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Extension of Darby’s Model of a Hydrophylic Gas Fed Porous
Electrode

R. E. White,* M. A. Nicholson,* L. G. Kleine, J. Van Zee,** and R. Darby
Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843

ABSTRACT

A model presented previously by one of the authors (1,2) is reviewed and extended. Aspects of this model which were
not previously available in the open literature are considered, and the model is extended to include previously neglected
terms in the governing differential equations, fractional reaction orders in the current density-overpotential expression, and
mass-transfer coefficients to account for mass-transfer resistance of the reactants to the faces of the porous electrode. The
model is used to predict quantities of interest for oxygen reduction in an acidic aqueous solution in a porous carbon

electrode.

Many models of gas fed hydrophylic porous elec-
trodes have been proposed as reviewed recently by
Chizmadzhev and Chirkov (3) and by Tilak et al. (4).
Unfortunately, neither of these reviews mentions
Darby’s model (1, 2) which is based essentially on mea-
surable quantities of the wettable porous electrode
of interest and the transport and kinetic properties of
the reactants involved. The purpose of this work is to
extend Darby’s homogeneous model (1) and to present
predictions’ based on this model which include frac-
tional reaction orders and external mass-transfer co-
efficients for the reactants.

Homogeneous Model

Darby’s (1) homogeneous model is a conceptualiza-
tion of the chemical, electrochemical, and physical
processes that occur within a hydrophylic gas fed
porous electrode. Figure 1 schematically presents the
representation used here for a region of a gas fed
porous electrode which is assumed to be small com-
pared to the dimensions of the electrode. Note that the
figure shows the gas pore to be open at both ends,
which may be the case in some small volume elements
within the electrode; however, the figure does not mean
that large gas channels exist from the gas side to the
electrolyte side of the electrode. A closer look at Fig. 1
reveals that the gaseous reactant in the pore is
assumed to be in local chemical equilibrium with the
liquid phase as indicated by Cgi(2), which represents
the liquid phase composition of the gaseous reactant
at the gas-liquid interface (where a liquid pore inter-
sects a gas pore). Further inspection of Fig, 1 indicates
that the concentration of the dissolved gaseous reactant
varies with depth (y) into the liquid filled pore as in-
dicated by Cg(y, z). Also, note that the coordinate y is
normal to the gas-liquid interface and, consequently, is
not in the same direction with respect to z for all pores
(see Fig. 1 and the List of Symbols).

Once the gaseous reactant has dissolved into the
electrolyte at the mouth of a liquid-filled pore, the dis-
solved gas diffuses into the pore and reacts along the
walls of the pore. It is assumed here that no concen-
tration gradient exists across the liquid-filled pore.
The flux of the dissolved gaseous reactant (Ng) is
given by

dCe Cg
Ng = ~D'¢s—— + — (Ng + Nj) [11
dy C
where J represents the liquid phase solvent whose con-
centration is approximately C and

(4
D’y = Dgy - [2]

(¢1 and t will be discussed later). Since C is typically
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>> Cg, Eq. [1] can be simplified to

dCq(y,2)
Ng = —Dlgg———F— [3]
dy

The electrochemical reaction that occurs along the pore
walls is

gG + IL 4- ne— =2 pP (4]

and the material balance for the dissolved gaseous re-
actant is

dNg  gi'es [ ( Cg(y,2) )g' ( Cp(2) ) v
- CGo CLo

dy unF
()] ®
e R
P\RT"

where cathodic current density and overpotential have
been chosen to be positive in order to be consistent
with Darby (1, 2). The boundary conditions that apply
are as follows

at y=0 Cg = Cgi(2) [6]
and
dCq
asy—~> oo Cqe(9,2) =0,and — =0 [71
dy
which when applied to Eq. [5] yields
forg'=1
Cq = Cgrexp (—Ki%y) [8]
and
forg=1
g —1 2/(1—g")
Co(y,2) =Cqi(2) { ooty 41 [o]
2% (g + 1)
where
& = yKy'% [Cgi(z) &~ 1/2 [10]
and

Reaction Zones

Fig. 1. Schematic of the homogeneous model for a single gas
pore (1).
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i'o8g [ Cr(x) { on’F ]
exp< ——1
D'GJTLFCGOE ' CLo RT }

(11]

It is important to note that Eq. [8] and [9] apply only
when the dissolved gaseous species is consumed.

