthe original formulation of Van Vleck proposed in 1928,
state-of-the-art exact full-dimensional QM calculations haveeXpresses a semiclassical propagator in terms of classical
been performed for a few four-atom systems. In contrast toroot” trajectories connecting points in coordinate space
QM, classical mechanics is local and the classical equationdithin a given timet, whose contributions depend on their
of motion for particles can be solved independently. Method$tability and classical phase. This formulation with correc-
of molecular dynamics, where density is represented as aipns of Gutzwiller and Maslo¥;" with its multiple imple-
ensemble of classical particles, are applicable to systems @fientation problems of root search, coalescing trajectories
thousands of particles such as liquids and biosystems. Thand divergent amplitudes, though used extensively in theo-
exponential scaling of exact QM methods with the dimen-retical analysis, never became a practical computational
sionality and the importance of QM effects motivate devel-method.
opment of new approaches, that combine the simplicity of A more successful semiclassicéC) propagators are
classical dynamics with the rigor of quantum mechanics. recast as the initial value representati®R) propagators

It is natural to take advantage of the mass difference offor a comprehensive overview see Ref) ahd are based on
electrons and nuclei, the Born—Oppenheimer separatiorihe phase space transformation of an initial wave function
when describing molecules. First of all, it is reflected in theand on the sampling of phase space with initial conditions
concept of nuclei moving on a potential electronic surfacefor classical trajectory propagation. Trajectories are propa-
(or several coupled surfagesFurther exploitation of this gated independently. The classical action and stability matrix
separation leads to quasiclassical and semiclassical methodre used to determine the phase and amplitude contributions
based on description of nuclear dynamics in terms of classief trajectories. Better SC—IVR methods have the sdine
cal trajectories yet incorporating some QM effects. A very—0 limit as SE, i.e., the Van Vleck—Gutzwiller propagator.
successful quasiclassical trajectory methiecanad hocpro-  Currently, the most widely used SC-IVR method is the
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propagator of Herman and KIuldK).1>*3In the last several few-Gaussian fit can be performed efficiently and produces

years the HK method was successfully applied to a widéAQP, that will describe dominant quantum effects for sys-

range of problems such as double-slit experiments, photodéems characterized by the small valuefigfwhere semiclas-

tachment, reactive scattering, nonadiabatic and condenseital methods can improve classical results. The AQP formu-

phase dynamicgfor instance, Refs. 14—-180ne of the lation is somewhat reminiscent of the SC—IVR methods, yet

drawbacks is that SC—IVR methods are formulated in phasthere is a crucial difference: SC—-IVR propagators are based

space in terms of oscillatory integrals over trajectories. Toon the stationary phase limit of SE, whereas our method has

alleviate this problem various techniques of smoothing oexact SE as its limit of high accuracy AQP.

cancellation of the integrand were suggested? Another In addition, in the present method we are able to treat the

problem is that the stability analysis is expensive and reweights of trajectories as constant in a course of dynamics of

quires the second derivatives of a potential, which for a gena closed system. This ensures conservation of mass and is

eral chemical system is not available analytically. A morereflected in the continuity equatio8). By using constant

fundamental problem of SC methods is that it is difficult to weights we avoid errors associated with the numerical deter-

assess and reduce the inherent semiclassical error. mination of the velocity gradient and time integration of the
A new trajectory-based alternative to traditional quantumcontinuity equation and we are able to formulate the fitting

dynamics is based on the Bohmianquantum trajectories procedure efficiently.

(QTs) that solve the hydrodynamic form of <2EThe wave The formulation and the fitting procedure are outlined in

function is represented in a set of “particles” or “fluid ele- Sec. Il. In Sec. Ill we present energy-resolved transmission

ments” that move according to the classical equations oprobabilities, determined from the wave packet time-

motion and carry along certain density. The nonlocal QMmcorrelation functions for a one-dimensional Eckart barrier of

character enters this formulation by means of ¢uantum  several widths controlling the importance of QM effects, and

potential (QP), which depends on the density and its deriva-compare AQP to the SC—IVR method of Herman and Kluk.

tives. QP governs the dynamics of the “particles” along with Section IV concludes.

