
University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Faculty Publications Mathematics, Department of 

9-5-2002 

An extension of Elton's l(1)(n) theorem to complex Banach spaces An extension of Elton's l(1)(n) theorem to complex Banach spaces 

S J. Dilworth 
University of South Carolina - Columbia, dilworth@math.sc.edu 

Joseph P. Patterson 

Follow this and additional works at: https://scholarcommons.sc.edu/math_facpub 

 Part of the Mathematics Commons 

Publication Info Publication Info 
Proceedings of the American Mathematical Society, Volume 131, Issue 5, 2002, pages 1489-1500. 

This Article is brought to you by the Mathematics, Department of at Scholar Commons. It has been accepted for 
inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please 
contact digres@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/math_facpub
https://scholarcommons.sc.edu/math
https://scholarcommons.sc.edu/math_facpub?utm_source=scholarcommons.sc.edu%2Fmath_facpub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarcommons.sc.edu%2Fmath_facpub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu


PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 131, Number 5, Pages 1489-1500 
S 0002-9939(02)06651-0 
Article electronically published on September 5, 2002 

AN EXTENSION OF ELTON'S in THEOREM 
TO COMPLEX BANACH SPACES 

S. J. DILWORTH AND JOSEPH P. PATTERSON 

(Communicated by N. Tomczak-Jaegermann) 

ABSTRACT. Let e > 0 be sufficiently small. Then, for 0 = 0.225A/E, there exists 
6 := 3(e) < 1 such that if (ei)n=l are vectors in the unit ball of a complex 
Banach space X which satisfy 

n 

EE Ziei > 6n 
i=l 

(where (Zi) are independent complex Steinhaus random variables), then there 
exists a set B C {1,..., n}, with IBI > On, such that 

E ziei > (1-E) Z Izil 
iEB iEB 

for all zi E C (i E B). The v/E dependence on e of the threshold proportion 0 
is sharp. 

1. INTRODUCTION 

A well-known theorem of Elton [5, Th. 1] on ?n subsystems has an 'isomorphic' 
and an 'almost isometric' version. For the isomorphic version and for related results, 
we refer the reader to [5, 8, 13]. The isomorphic result was extended to complex 
Banach spaces in [7, 8]. 

In this paper we are concerned with the almost isometric version of Elton's 
theorem, which may be formulated as follows. 

Theorem (Elton). Suppose that 0 E (0,1/2) and that e E (0,1). There exists 
6 := 6(0, ) < 1 such that if (ei)i=l are vectors in the unit ball of a real Banach 
space X such that 

n 

average ?ei > 6n 
i=l 
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(the average taken over all choices of ?), then there exists a set B C {1,... , n, 
with IB] > On, such that 

E aiei > (1-?) E lai 
iEB iEB 

for all real scalars (ai)ieB. 

A surprising and interesting feature of the above result is that the 'threshold' 
proportion 0 = 1/2 is independent of e. An example due to Szarek [5, p. 121] 
shows that this is the optimal threshold, and recently it was shown that it is still 
the optimal threshold even if the hypothesis is strengthened substantially, e.g. by 
replacing the average value of 1I E.l iei 1| by the minimum value instead [4]. 

In this paper we prove a complex version of the above result. Accordingly, we 
now assume that (ei)=l are vectors in the unit ball of a complex Banach space X, 
and we seek a large set B C {1,..., n} such that 

Zziei > (1- e) E zi 
iEB iEB 

for all complex scalars (zi)ieB. It is easy to see that the hypothesis of Elton's 
theorem-that the average of Ii E eiI|| over all choices of ? signs is large-is not 
powerful enough to obtain the desired conclusion. In the complex setting we should 
instead consider the average of II E eij ej 1 over all complex signs (e9i0). This can 
sometimes give rise to interesting phenomena which arise specifically in complex 
Banach spaces: a good example of this is the property of complex uniform convexity 
studied in [3]. 