Equation [9] can be used to derive an expression
for the rate of consumption of the gaseous reactant
per unit of electrode volume (Rg)

Ky =

Rg = —agD'cy — [12]

y=0
which by using Eq. [9] becomes

2K, Ya
Rg = a;D'gy { -————} [Cei(2) ] +1/2 [13]
g+1

’

where ¢g is the surface area of the gas-filled pores per
unit of electrode volume and will be discussed below.

The dissolved gas that is consumed by the electro-
chemical reaction must be supplied by diffusion of the
gaseous reactant from the electrode/gas interface. This
gives rise to the material balance equation for the
gaseous reactant within the gas-filled pores

dNg
—— 4+ Rg=0 [14]
dz
The flux of the gaseous reactant (N¢) is
N Do e ¢ (Ng + Ny) 15]
= w1 i + Xg(Ng 4 Ny [
where
X¢ = Pg/P, [16]
and
, %s
Digr = DGI T [17]

(¢g will be discussed presently). Since Ny = 0 (I rep-
resents Ny typically), Eq. [15] can be simplified to

PD'gi dXg
RT(1 — X¢) dz

Substitution of Eq. [13] and [18] into Eq. [14] and
letting

Ng = [18]

¢=2z/d [19]
yields
d D’aiP, dX 2K a
i GIf o G :d‘zagD’GJ 1 }
d¢ (1-X)RT d¢ g+1

[Cai(z)]=+1/2 [20]

Equation [20] can be simplified by using Eq. [11] for
K, Henry’s law for Cgi(z) and Cgo

CP,
Ca1(2) = Xgi(2) —a [21]

where at z = 0 (for no mass~transfer resistance to the
electrode from the bulk gas)

CP
Cco=Cgi (2=10) = XG,,_H__E [22]

and the definition of the mol fraction of the liquid re-
actant (Xr)
X =CL(2)/C [23]

and its value at the electrode/electrolyte interface at
2 = d (for no mass-transfer resistance to the elec-
trode from the bulk electrolyte)

X160 =CL/C =Cy (z=4d)/C [24]

When mass-transfer resistance oceurs, Xg, still repre-
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sents the mol fraction of the gaseous reactant in the
bulk gas, but X¢ (¢ = 0) is no longer equal to X¢g, and
similarly for X1,(¢ = 1.0) and Xy, Since X¢ = Xa,
substitution of Eq. [21]-[24] into Eq. [20] yields

d 1 dXeg
- s = KgXgle+D2X, 2 [25]
d¢ 1—-Xg d¢
where
K agd?RT 2¥,sgD’3C } Ya
G =
Dgi(g + 1)% nFPHXS o X 10

nw'F % 26]
(=)

A similar equation can be derived for the mol frac-
tion of the liquid reactant. The starting point is a flux
expression for the liguid phase reactant

dX
Ny = —CD'LJ-EZ—'-I-XL(NL'*‘NJ) [27]

where
D'y = DLy o/ [28]

N; and Np are often related in a simple manner
through the stoichiometry of the electrochemical reac-
tion. For the case considered here, the electrochemical
reaction is

Og 4 4H* 4 4e— - 2H30 [29]

in an aqueous solution.! Thus, J is HeO and Ht is the
liquid reactant L. Then, according to Eq. [29], the
flux of J is related simply to the flux of L

1
Ny=~— 'ENL [30]

which when substituted into Eq. [27] yields
—CD’,y dX;,
XL dz

Ny = [31]

Equation [4] (or [29]) shows that the rate of
consumption of the liquid reactant is related simply to
the rate of consumption of the dissolved gaseous re-
actant .