the classical external potential. One advantage of this de-

scription comes from the fact that the amplitude and the

phase of the wave function are S|OW|y varying fUI’]CtiOI’]S“_ DESCRIPTION OF QUANTUM POTENTIAL

compared to the wave function itself. Another advantage is ) o )

that the solution of SE is based on trajectories, rather thafi- Reformulation of the Schro dinger equation

grid points, and therefore the scaling bottleneck is avoided. Equations for the Bohmian “particles” are based on the

In the last few years several practical ways of using quantumpolar representation of a wave function in SE,

trajectories have been sugggzé:[ezds, such as local least-square | |

fit, adaptive and moving grids; “® methodology of using _ o Y svarcy o

QT within the Wigner representation, dissipative and nona- Yy A(x,t)exy{ﬁ S(X't)) p(x’t)EXp(ﬁ S

diabatic dynamics have been also develofed! Applica- (1)

tion to several multidimensional model problems, whereynare amplitudeA(x) and phaseS(x) are real functions.

time evolution was accomplished with a small number ofafier this substitution, transformation into the Lagrangian
trajectories, is encouraging. However, for general problems.ame of reference and identification o= mv=VS(x,t),

accurate implementation of the hydrodynamic SE, which issg pecomes equivalent to a system of equations
nonlinear partial differential equation, seems impractical. A

simple examination of one-dimensional systems with a dS(x,t)_va

barrier? shows, that QP becomes a rapidly varying function a2 VU 2
of large amplitude and is responsible for complicated and
unstable dynamics of QTs, whenever the system undergoes dp(X,t) — —Vevp(x.t) 3)

drastic changes, such as a bifurcation. For example, analyti- dt
cal solution for the Eckart barrigr has numerically poor
convergence, when used for propagation of QTs representi
a bifurcating wave packet. An illustrative example of highly 72 V2A(X,1)
complicated pattern of QTs for a surface scattering problem U=— 2m AL
can be found in Ref. 34. QTs were originally proposed for '
the purpose of interpretatiGhand were also used in the Equation(2) is the Hamilton—Jacobi equation of a particle
context of nonadiabatic dynamics as a theoretficadnd a  of massm moving under the influence of the classical poten-
practicaf® tool with QP neglected, except for the surfacetial V and the quantum potentil (% is set to one in expres-
coupling terms. sions below. Position and momentum of the particlg,

In this paper we present the idea of using #pmproxi- =x(t) andp=p(t), define a quantum trajectory and can be
mate quantum potentialAQP), rather then exact QP. The found from Hamilton's equations of motion. Equatidh)
central step is to fit the density in terms of Gaussian funcimplies thatp(x(t),t) remains a single valued function at all
tions globally. The fitted density is used to compute QP. Thaimes, i.e., the quantum trajectories do not cross. After initial
accuracy of the fit controls the degree in which approximateliscretization of the density in a set of particles, a certain
description of QP approaches exact quantum dynamics. Amount of density within a volume elemeng((t)

n\Qihereu is the nonlocal “quantum” potential

4
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= XI(1) 5xA(t) 5xO)(1)- -+ is associated with each trajectory
and this quantity, its weighw, is conserved as shown in the

Appendix,

p(X;,1) 8Q;(t) =w; . ) 2
Conservation of the total density or the wave function nor- -_g
malization is §

O

2 (i DO (H=2 wi=1. (6)

We will explicitly use Eq.(5): the weightw; associated with
each trajectory remains constant in a course of dynamics. We
do not solve Eq(3) to determinep(x,t), which is in contrast
to the standard implementations of the hydrodynamic form
of SE (e.g., Refs. 24, 25, and R#vhere the density is found
from the continuity equation. Our approach also makes cal-
culation of expectation value of operators especially simple:

(O)=3,w;0(x) with summation going over trajectories.