In the language of probability theory, this means that we should replace Bernoulli 
averages by Steinhaus averages. Let (Zi)1l be a sequence of independent complex 
Steinhaus random variables (defined on a probability space (Q, , P)) uniformly 
distributed on {z : Iz = 1}, i.e. P(a < arg(Zi) < b) = (b-a)/(27r) for 0 < a < b < 
27r. 

Now we can state the complex analogue of Elton's theorem. (Here E denotes 
expected value as usual.) 

Theorem. Let e > 0 be sufficiently small. Then, for 0 = (0.99/(7rV2))/E, there 
exists S := S(e) < 1 such that if (ei)i1 are vectors in the unit ball of a complex 
Banach space X which satisfy 

n 

E Ziei > Sn, 
i=l 

then there exists a set B C {1,..., n}, with IBI > On, such that 

E Ziei > (1-? ) 
iEB iEB 

for all complex scalars (zi)ieB. Moreover, we may take 6 = 1 - 4.45 10-5e3/2 for 
all n > N(e). 

Remarks. 1. Note that the 'threshold' now depends on e. 
2. The number 0.99 may be replaced by any number less than unity provided 

the coefficient of ?3/2 in the estimate for 6 is adjusted accordingly. Note that the 

1490 



AN EXTENSION OF ELTON'S el THEOREM 1 

coefficient of ,E, when 0.99 is replaced by unity, is approximately 0.225. We do not 
know the best value for this coefficient, but Example 1 below shows that it cannot 
exceed 1.3862. 

3. The estimate for 6 is a byproduct of the proof. We do not know whether the 
63/2 dependence is of the correct order. 

4. Obviously, there exists c > 0 such that, for 0 = c,/, the Theorem is valid for 
all E (0,1). 

The Theorem is reasonably sharp. Indeed, for any fixed 6 < 1, the /E depen- 
dence of IAI on E is of the correct order as the following example shows. This 
example is based on the aforementioned example given by Szarek. 

Example 1. Let q > 2 and m > 1 be positive integers and set n := mq. Let S 
be the collection of all n-tuples (~i)n=l of unimodular complex numbers such that 
exactly m of the (i's fall into each of the following q arcs of the unit circle: 

Aj ei : (j-1) ) < 0<j q)} (< j<q). 

We define a norm II II on Cn in the following way (here (ei)_1 is the standard basis 
of Cn): 

n n 

E Ziei = max E iz 
i=1 (~i) e,.9 

i--1 

Note that Ileill = 1 (1 < i < n). By the Strong Law of Large Numbers, 

1 n 
E- Ziei -- 1 as n - oo. 

n 

In particular, if 6 < 1 is fixed, we have 

n 

E ZZiei >6n 
i=l 

for all sufficiently large n. Now fix y E (0, 1/2) and suppose that IAI = 2m(1 + y). 
Then we have 

27ri 

ei =2m 1+ye q 
iEA 

-- 
27r2y (1))0 (1 + y)2 q2 + q?( 4 ) ) 

So, for large q, we have 

Eel r-<IAI(1- 27r2y 1) ei -J 
(1 + ? qy)2q2, 

Thus, making the change of variable E := (2rr2y/(l + y)2)/q2, we have 

IAl = 2m(l + y) = 2n(l + Y) /(l + y)2 )n 
q - - \ 
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The coefficient of / is minimized when y = 1/3. Setting y = 1/3, we get 

IAI (jvV) n. 

This example shows that the best value for the coefficient of \/E in the Theorem is 
no greater than (16x2)/(37rV3) 1.38612. 

We present the proof of the Theorem in Section 3. The basic argument is similar 
to the proof of Elton's theorem in [5], but the details are considerably more compli- 
cated. The reason for the extra complication can be traced to the aforementioned 
fact that the threshold proportion is no longer independent of e. 

The proof of Elton's theorem uses the combinatorial result known as the Sauer- 
Shelah Lemma [9, 10, 11]. Besides Elton's theorem, this result has found many 
other applications in Banach space theory, e.g. [12]. Our result requires a nontrivial 
extension of the Sauer-Shelah Lemma which is due to Karpovsky and Milman [6]. 
For completeness we include a direct proof of this result in Section 2. 