Ry =—Rg [32]
g
The liquid phase reactant must be supplied from the

bulk electrolyte as described by the maferial balance
equation for L

—— 4+ RpL=0 [33]
dz

Substitution and simplification as before yields
d 1 dXy, )
| —— ) = Ky X ot 12X 12 34
P ) ST X6 L [34]

where

agld? {
K, =
Drpy(g 4+ 1)%

2#sD’c3Py } Ya
gnFCHX# go XV,

il [351
€Xp § ———1N
2RT
Equations [25] and [34] are the governing equations
for the mol fractions of the gaseous reactant within

the gas-filled pores (Xg) and of the liquid reactant
within the liquid-filled pores (XL). The boundary con-

11t should be noted that in systems operating above the boil-
ing point of the electrolyte the water produced in Eq, (29] would
evaporate and leave the cell via the gas phase,
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ditions for these equations are as follows
at ¢ =0

X
9——1—‘ = [361]
dg
D’gy dXg
X =0) — Xgo]. = — —— 37
kmg [Xa (¢ ) Gol 4 dg [37]
and
at ¢ =1
dXg
—_—=0 38]
d¢ (
Dr g dX,
ot [XL (s = 1) — Xrol = ‘;IL—JT{;E [39]

where kmg and kmyy are external mass-transfer coeffi-
cients. (Note that when both kmg and km become in-
finitely large, Darby’s original boundary conditions
are obtained.) Values for kmg and km; can be predicted
for simple systems such as flow between flat plates
[see Ref. (5), e.g.,] and can be determined experi-
mentally for more complicated systems.

Before proceeding with a solution of the governing
equations for X¢(¢) and Xr(¢), let us consider the dis-
tribution of the porosity of the electrode between the
gas and liquid pores. The differential pressure (P = P,
— 1 atm) determines the fraction of the porosity (¢)
filled with gas (¢g) and the fraction filled with liquid
(¢1) by assuming that the radius of the largest flooded
pore is

2y cos @

P

Equation [40] states that the gas pressure in the gas-
filled pores is balanced by the surface tension of the
liquid in the flooded pores. If we assume that the pores
wet easily, all pores larger than r, will be gas-filled
and all pores smaller than 7, will be flooded. A cumu-
lative pore size distribution function [f(7e)] can be de-
fined as the fraction of the total pore volume which
has pore radii greater than 7,

1401

Te =

fr = f atryar [41]

e

where «(r) is the pore size distribution function and is
assumed here to be normal

=g H(ET] o

where 7 and ¢ represent the mean pore radius and the
standard deviation of the distribution, respectively.
Substitutior of Eq. [42] into Eq. [41] yields

flre) = frw { a\/11_2 exp [— —;- ( i ; F)z] } dr [43]

which can be rewritien in a more convenient form by
first breaking the integral into two parts

oS el HEY ) o
S g3 (E) )

[44]
and by defining a dimensionless pore radius
1 7—-7
= —— [45]

V2 e

Then, in terms of 7 Eq. [44] becomes

February 1984

w 1 _
f(re) = fo — exp (—12)o/2 d?’

o\/n2

1 r’ —
- __f *exp (—1r2)n/2dr  [46]
/a2 Yo

or
Fr) = e [ exp (—rmyar [41]
T'e) = — = e —r2)dr
¢ 2  ave *P
which simplifies to
f(re) = [1 — erf (1) ]/2 [48]
Thus, the fraction of the porosity filled with gas (¢g) is
simply
#g = ¢f (1) [49]
and the fraction filled with liquid (¢;) is
9 =¢ — g [50]

Both ¢/t and ¢)/t are used to modify the free stream
diftusion coefficients (see Eq. [2] and [17]). The value
used here for t was chosen arbitrarily. (It may be
possible to determine a value for v by measuring both
¢ and D'gy.)

The porosity (¢), gas phase porosity (¢g), and the
BET-type specific surface area (a) can be used to de~
termine an expression for the surface area of the gas-
filled pores per unit of electrode volume (ag).