Coordinate

B. Using Gaussian functions to fit QP globally

The effects of QP on dynamics of trajectories can be
broadly described as twofold. Consider neglecting QP, which
is superficially an#? term, in Eq.(2) as it is done in the -10
Wigner approach. For a Gaussian wave packet with a linear '

. . 0
phase at=0 in the absence of external potential, the mo- Time
menta of all trajectories will remain equal for all times and

QM propagation will not be reproduced. Thus, one effect ofF!G. 1. Trajectories in the harmonic potentiéd) quantum(dashed ling
and classicalsolid line) trajectories for a narrow initial wave packeh)

QP is tg pI’OdIUC? a spread in moment?‘j or to “restore th(:"quantum(dashed lingand classicalsolid line) trajectories for a wide initial
uncertainty principle on the level of position and momentumwave packet.

of Bohmian trajectories. A similar situation occurs for a
Gaussian wave packet in a harmonic potential, a system
which is reproduced exactly by the Wigner and HK methods

The two sets of trajectories—quantum trajectories with QI:]|m|t of the large number of the fitting functions and trajec-

included and classical trajectories with QP neglectéd ( tories is equwa_le_nt to full QM' By select_lng the maximum
a A - .+ number of the fitting Gaussians, from which an approximate
=0)—are shown in Fig. ). If the initial wave packet is

._quantum potentialAQP) is derived, we can control the ac-
narrow compared to the ground state, the effect of spreadin ) . o
. . . . uracy and the computational effort. This strategy will give a
in momentum is large, and the two sets of trajectories ar€

quite different. Another effect of QP is manifested when Wesemiclassical description with a well-defined full QM limit.
examine trajectories for an initially broad wave packet, that

are shown on Fig. (b). Now the effect of spreading in mo-

mentum is small. Overall, the quantum and classical trajecC- Formulation of the minimization problem

tories look similar except at the focal points, where QP gen- | order to determine AQP, at each propagation time step
erates a force that prevents quantum trajectories fronye approximate the densify(x) with a linear combination

crossing. For a general system, QP and the corresponding Gaussian functiong, = exp(—a2(x—X.)?) as(omitting t in
quantum force become large and rapidly oscillatory in thesene argument

“avoided crossing” regions and lead to complicated and un-
stable Qynamlcs. Small errors in QP will _affect. subsequent p(x)~f(x)=2 Cﬁgn- @
dynamics and lead to the crossing of trajectories and error n
accumulation.

Therefore, we find QP from a global fit of the density,
that will be insensitive to local errors and will be performed

The approximation can be of arbitrary high accuracy and is
nonunique due to over-completeness of Gaussian basis. The

fitting procedure is outlined for the one-dimensional case,

once f(_)r . traj_ectones. C_;aus_smns are chosen as fitting fyn%nd the multidimensional generalization is straightforward.
tions since a single-function fit readily generates correct tlm(we find a set ofg,’s, i.e., their overall number and their
evolution of a Gaussian wave packet in any parabolic pOtenbarameters={c x“ ’a c, X, a v from the minimi-
tial (including time-dependent or locally quadratic potentials_ . " =" functliiangF SARCEC R

relevant for dynamics of nuclgias do the most successful ’

semiclassical methods. Gaussian basis is over-complete and,
thus, suitable to describe any localized nonzero density. The

F=j (p(x)—f(x))? dx, ®
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by solving a set of equations for the components of its graAQP procedure using constant in time weights is formally
dientG insensitive to crossings. The overall error remains small and
JF controllable by the parameters of the procedure, such as con-
=—=0 (9)  volution width 8 and the overall number of trajectories.
ISk Second, equation on the gradient that we solve, the con-
or voluted version of Eq(10) G=0, is linear with respect to the
(%) af(%) r_number qf _tra_ject_ories. However, in our current implementa-
f p(X) dx= f —f(x)dx. (10) tion of minimization we use Eq.12) with the double sum-
ISk ISk mation over trajectories to monitor the accuracy of the fit and
Note, thatp(x) appears on the left-hand side of the expresio decide when to add new functions. This can be done less
sion above in combination wittix. This combination can be frequently than the time propagation step. In the semiclassi-
replaced withw; from Eq. (5) for discrete trajectories and cal description of AQP with a few fitting Gaussians
p(x) will not be required explicitly. We solve Eq10) itera- (SC-AQB in Eq. (7), 8 can be chosen very large. Strong

tively by minimizing the norm of the gradient||G||  cutoffs can be imposed on the double sum in E®) to
=3,|G\|?. The criterion is||G||<e, where e is a small make evaluation oF linear with the number of trajectories.
constant(typically on the order of 10%). Moreover, the double sum need not to be evaluated at all,
once the upper limit on the number of fitting Gaussiatg,
D. Minimization algorithm is reached. The accuracy of the calculation can be estimated
) without Eq.(12) from the normalization of (x) or from the
1. Convoluted density total energy of the system, which is constant for nondissipa-