Notation and terminology are standard. Since our results are asymptotic in 
nature, we make the standing assumption that certain quantities, such as On, are 
positive integers. This helps to simplify the notation. We also use the following 
notation for asymptotic comparisons: f(n) - g(n) means limn,, f(n)/g(n) = 1 
and f(n) < g(n) means limn,, f(n)/g(n) < 1. 

2. A THEOREM OF KARPOVSKY AND MILMAN 

In this section we give a direct proof of a combinatorial result of Karpovsky and 
Milman [6] that is needed for the proof of the Theorem. A more general result, 
which yields the theorem of Karpovsky and Milman as a special case, was proved 
by Alon [1] (see also [2] for an exposition). 

Notation. Let q > 2 and n > 1 be fixed positive integers. Let 4q be the collection 
of all n-tuples (i)il, where qi E {0, 1,..., q- 1}. For A C {1,... , n, let IA be 
the collection of all tuples (qi)iEA indexed by A. For any set S C <q, we define 
the projection PA(S) in the natural way: 

PA(S) = {(i)iEA : ' E S}. 

We say that A has full density in S if PA(S) -= V. Also, we say that S has density 
k if there exists a set A of full density in S such that IAI = k. (Note that if S has 
density k, then it has density j for all 1 < j < k.) 

The proof uses the following lemma which can be proved by a simple counting 
argument which we omit. 

Lemma 1. For all n > k > 1 and q > 2 the following combinatorial identity holds: 

(n)(q- 1) n-j-j= o (n- 1) n--+ (n l)( ) n-j )(q1-= ( (q-1)n1 + (q1)n. 
j=0 v j=0 j=0 J 

Theorem (Karpovsky and Milman). If S C <q, 1 < k < n, and 

Ek-11) 

ISI E () (q- 1)nI-j j=O 

then S has density k. 

1492 



AN EXTENSION OF ELTON'S Ei THEOREM 

Remark 5. The case q = 2 is the Sauer-Shelah Lemma. 

Proof. We will prove the result by a double induction argument, first on k and then 
on n. The inductive hypothesis for k asserts that the result holds for all n > k. 
Clearly the result holds for k = 1 and all n > 1, and so the induction on k starts. 
Fix p E {1,..., n} and set := (1,... , n} \ {p}. For fixed k > 1, we will obtain the 
result for all n > k by induction on n. We note that if n = k the result is trivial 
since 

(I )(q-1)-j -qk 1. 
j=0 

So suppose that n > k > 1. Set Fp = {( E S : IPp1(Pp()) n SI = q}. (Recall 
that Pp(S) is the projection of S onto the set of coordinates p.) Observe that Fp 
consists of those X E S with the property that if the value of b is freely changed at 
coordinate p, then the new n-tuple so obtained still belongs to S. 

First suppose that 

k-2 1 
1F,l>qC n-l}^-^n-l-j IFpl > q (q 1)1 

j=0 

Then 

IPp(Fp) I (n>l >)(q-1)n-- 
j=0 

So, by our inductive hypothesis on k applied to k-1, we see that Pp(Fp) has density 
k -1 in p. But this implies that Fp (and hence S) has density k in {1,... , n}. Now 
suppose that 

Fp<qE (n- l)(q 1)n-l- 
j=0 J 

Then 

P(S) > IFpl + S S-IFpl ISI 1 ) Fpl 
q q-1 q-1 q -1 q 

since Pp is a q-to-1 mapping on Fp and at most a (q - 1)-to-l mapping on S \ Fp. 
Thus, 

P(S)> ( 
) E() .)( l)n-j -l)q 

j= j=0 
k-10 

j=E (q - 1)n-1-j 

by an application of Lemma 1 with k replaced by k - 1. Now by our inductive 
hypothesis on n applied to n - 1 we see that Pp(S) has density k in p, and thus S 
has density k in {1,..., n}. CI 
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Example 2. For a fixed k and n, with 1 < k < n, let S consist of all n-tuples 
which have at most k - 1 coordinates equal to 0. Clearly S has density k - 1 but 
does not have density k. Also 

Ik- 

,= E (n )(q - )n-j. 
j=o 

This shows that the Karpovsky-Milman theorem is best possible. 