The desired expression for ag can be obtained by as~
suming that the pores are tortuous cylinders with a
mean pore radius of T and by considering the ratio of
atog

pore wall surface area

a electrode volume 2red 2
—_—= = — = — [51]
¢ pore volume nr2vd T
electrode volume
or
a—
—_r =2 [52]
¢

(or some other constant). If Eq. [52] is true for the
electrode as a whole, then it is reasonable to assume
that it is also true for the gas-filled pores

—Tg=2=— T [53]
¢e ¢

where 7, is the mean pore radius of the gas-filled pores
which can be normalized in a manner similar to 7e

_ 1 Fy—F

T’g = —

V2 @ (5]

Expressions for 7y and then ag can be obtained in
terms of the pore size distribution parameters (r, ¢) as

follows. Since 7, is defined to be the normalized pore
radius such that one-half of the gas pore volume is

contained in pores with radii larger than 77, the cumu-

lative pore size distribution function f(7’g) is simply
one-half of the cumulative pore size distribution for
the gas-filled pores [f{(7"e) ]

F(rg) =F(re)/2 1551

An expression for T’g can be obtained from Eq. {55]

by using an equation for f('r_"g) which is analogous to
Eq. [48] for f(7’e)

[1—erf (7g)1/2 = f(1e) /2 [561]
which can be rearranged to
erf (Fg) =1 — f(1) 1571
or
g = erf~1[1 — f(e)] (58]
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Then according to Eq. [49] and [50], Eq. [58] can be
written as
?g —erf~1 (¢1/9) [59]

which when combined with Eq. [54] yields an ex-
pression for 7

Tg=T4+\/2oert~t (¢/9) [60]
Substitution of Eq. [60] into Eq. [53] yields

argg/¢

T4 /2oert~! (¢/9)

which, by using Eq. [48]~-[50], becomes the desired ex-
pression for ag

g = [61]

_ ar(l — erf ')
T 2T+ \/Teoerf-1 [(1 4 erfr.)/2]}

Figure 2 shows the dependence of a; on the difference
between the gas pressure and the electrolyte pressure
(P). As shown in Fig. 2, ag is very sensitive to P from
about 7 to 12 psi.

[62]

Qg

Results and Discussion
The apparent current density (total current/pro-
jected area of the electrode) of the porous electrode
can be determined from the flux of the gaseous reactant
into the porous electrode

gi
—— = Ng|¢= [63]
nF cle=o
which by using Eq. [18] becomes
K dX
A TG [64]
1-Xe dg t=0
where
nFP,D’
Ka= __;’EE_ [65]
gdRT

The gradient of the mol fraction of the gaseous species
(dXc/d¢)needed in Eq. [64] can be determined from
X (¢) which can be obtained by solving Eq. [25] and
[34] subject to the boundary conditions given by Eq.
[36]-[39]. Darby (1) found X¢(¢) [and Xy, ({)] by as~
suming that Xg and X1 << 1 so that the governing
equations for X¢ and Xy, become

d2Xe
= KeXgle't /12X /2 [66]
dg2
d2Xj,
= K X&' +1/2X 12 [67]
d¢2

logio [8g cm?/cm?]

=

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
P (psi)

Fig. 2. Dependence of the surface area of the gas pores per unit
of electrode volume (ag) on the differential pressure across the
electrode (P).
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According to Sepa et al. (6),¢g’ = landl = 1o0r 15
for reaction [29] depending on the overpotential.
Darby (2) solved approximately Eq. [66] and [67] for
g’ = land I’ = 1 by assuming that

xomxo[1-5(s-2)] o

Xp = Xpola + (1 — a) 2] [69]

which satisfy the boundary conditions (Eq. [36]-[39])
for infinitely large external mass-transfer coefficients
and by substituting Eq. [68] and [69] into Eq. [66] and
[67] and evaluating the result at ¢ = 0 to determine a’

and b

Kp2Xco? Ki2Xce? \2 Ya

a'=1+_L__S°__[(1+ LG )_1] [70]
8XLo 8XL0

b = Ka(Xp0a)¥% (71]

Finally, application of Eq. [64] gives the desired ex-
pression for the current density

i = XgoKab [72]

Again, Eq. [72] is based on the assumption that Xg
and X1, are both much less than 1 which is not a good
assumption if X¢, and Xp, are on the order of 0.1 as is
the case here. To relax this assumption, Eq. [25] and
{341 were solved by using Newman’s numerical tech-
nique (5, 7) for the fixed and variable parameters con-
sidered here as shown in Table I (see Table II for a
typical set of calculated parameter values).