Discretization of the initial wave function in a set of tive systems. Computation of energy is linear in the number
“particles” means thap(x) is defined only at the position of of trajectories.
trajectoriesx; . We find that the fitting can be done much
more efficiently, once we define a continuous function of

p(x)—the convoluted density(x), 2. The iterative procedure
~ B f 2 We solve the convoluted version of E4.0) by iterative
()= \/:r exp(— B(X=Xi)7)p(x;)dx quadratic technique with the full matrix of analytical second
derivatives, derived from Newton’s method to search for a
=D exp(— B(X—x)DW; . (11)  zero of the gradient’ The expansion of the gradient near its
[ minimum is
Here anq below tilde .symbol denotes qugntitie; referred t_o A& G~Gy+A (s—5)=0. (13)
convolution. Summation goes over all trajectories. Equation
(8) becomes A'is a matrix of second derivativesy; = 9?Fl 9s; Jsj, pis a
vector of the input parameters a@j} is the corresponding
E= /2_52 exp( _ E(x-—x-)z)w-w- gradient, taken from the previous iteration or previous time
T 4] 2 o step. The updated parameters are

s=5—A1G,. (14)

—2JE(X)T(X)dX+f7(x)2 dx, (12
Inversion ofA is performed as the singular value decompo-

where all the integrals are analytical. The equationGois  sition, with a cutoff parameter imposed on the matrix eigen-
transformed in a similar way. values. The difference is that all negative as well as small

The fit to the original density(x) can be rigorously positive eigenvalues are replaced with the cutoff value (10
restored, provided the fitting Gaussiagsare wider than the in examples beloly since they indicate thab is not qua-
convolution Gaussian,ggo{(X,y) = W exp( B(x—y)d). dratic in some of the components fand large increments
The original fit f(x) is obtained, if we treay, as being should be taken in these directions. Furthermore, in this case
convoluted in the same way g€x). The relation between the new valueF(s) obtained with parameters of E(lL4) is

the convoluted and original parametesi=a2z and c2  used to scale the increment of parameters by a constant
—T2\Z with z= B/(B—732), imposes the restriction on the Assurr;]mg a quadratic expansion over the scaling parameter
width parametersa< 3. In practice, forf(x) we include ¢ /¢ "&V€

gn’sz)thit siatisfy this condition, by assuming’= /(A F(s)=F(sp) +dyoo+dp03, (15
+a,), A>1. -

Two more issues related to the suggested minimizationvith d;=—GgA Gy and op=1, from which dz=(F(s)
problem are worth emphasizing. First of all, the exact QM—F(sO))/og—dl/ao. If d,>0, the minimum ofF is ob-
trajectories are prevented from crossing by the precise forcdsined foro= —d;/(2d,) and parameters are readjusted ac-
exerted by QP. An AQP, in general, cannot prevent trajectocording tos=s,— oA~ 1G instead of Eq(14).
ries from crossing. It is, therefore, imperative that such cross- In application below, one or two iterations were suffi-
ings do not lead to singularities in the quantum force. Thecient to updates to satisfy||G||<e€, when the initial guess
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came from the previous time step and the number of the I ' T ' '

fitting Gaussians did not change, and 5-50 iterations other- 0.5'_ a) k ]
wise. L _
04 -1
3. Addition of the fitting functions § 031~ oM 7]
Propagation of a Gaussian wave packet starts with a 02— — Ng=2 —
single g, in the fit. The number of fitting Gaussians is in- — Neis | _ 7
creased each time, whén (or other indicator of accuracy 0'1__ W= ]
such as total energy or normalization of the Bixceeds a 0 . l : ' -
small constant, up to a maximum number Nf. Fitting * OCoordinate * ’

functions, whose amplitudes become small compared to the 1

desired fitting accuracy in the course of propagation, are re-

moved from the fit. 0.01
In order to have a good initial guess for the newly intro-

duced fitting functions, we examine a density deviation = 0.0001

5p(x)=p(x) —T(x;), defined at the position of trajectories, §

and generate a list of possible additional Gaussians: Theirg . 4
centersX, are located at the maxima @ip(x;), width pa- =
rametersa? are estimated from its curvature and coefficients .o
c2 from its amplitude. In order to reduce the effect of con-
volution on the curvature estimation, the curvature is deter- |,