3. THE MAIN RESULT 

We shall break the proof down into a long chain of lemmas. But first we must 
redefine some of the notation introduced in Section 2. 

Notation. Fix positive integers q > 2 and n > 1. Let q = (qi)=_1 be an n-tuple of 
arcs, where each arc <i is of the form 

i = {eio (-) 27r < < (3) 27r} 
q q 

for some 1 < j < q. Let Iq be the collection of all such n-tuples. 
Now fix a, p E (0, 1); their precise values, depending on e, will be chosen later. 
Recalling that (Zi)n 1 is a sequence of independent Steinhaus random variables 

defined on a probability space (Q, E, P), let 

E '=- E Q: Ziei > (1-a3)n} 

and, for each ? E (q, let 

E := E n {wE Q : Zi E qi for 1 < i < n}. 

Finally, let S := {( E C : P(E?) > 0}. 

Lemma 2. Suppose that 

n 

(1) E Ziei > (1-a a/2)n. 
i=l 

Then P(EO) > 0 for at least qn/2 of the 0's, i.e. ISI > qn/2. 

Proof. 

( 2-a) -n<E ( Ziei 

=E ( ZE E P(E) + E E EI (1-P(E)) 
i=1 i=l 

< nP(E) + (1 - P(E))(1 - a3)n. 

Thus, P(E) > 1/2. Note that, for each E ( q, we have 

P(Ek) < P{w E Q: Zi E qi, 1 < i < n} = l/qn. 
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Thus, 

1/2 < P(E)= P(E) <_ IS 

OfES 
q q 

and so ISI > qn/2. D 

For each 4b E S there exists an n-tuple of unimodular complex numbers ( )n 
such that {f E Xi for 1 < i < n and 

n 

E 'i > (1-a,)n. 
i=l 

Indeed, since P(EO) > 0, we can choose any w E E and then take {/ = Zi(w) for 
all 1 < i < n. 

For the rest of the proof we shall assume that (1) is satisfied. 

Lemma 3. For each ) E S there exists f , a complex linear functional in the unit 
ball of X*, with 

f ,(E i- = E ei > (1 - a)n. 
i=l - i=l 

Proof. The Sobczyk-Bohnenblust theorem, i.e. the Hahn-Banach theorem for com- 
plex Banach spaces, guarantees the existence of this linear functional. D 

Setting f? := f(ei), we obtain En1 R[/f/] > (1 - a/3)n for each o Ec S. 

Lemma 4. Let AX = {i: R[/fi] > 1 - a}. Then IAOI > (1 - 3)n for all ) E S. 

Proof. For 0 E S, we have from above that 
n 

(1 - r -)n S< Y] S R[f ] 
i=l 

iEA* iE(AO)c 

< IAIl + (1 -a)(n - IA|). 
= n - an + alAl. 

Thus, IA | > (1- 3)n. 

Lemma 5. There exist S' C S with IS'I > ISI /C(n, pn), and A C {1,..., n} with 

IAI > (1 - f3)n, such that for each o E S' and i E A we have R[ f] > (1 - a). 

Proof. Recall that IA|l > (1 - f)n and that R[iffi] > (1 - a) for all ? E S and 
all i E AO. By replacing AO by a smaller set, if necessary, we may assume that 

IA01 = (1 - n)n. Then there are at most C(n, 3n) possible choices for AO. By the 
Pigeonhole Principle there exists a set A C {1,..., n} with IAI > (1 - O3)n, and 
there exists S' C S with IS'I > ISI/C(n, pn), such that AO = A for all ? E S'. D 

Lemma 6. Let PA(S') be the projection of S' onto A. Then 

IPA(S')I > 
qfin' 
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Proof. Since IAI > (1 - /)n, it follows that at most qPn elements of S' project onto 
each element of PA (S'). Hence the result follows. D 

We now address the following question: for 0 E (0,1), does PA (S') have density 
On in A? By the Karpovsky-Milman Theorem, this question has an affirmative 
answer if 

On 

(2) IPA(S')I > ( ) (q_ )n-~k 
k=0 

We shall show that (2) is satisfied for appropriate choices of a, /3, and 0. First 
we estimate the right-hand side of (2) from above. Note that, since JAl < n, the 
following lemma yields such an upper estimate. 