Figure 3 shows a comparison between the predicted
mol fraction distributions for the simplified and com-
plete governing equations cases, and Fig. 4 presents a
comparison of the predicted current densities for both
cases. Also shown in Fig. 4 is the predicted limiting
current density according to Austin (8, Eq. 6.382)

and

. nFD’GI) XeoPof

= ( d RT 73]
where ) | _x ;

f= n[(1 — Xgo) 1] (741

XGO

Table 1. System parameters used for calculations

Fixed Parameters

Gas phase Xeo = 0.21
Electrolyte Xro = 0.127, C = 0.05 mol/cm3,
v =75 dyn/cm, § = 0°*
Henry’s law constant H = 3.99966 x 100 dyn/cm?
Porous medium ¢ =05r=15d=102cm,
characteristics cg=5 X 105cm, ¥ =15 x 10~ cm,
a = 1.5 x 104 cm?/cm?
Molecular diffusivities Dar = 0.2 cm?/s
DLy = 2 x 10-% cm?/s
Doy =1 x 108 cm?¥/s
Kinetic parameters n =4, a=1/2,ips =io/d,
g’ =10, T = 29815
Stoichiometric coefficients g=L1=4n=4

l
Variable Parameters (with typical values)

Gas phase

Po = 1.6212 x 10° dyn/cm?
Kinetic parameters

fo = 10-5 A/em?, I’ = 1.0, 3 = 0.1V

Table I1. Calculated parameters for g’ = 1.0, i, = 10—3 A/cm?,
V=10 P, =16 atm,and n = 0.1V

@1 = 0.4867

¢g = 0.0133

ag = 2.29 x 102 cm?/cm?
Ko =219

K = 3.12

Ka =223 X 103 A/cm?
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=109 =10 _
R n=018 V, P =882 psi
ois S io=1X10"° Amp/cm?

0.20F N\

~
S—

0.12}

0.08f e E
Complete equations -
------ Darby’s approximate P

0.06 solution < ]

Mole Fraction Xe and X,

0.04}1 e E

.
0.02} - _
————
-

OOO === i) L Il L L I L
00 o0t 02 03 04 05 06 07 08 09 10

Fractional Distance ({)

Fig. 3. Mol fraction distributions for the complete governing
equations model (Eq. [25] and [34]) with infinitely large
kmg and k), ond Darby’s approximate solutions (Eq. [68] and
[691) to the simplified governing equations (Eq. [66] and [67]).

g

=109 =10
P = 8.82 psi
7r Complete equations a, R

v Austin

0 TSN T U S S S W S S SO W T

0 6 12 18 24 30
n X102 (V)

Fig. 4. Comparison of predicted current densities by the com-
plete model with infinitely large kg and km), Darby’s approximate
solutions, and Eq. [73] for the limiting current density with i, =
105 A/em?2,

Substitution of the appropriate values from Tables I
and II into Eq. [73] and [74] gives i3 = 5.27 x 10—3
A/cm?. Notice in Fig. 4 that for large values of m, the
predictions of the complete model are significantly
different from those of Darby’s approximate solution.
This is due to the importance of the neglected terms in
the governing differential equations for the two cases
(compare Eq. [25] and [66] and Eq. [34] and [67]).
It is interesting that the prediction of the limiting cur-

J. Electrochem. Soc.: ELECTROCHEMICAL SCIENCE AND TECHNOLOGY
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rent density by Austin’s equation falls between these
two cases. This is due to using an effective diffusion
coefficient for oxygen (D’gr) in Austin’s equation
which is the same as the effective diffusion coefficient
(D’g1) used in both of the other cases. If D’g; is deter-
mined by multiplying D'gy by ¢/v, instead of ¢g/v, then
the limiting current density predicted by Austin’s equa-
tion is 37.6 (i.e., ¢/¢¢) times larger than that shown in
Fig. 4.