0 0.2 0.4 0.6 0.8

mined from the values op(x;) at the positions of neigh- Time
boring trajectories and not from the analytical derivatives. _ _ _

We have tried selecting new fitting Gaussians from thisf'C- 2: (@ Density of the wave function at=0.9 computed wittN, =2 and
list (one or two per propagation steaccording to their am- Ng=16 fitting Gaussians is shown along with the QM density. The inset
'S_ 5 per p } pag ﬂC. g : shows an enlargement of the interference regibnThe error of the density
.pl'tUdeS.C.n- In the regime pf larg@y this resulted in ChOOS- fitting, functionalF as a function of time is shown on the logarithmic scale
ing additional fitting functions, that tended to describe fea-(eft ordinate for Ny=2 (thick dashed linpand N,=16 (thick solid line.
tures Of?) which were too narrow for deconvolution. We The relative error_in the total _enerq;ight ordina@e} is ;hoyvn on the linear

. . L. . . . scale forNg=2 (thin dashed linpand Ny= 16 (thin solid ling.
have also tried using positive and negative contributions
from fitting functions,p~Xc,g,,. This proved to be poorly
convergent due to cancellation of contributions and could _
result in regions of the negative density fit. We have settled\: Density

on choosing an additional functiogy,; according to a re- Let us consider a scattering of a wave packet, using the
duction of the functionaF. A Gaussiarg,,,; which lowers  AQP method. The initial wave packet,

F the most appreciably, i.e., has the largest overlap

= 2,}/ 1/4
J—6p(X)gn+1(X)dX, is selected and its parameters are ¢A(x,0)=<7) exp(— y(X—Xa) 2+ 1Pa(X—Xa)),
added to the initial guess in the optimization procedure. We (16)

h the initial for its coefficient, ;=p(Xn1 1) t
choose the initial guess for its coefficient. , =p(Xy1) to is located on the left of the Eckart barriey(x)

avoid introducing functions with very small compared to > L
density amplitudes that optimize to zero. In the regime of;Plcgg’;4 ](ckx).;I'er p_arz_imhetgrs of the br?rn@,— 16'?. andP
many fitting functions, generation of initial guess for new "™ ™ orm=1, mimic hydrogen exchange reaction. a-

Gaussians can affect to which particular minimum optimiza—ramlet(;ers arelngVfgllg atom%?humts, with tl?et unit of ?me
tion converges. Fortunately, for SC—AQP in which we are>caled Dymy (~ a.u). The wave packet parameters

primarily interested in, optimization is quite insensitive to &€ 1da=—~3.0pa=6.0.y=6}. Figure 2a) shows the fit of
- the densityf(x,t) at timet=0.9 obtained with a maximum
the initial guess. S .
number of fitting GaussianNy=2 andNy=16, as well as
the accurate QM density computed with the split operator
Il RESULTS AND DISCUSSION method for time-dependent SEIn both AQP calculations
the initial number of QTs was 199, the convolution param-
In this section, first, we illustrate the AQP method imple- eter was3=3vy andA=2.5. Up to two new fitting functions
mented with large and small number of fitting Gaussians omer time step were allowed. Additional trajectories were in-
a one-dimensional scattering of a wave packet on the Eckattoduced in the barrier regioix| <2, when the distance be-
barrier. Then we formulate the time-correlation function oftween two adjacent trajectories increased during the wave-
two wave packets within AQP framework. Finally, we com- packet bifurcation such, that their overlap dropped befow
pare the energy resolved transmission probabilities obtainee 0.975 as described in Sec. Ill B. Ting =2 fit reproduces
with one, two, and four Gaussians in AQP to those obtainedhe bifurcation of the wave packet in general, but does not
with the SC-IVR method of Herman and Kluk. describe the small amplitude lobes due to interference of the

0.006

T
=5
f?