Lemma 7. Suppose that 0 < 1/q. Then 

(3 
O n n- k < I1 i (q- 1)1-? 

n 

(3) j ( ) _(q - (1 0 (q-)27rnO(1-0) (0 ( 
k=O 1-0 _ 

'1- (1_-0)(q-1) V/2n((1 ) 1 

Proof. We show that the sum can be dominated by a convergent geometric series 
and then apply Stirling's Formula. Set ak := C(n, k)(q - )n-k. Then 

ak-1 
( 

k 
q ( 

k 
(q 

ak n+l-k )(q l)< (n-kk)(ql) 

So, for k < On, we have 

ak-1 
< (_ )(q-1) =p(O). 

ak 1-- 

Note that p(O) < 1 since 0 < 1/q. Hence 

On oo n 
(q- n)~-k < On (q- 1)n(1-0) E P(O)k 

k=O k=O 

- 1 ( 
(q-l(-) 

Using Stirling's formula now to estimate C(n, On) gives the result. C 

Next we estimate the left-hand side of (2) from below. 

Lemma 8. 
1 ~/P(1 B)zr, [iiP(1 C()('-B)ql-P1 (4) IPA(S')I /(1-)27rn [(1-/3)( q1- 

Proof. 

IPA(S')I > 1d 

(by Lemma 6) 

> ISi 
C(n,/3n)q"n 
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AN EXTENSION OF ELTON'S gn THEOREM 

(by Lemma 5) 

I n 

> 2q 

C(n,/3n)qfn 

(by Lemma 2) 

2/O(1 -/3)27rn [3f( - 3)( 1 - f)q-l- 

by Stirling's Formula. ] 

Lemma 9. Fix y E (0, 1) and let 0 := y/q. Then, for all sufficiently large q, there 
exists 3 E (0,1) such that, for all sufficiently large n, PA(S') has density On in A. 
Moreover, we can choose /3 < 0 and /3 0 as 0 -- O, i.e. as q -, oo. 

Proof. If (2) is satisfied for 0 = y/q, then PA(S') will have density On in A. From 
Lemmas 7 and 8, if 3 satisfies 

pf(1 - p)(1- )q(l-P) > - 
1)1-0 

then (2) will be satisfied for all sufficiently large n. This is simply because, for fixed 
q and y, the dominant terms in (3) and (4) are the exponential terms. 

Taking logarithms of both sides, we require 

/ ln(/) + (1 - ) ln(1 -/) + (1 -/) ln(q) 

> (1 -0) ln(q- 1) - n (0) -(1 - 0) ln(1-0). 

Note that 0 - 0 as q -- oo. Hence, if p < 0, then 

lim / ln(/3) = 0, 
q-+oo 

lim (1-/3) ln(1 -/) = 0, 
q--oo 

lim 0 n (0) = 0, 
q--oo 

and 

lim (1-0) In (1-0)=0. 
q-*oo 

Hence, as q - oo, we simply require 

(1 -/) ln(q) > (1 - ) ln(q- 1), 
which is satisfied by some/3 < 0 with f3 0 as q -- oo. D 

For the rest of the proof we shall assume that 0 = y/q, where y e (0, 1) is fixed, 
and that / - 0 has been chosen in accordance with the previous lemma so that 
PA(S') has density On in A. Let B C A be a set of full density for PA(S') satisfying 
IBI > On. 

We require the following simple lemma about complex numbers. 