The limiting current density for the complete model
(as shown in Fig. 4) is plotted in Fig. 5 together with
other limiting current density values at different differ-
ential pressures P. Also shown in Fig. 5 are the limit-
ing current density predictions of Darby’s approxi-

70 T T T T T
g =¢=10 J
60+ -
« Complete equations
501 B
&
£
O 4t 4
Q
£
<
k=)
— 30 .
X
£ Austin’s
- quation
20r T
10 7
~§iD:1rby s approximation
0 1 = 3 T m——
0 4 8 12 16 20 24

Fig. 5. Limiting current density dependence upon P for the
complete model with infinitely large kmg and kmi, Darby’s approxi-
mate solution, and Eq. [73] with ip = 105 A/em2.

12 T T T —

£=10g=10

n=010V

i X 10% (Amp/cm?)

0 . L L
4 8 12 16 20 24

P (psi)
Fig. 6. Predicted current density dependence on m and P for

the complete model with infinitely large kmg and km; where is =
105 A/em2,
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mate solution and Eq. [73] again with D¢ determined
with ¢, instead of ¢ (note that ¢z depends upon P).
Figure 5 clearly shows that 2 maximum limiting cur-
rent density is predicted at approximately P = 12 psi
for the system considered here.
Figure 6 shows how the current density below the
limiting current density depends on the differential
pressure (P) for various values of %. Experimental
current density values (3) have a similar dependence
on P and 7 as shown in Fig. 7. Figures 6 and 7 are pre-
sented here for qualitative comparison only, since not
enough information is available for a quantitative
comparison between Darby’s model and the experi-
mental data presented in Fig. 7.
Figures 8 and 9 demonstrate how the kinetic param-
eters I’ and i, effect the predicted current densities.
These figures show that predicted current densities de-
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8 ————————

io = 1% 107° Amp/cm® PN

!

S¥ie=1X 107" Amp/cm?

;
’
I
)
]
]
]
i
Il
i
[
?
i
I .
¥
1}
i
1}
i
i
Il
1
1
i
1
]
1

'« i, =1X 10™* Amp/cm?

i X 10° (Amp/cm?)
'S

pend upon these parameters to the extent that it !
should be possible to determine values for ¥’ and i, by sl !
T T ,"
200} 2l - |
l”'
(E) 1T l/l N 1
: P
E oo} Y hmalad
ol o P T
0 6 12 18 24 30
n X 10% (V)
Fig. 9. Effect of the exchange current density on the predicted
0 current densities for the complete model with infinitely large kmg
and km1.

P, cm Hg

Fig. 7. Experimental current density (3) dependence on m and P.

8 ———

g =10
P = 8.82 psi

2 =1.0»

< =20

L i L 1

30

Oler?” 0 L L
12 18 24

comparison of data to predicted values using least
squares, nonlinear fitting, for example.
Finally, the effect of the external mass-transfer co-
efficients is demonstrated in Fig. 10 and 11. Figure 10
shows how the mass-transfer resistance to the elec-
trode can alter the mol fraction distributions within
the electrode, and Fig. 11 presents the effect of finite
values of kmg and km1 on the predicted current density.
Figure 11 clearly demonstrates that for large values of
7 the predicted current density can be reduced signifi-
cantly if external mass-transfer resistance of the re-

actants to the electrodes is important.