0.002

Energy error

-0.002
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incoming and reflected components @éf(x,t). The high- o 2
accuracy calculation with up t®l,=16 fitting Gaussians N(E)=7I(E)fo (yelexp(—1HY) |y expIEDE |
captures this pattern. The error of the fit, which is a value of 17)
the functionalF, is shown of Fig. ?). Over the entire time-

interval F is smaller than 0.005 fa,=2 calculation and it
is smaller than 10° for Ng= 16 calculation, with the target
value being set to IC in both cases. The relative error of
the total energy is also shown on this figuttee right vertical
axes. It is under a few tenths of a percent for both calcula- <¢B(0)|¢A(t)>22 Pa(x,0)exp(1S) Vw; dQ;. (18

tions.

We find, that while propagation with AQP obtained with We choose this expression over the alternatives, that can
a few fitting Gaussians is fairly robust, the long-time propa-be obtained from Eq5), becauseal();, defined as an aver-
gation with a high-accuracy fitting becomes expensive anége distance to the adjacent trajectories, enters as a small
unstable. We use the velocity Verlet algoritfitto propagate multiplicative factor. Also note, that for this problem the
trajectories, which gives bounded energy error and is timdimit of U=0 will provide a poor starting point faK(E). It
reversible for classical trajectories. Due to the large spacwill be always zero forp,< Jﬁ , but not a step function
and time variations of QP, the overall dynamics of quantumwhich was the case for the wave-packet probabilities.
trajectories critically depends on the time step, and very Equation(18) implies a summation of the sign-changing
small steps may be needed, even if QP were exact. For traerms which is similar to the summation over the classical
jectory propagation using AQP withl;=16 functions we trajectories with phases and amplitudes in SC—IVR methods.
had to reduce the time step size by a factor of 8 compared tlm SC—IVR calculations one usually performs a Monte Carlo
Ng=2 calculation, for which the step size wagk=1.25 sampling in phase space, and the sign problem presents a
%1073, For high accuracy fitting the problem is that small major difficulty. In principle, since with AQP we compute
errors of AQP are reflected jnand are reproduced by the fit. the fitted densityf (x,t) we can replace the summation in Eq.

In general, QP generates smooth flow of trajectories in coort18) with an integral(eliminating the need for volume ele-
dinate space and pushes them apart if they tend to cross. Theents as well if we define the action functioSg(x,t) for
artificial oscillations ofp become smoothed out at the ex- all xin a way that is consistent with the density approxima-
pense of significant reduction of the step size. Clearly, som#0ns. The natural way to do this is to use a local polynomial
stabilization technique is needed for the long-time high-least square fit of5(x;) aroundx;, weighted by the same
accuracy AQP propagation. Energy conservation might bgonvolution Gaussiargconz\/,g_/# exp(-B(x—x)?) as in
useful to ensure smoothness of the fitting parameters in timea(x,t). A single second order fit is exact for parabolic po-
For SC-AQP computed from one or two Gaussian densityentials. Integration of the approximate correlation function
approximations, both fitting and propagation are quite stableyith f(x,t) andSs;;(x,t) can be carried out analytically. The
since with a limited number of fitting functions—one per difference between this approach and EL) is noticeable
channel—there are no functions available for fitting of small-in SC-AQP calculations, since using approximate density
amplitude local deviations . and phase goes beyond using AQP for time propagation, and
it vanishes in the high accuracy regime.