Lemma 10. Suppose that Izl < 1 and that R[z] > (1- a). Suppose also that 
= ei, where -27r/q < 0 < 27r/q. Then 

R [z] > (1- a) cos (-)- 2a - a2 sin - . 
q /Vq 
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Proof. Let z = x + iy and ~ = cosq + isin0. Then x = R[z] > (1 - a) and 
y2 < 1 - 2 < 2a - a2. So 

R[z~] = x cos 0 - y sin 0 > (1 - a) cos 0 - V2a - a2 sin ?. 

The worst case clearly occurs when X = 27r/q, which gives the result. [ 

Lemma 11. Suppose that (Wi)iEB are unimodular complex numbers, i.e. |Iil = 1 
for all i E B. Then there exists f E S' such that, for all i E B, we have 

R[f(jiei)] > (1- a) cos 27 /2a - a2 sin (-). 
Vq7 

Proof. Since B has full density in S' there exists ? E S' such that (i E 4i for all 
i B. Thus, 

R[ (i Cei)]= -- [fi] _> 1 - a 

for all i E B. Since I arg(i) - arg(/i)L < 21r/q, Lemma 10 gives 

[~if>] (1 - a) cos (2a-22 sin (- 2 _ / _ q ) 
for all i E B. D 

Now suppose that (Zi)ieB is any collection of complex numbers. 
be the polar decomposition of Zi. Then by Lemma 11 

IZiei > R f IEziliei) 
iEB _ iEB 

Let zi = I il\i 

= [ RifH]lzil 
iEB 

> E (1-a)cos 2( ) 
iEB - 

- /2a - a2 sin - lzi 
q _ 

Now for the proof of the Theorem. 

Proof of the Theorem. From the Taylor expansion we see that for large q and small 
a, we have 

(1-a) cos (-)- 2a - a2 sin ( ) 

= 1- 2 -C}ra - 2a - + smaller terms. 2 q 

Recall that P 0 = y/q as q - oo. Hence 

27r2 (27r\ 27r22 27rTx/ -1-T a - v2 - - 2a- 1- -- - a - pva + smaller terms. 
q2 \q ) 2 7 

Now we choose values for our parameters. Set y = 0.999. Provided E is sufficiently 
small, we may choose q := q(E) E N such that Lemma 9 is satisfied and such that 
0 = y/q and the 3 given by Lemma 9 satisfy the following: 

0.99 0.991 - \/2 < _ _ 0 < --V- 
7rV2 

~ ~ 
7rV 

(5) 
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AN EXTENSION OF ELTON'S i THEOREM 

Set a = 4 10-5e. For these choices of parameters, we have 

21r2 2z'Vf 1 2- 2 2 - a _ 27r \/ 1 - 0.999?. 

It follows that, for all sufficiently large n (depending on c), 

RBI > On > (0.99/(7rV/2))V/n, 

and from (5) that for all (Zi)ieB, we have 

E Ziei 
> (1- E) IZil 

iEB iEB 

for all sufficiently small E. From Lemma 2 we see that for all sufficiently large n 
we can take 6 = 1 - a3/2 < 1 - 4.45 10-5E3/2. Thus we have shown that for all 

sufficiently small E there exists an integer N(E) such that the Theorem holds for all 
n > N(e) with 6 = 1- 4.45 10-5E3/2. 

It remains to dispose of the case n < N(e). But in this case an easy triangle 
inequality calculation which we omit shows that there exists 6' := '(E) < 1 such 
that if n < N(e) and E|E =L Zeill > 6'n, then IIZlIieil > n - for all 
unimodular complex numbers (ji)=1. Let (z2i)Y1 be complex numbers satisfying 

Z=i Izil = 1, and let zi = Izii be the polar decomposition of zi. Then 
n n n 

zZiei > iei - Z(1- lzi)iei 
i=l i=l i=l 

n 

> n - e- (1 - Izil) 
i=1 

n 

= 1-?= (1 - ) E lzil 
i=l 

Thus, for n < N(e), we can take 6 = 6' and B = {1,..., n}, which completes the 

proof. O 
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