0.22 T v

0.20}

©
e
N

1
o
=)

o
o
-3

Mole Fraction Xg and Xc

Kmg = ki = o0

o
=)
>

kmg = 0.07 cm/sec
kmi = 0.001 cm/sec

0.04}

~n
~—

0.02

07 08

0.00 L .
02 03

00 0.1 04 05 06
Fractional Distance ({)

Fig. 10. Effect of external mass-transfer coefficients (ky; and
kmg) on the predicted mol fractions for the complete model when

io = 1075 A/em2.

n X 10% (V)
) Fig. 8. Comparison of predicted current densities for various
!lquid reactant reaction orders for the complete model with
infinitely large kyg and km1 when io = 105 A/cm2,
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Fig. 11. Effect of external mass-transfer coefficients (km; and
kmg) on the predicted current densities for the complete model
when iy = 10—5 A/em2,

Conclusion

Darby’s model of a gas fed hydrophylic porous elec-
trode is useful because it includes important features
of hydrophylic porous electrodes which are often ne-
glected. For example, it includes a pore size distribu-
tion for a porous electrode which can be determined
experimentally and used in the model.

The extensions presented here (considering the com-
plete governing equations, fractional reaction orders,
and mass-transfer coefficients) should aid in data anal-
ysis and electrode design.
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LIST OF SYMBOLS

a specific surface area, cm2/cm3

ag gas pore surface area per unit electrode vol-
ume, cm2/cm3

C total liquid phase concentration, mol/cm3

Cy, concentration of liquid reactant, mol/cm3

Cai concentration of the dissolved gas G at the gas-
liquid interface, mol/cm3

Cco concentration of gaseous reactant at the gas-
electrolyte interface at z = 0 (see Eq. [22]),
mol/em3

d electrode thickness, em

Dar  diffusivity of the gas phase reactant in gas
phase inert component, cm2/s

D'gr  effective diffusivity of gas phase reactant in gas
phase inert component in a porous medium,
cm?2/s

Dgy diffusivity of the gas phase reactant in liquid
phase solvent, cm?2/s

Dgy effective diffusivity of the gas phase reactant in
11gu1d_ phase solvent in a porous medium, cm2/s

Dyy diffusivity of liquid phase reactant in liguid

solvent, cm2/s
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D'Ly  effective diffusivity of the liquid phase reactant
in porous medium, em?2/s

F Faraday’s constant, 96487C/mol

f fraction of total pore volume in gas-filled pores

(i.e., cumulative pore size distribution for %)

g stoichiometric coetficient for gas phase reactant
in overall electrode reaction

g reaction order with respect to gas phase reac-
tant

H Henry’s law constant, dyn/cm?2

i current density, A/cm?

io exchange current per unit of projected area of
the electrode, A/cm?2 .

iy exchange current %)er unit of active catalytic

surface area, A/cm

parameter used to calculate i, A/cm?2

dimensionless parameter for gas phase compo-

nent

dimensionless parameter for liquid phase com~

ponent

gas phase mass-transfer coefficient, cm/s

liquid phase mass-transfer coefficient, cm/s

l stoichiometric coefficient for liquid phase reac~
tant

I reaction order with respect to liquid phase re-
actant

N; mozlar flux of speciesi (i = G, J, I, L), mol/
cm2-g

n number of electrons involved in overall elec-
trode reaction

n number of electrons in electrode reaction

differential pressure = P, - 1.01325 X 108

dyn/cm?2

parztial pressure of the gaseous reactant G, dyn/

cm

absolute gas pressure, dyn/cm2

gas constant, 8.3143J/mol-K

radius of a pore in which gas-liquid interface

will be located, cm

normalized radius of the largest flooded pore

mean pore radius, cm
mean pore radius of gas-filled pores, cm

normalized mean pore radius of gas-filled pores

speaciﬁc accessible catalytic surface area, cm?/

cm;

absolute temperature, K

mo] fraction of gas phase reactant

mol fraction oi gaseous reactant at the bulk

phase-electrode interface (y = 0)

mol fraction of liquid-phase reactant

r(nol 1f;‘action of liquid reactant-bulk phase
{ =

depth into a liquid filled pore, normal to the

gas-liquid interface, not in the same direction

with respect to 2 for all pores, cm

X omy oy o

CIE NIRRT
2R

< e

z distance from the bulk gas-electrode interface
into the porous electrode, cm

Greek Symbols

o transfer coefficient

a(r) pore size distribution, cm—1

n polarization (driving force), V

¥ surface tension of electrolyte, dyn/cm

@ porosity

Pz porosity of gas-filled pores
o porosity of liquid-filled pores

o standard deviation of pore size distribution
function, cm

T tortuosity

0 contact angle, degrees

¢ dimensionless coordinate, z/d
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Electrochemical Photocapacitance Spectroscopy Method for
Characterization of Deep Levels and Interface States in
Semiconductor Materials