For Eq.(18), however, with the summation going in co-
ordinate and not in phase space as in SC—IVR methods, the
problem was a mere absence of trajectories with nonzero

In our preliminary work® we computed the wave packet contributions at long times, if we propagated trajectories that
transmission probabilitiedraction of the transmitted density \vere equally spaced &t=0. This was remedied by adding
as a function o,) by summing over the weights of trajec- trajectories in the region of bifurcation as they spread far
tories in the appropriate subspace. The required propagatidpart, taking into account the convolution paramegerAt
time was quite short and the results did not involve phasesime t a trajectory was added at;(t)+x;,,(t))/2 if the
volume elements, etc., that made them robust. We expect thag{erlap,; = exp(— B(X, 1(t) —x(t))?), dropped below a certain
this will be true for expectation value computations. HOw- constant. The remaining parametepsS andp determining
ever, for quantities that involve both density and phase they, for this additional trajectory were found from the qua-
situation is different. SC—AQP generates approximate dydratic fit over four nearest trajectories. If the AQP parameters
namics of QTs, which will result in inaccurati); and, con-  as functions of time are saved, one can also define the addi-

sequently, in inaccuratp(x;,t) found from Eq.(5), espe- tional trajectories at=0 without fitting or interpolation
cially if trajectories cross and(}; is small. Therefore it is  steps.

advantageous to extract information from approximate dy-
namics avoiding division by}, or bypassing(x;,t) alto-
gether.

As an example, we will look at the energy-resolved

where|#,) and|yg) are the reactant and product wave pack-
ets, respectivelyn(E) is the appropriate energy normaliza-
tion function. In terms of QTs the correlation function is

B. Probabilities

C. Comparison with the propagator of Herman

transmission probabilities(E), which are the central quan- and Kluk
tity of interest in reactive scattering. We compi€E) from In order to assess the performance of SC-AQP method,
the time-correlation function of two wave packets we compare it to the SC-IVR propagator of Herman and
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TABLE |. Cumulative deviation of AQP and HK probabilities from the
analytical result, AN)?; the largest error in the fitting procedur€; the
initial location x, and total propagation timg,,, for three values of the
barrier width\.

A 0.817 44 1.3624 1.907 36
Method (AN)?

HK 0.021 0.058 0.109
Ng=1 0.015 0.047 0.098
Ng=2 0.004 0.025 0.053
N,=4 0.001 0.004 0.038

Maximum value off

Ng=1 0.140 0.160 0.165
Ng=2 0.012 0.014 0.013
N,=4 0.009 0.005 0.008

Propagation parameters
Xa -5.0 -3.0 2.2
e 2.5 3.0 5.0

We computed probabilities for three widths of the Eckart
barrier: A =0.81744 corresponds to a more “classical” case
of a wide barrier\ =1.362 40—to the hydrogen exchange
reaction and\=1.907 36—to a more “quantum” narrow
D 16 20 barrier. The initial location of),| ¥g), Xa= —Xg, and the
Energy total propagation time, listed in Table |, depend on the value
of A\, since the wave packets have to be set up in the
FI(_3. 3. Transmission propabilitw(E), c_omputed USinQ\lg:]. (_Bauss?an asymptotic region ol att=0. The initial momenta area
(thick solid, Ng=2 Gaussiangdashed ling and Ng=4 Gaussiangthin =pB=6 and y=6 for all three cases. The propagation pa-

solid ling). The analytical result is shown with circles and the HK probabil- . . .
ity is shown with triangles. The three panels describe three different potenf@Meters are the same as in the density calculation of Sec.

tials: (a) “classical” wide barrier\=0.817 44, (b) hydrogen exchanga [l A. The time step folNg=1,2 wasdt=1.25x 10 2. It was
=1.362 40, andc) “quantum” narrow barrierh =1.907 36. Note different  reduced by a factor of 4, 8, and 16 f(Ng=4 with A
energy range for panelg), (b), and(c). =0817 44, 1.362 40, 1.907 36, respectively. Deviation in

probabilities for the AQP and HK probabilities from analyti-
cal N(E) and accuracy of the density fit and energy conser-
Kluk. The semiclassical correlation function computed withvation are summarized in Table I.
HK method has a similar structure as the formulation in  For all three values of we see a remarkable agreement

terms of quantum trajectories: of the one-Gaussian AQP and HK probabilities. Their agree-
ment with the exact result is better for more classical sys-
<¢B(O)|‘/’A(t)>HK:f f dadp(¢s(0)|g(a:,py) tems. The agreement bf,=2 andN,=4 AQP probabilities
with the analytical QM result is improved comparedNg
X exp(1S3p0{9( Ao, Po)| #a(0))Rypt - =1 AQP calculation. The only case when the qualityNpf