Ron Haak and Dennis Tench

Rockwell International Science Center, Thousand Qaks, California 91360

ABSTRACT

The recently developed electrochemical photocapacitance spectroscopy (EPS) method for characterization of deep lev-
els in semiconductors is described. Topics discussed include the advantages of the method, experimental considerations,
and the determination of state densities and kinetic parameters (associated with state population/depopulation). Both
steady-state and transient capacitance changes are treated mathematically. Data for n-GaAs, p-GaAs, n-CdSe, a-Si and
p-Zn,P, are presented to illustrate the wide applicability of the method and its sensitivity to both bulk and interface states,

including those observed by other characterization methods.

Electrochemical photocapacitance spectroscopy (EPS)
has recently been shown to be a sensitive means for
characterization of deep levels in semiconductor mate-
rials (1). In the present paper, the EPS technique is
described and illustrative results are presented for a
variety of single-crystal and polycrystalline materials.
Since the intent of the authors is to encourage and
facilitate use of EPS by both physicists and electro-
chemists, considerable detail is given in areas expected
to be unfamiliar to either group of scientists. It should
also be emphasized that the focus here is on covering
the practical aspects of applying the method rather than
on providing a comprehensive quantitative treatment.

EPS Method

In EPS, the capacitance of a reverse-biased semi-
conductor electrode is measured as a function of the
wavelength of incident sub-bandgap light. The elec-
trostatic situation and possible phototransitions for an
n-type semiconductor are depicted in Fig. 1. In the
dark, all of the negative charge in the electrolyte Helm-
holtz layer must be compensated by fixed ionized
donors so that the space-charge layer extends deep into
the semiconductor. At sufficiently anodic bias voltages
(except at very high charge-carrier concentrations),
the space-charge capacitance is generally small (<0.1
uF/em?) compared to the Helmholtz layer capacitance
(~20 uF/cm?). In this case, the impedance of the inter-
facial region is dominated by the space charge, so that
additional charge, introduced by optical population/de-
population of traps or interface states, significantly
affects the thickness of the space-charge layer and is
readily detected as a change in capacitance. Transitions
from bandgap states (electron traps) into the conduction
band introduce additional fixed positive charge to the
semiconductor space-charge region (or at the inter-
face), reducing the thickness of the space-charge layer
and increasing the capacitance. Similarly, transitions
from the valence band to bandgap states (hole traps)
result in a decrease in capacitance. Charge may also
be introduced into the semiconductor space-charge re-
gion by localized transitions from the ground state

Key words: semiconductor traps, electrochemical detection,

gallium arsenide, cadmium selenide, amorphous silicon, zine
phosphide,

to an excited state of an impurity (or defect center),
followed by thermal injection of charge into one of the
semiconductor bands (see Fig. 1). For p-type semicon-
ductors, the capacitance change associated with a given
type of transition is opposite in sign to that for an n-
type material.

Typical plots of capacitance vs. wavelength (for
sweeps from low to high photon energies) yield a series
of plateaus and/or peaks, each corresponding to the
population/depopulation of a given bandgap state.
Plateaus are obtained for transitions that directly in-
volve one of the semiconductor bands and can con-
sequently be effected by light covering a wide range of
energies above a certain threshold. Peaks are obtained
for localized transitions which are effected only by
light of a relatively specific energy. The onset energy
of the capacitance change yields the energy of the
state, relative to the appropriate bandedge. For local-
ized transitions, the peak energy may be more de-
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Fig. 1.
semiconductor, and typical phototransitions involved in electro-
chemical photocapacitance spectroscopy.

Schematic representation of a reverse-biased n-type
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