=4 results is not apparently superior to thaf\gf= 2 results
(19 is for the narrow barrier, though the cumulative deviation,

9(a,pr) = (y/ m) Yexp v2(x— ) >+ 1p(x—qy)) are  (AN)?=[(N(E)—N(E)°™)2 dE integrated over E
Gaussian functions with the width parametercconstant in  =[0,30], decreases foN;=4 for all barriers as seen from
time and @;,p;) are the coordinates of a trajectory with the table. Clearly, four fitting Gaussians were not sufficiently
initial conditions of @o,Po). Rgpt is @ complex prefactor close to the QM limit for this particular system, where QM
which is a function of the stability matrix elements of the effects are more pronounced.
trajectory; S, is the classical action. Integration goes over ~ The overall trend indicates that SC-AQP calculations
phase space. The transformation of the initial wave functiorcan efficiently and accurately describe semiclassical systems,
into phase space gives a momentum distribution to classicauch as in reactive scattering. Unlike the HK method quan-
trajectories, such that the uncertainty principle in the initialtum trajectories sample the coordinate space. The fitting of
conditions on trajectories is fulfilled. It is this transformation the density is performed once per time step for all trajecto-
att=0, that introduces QM effects into HK propagator. ries. Expensive calculation of the stability matrix, which re-

This statement is supported by the results of Fig. 3quires to solve Né equations Ny is the number of dimen-
where we showN(E) computed using AQP witiN=1,2, siong and a knowledge of the second derivative \bffor
and 4 fitting Gaussians and the result of the HK calculatioreach classical trajectory, is not needed. From the conceptual
in the region, wher®&l(E) is different from the step function. point of view, the drawback of QP methods compared to
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SC-IVR methods is that quantum trajectories have to bej dp(x,t) dsQ(t)
propagated simultaneously. But there are major advantagea;(P(X.t)fSQ(t)):5Q(t) T +p(x,t) at

AQP method allows easy error estimation, is systematically

improvable and has full QM as its high-accuracy limit. dp(x,t) dox@® 1

= 00(t) — . +p(x,t)( T

IV. CONCLUSIONS

dox(®
We have described a new approach to approximation of + BT er | OQU(L)
guantum dynamics. Our method is based on trajectory propa-
gation in the presence of approximate quantum potential dp

0, (A3)

—+p(t)V-V> sQ(1)

(AQP), and it has full QM as a limit of highly accurate QP T

and many trajectories. By using constant in time weights for

the trajectories, we avoid solving the continuity equation forwhere
the wave function density. This provides a convenient ex- So™
pression of expectation values and allows for an efficient V.VZE .

fitting procedure of AQP. AQP is determined from a global fit mooox™

of the density in terms of Gaussian functions. One Gaussian

approximation is exact for a Gaussian wave packet in anJhiS means that after discretizing the initial wave function
parabolic potential, a feature that it shares with the most/(x,0) through a set of trajectories with initial positiops},
successful semiclassical methods. velocities {v;=VS(x;,0)/m}, densities{p(x;,0)=A(x;,0)?}

We have also computed energy-resolved transmissiofnd corresponding volume elemefié{};(0)}, for each tra-
probabilities for a one-dimensional scattering system usingectory the amount of density within its volume element will
the time-correlation function of wave packets. One GaussiaR€ conservedp(x; ,t)€;(t)=p(x;,0)0Q;(0)=w;. In prin-
approximation provides good description of tunneling andciple, Eqs(Al) and(A2) give an independent way of finding
gives results identical to those obtained with the SC—IVRthe gradient of velocity and the volume element for a trajec-
method of Herman and Kluk. AQP determined from the dendory. In practice, their implementation might be quite cum-
sity fittings with multiple Gaussians, improves the agreemenbPersome, since it requires the second derivative of the quan-
of probabilities with QM results. We expect that a few tum potentialthe fourth derivative of the densjty
Gaussianperhaps, one function per chann8IC—AQP will
give an adequate description of semiclassical systems, such
as in reaction dynamics, and being systematically improv-
able and cheap will be well suited for treatment of multidi- 1; ~ Light and T. Carrington, Jr., Adv. Chem. Ph&4, 263 (2000.
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