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Abstract
The standard nuclear physics approach and effective field theory approach for
calculations of neutrino–deuteron cross sections for the solar neutrino energies
are considered. Their main features, the level of accuracy and problems to be
addressed for further developments are discussed.

1. Introduction

The neutrino–deuteron reactions are extremely important in connection with the highly
consequential experiments at the Sudbury Neutrino Observatory (SNO). The ν–d reactions
are also important in that they provide basic information that is useful for studying other
neutrino–nucleus reactions involving more complex targets. The ν–d reactions, which can be
calculated with much higher precision than neutrino reactions on complex nuclei, can serve
as a benchmark case for neutrino–nucleus reactions in general.

The recent SNO experiments [1], which measure simultaneously the charge current and
neutral current ν–d reaction, and pure-leptonic neutrino–electron scattering have established
that the total solar neutrino flux (summed over all flavours) agrees with the prediction of
the standard solar model [2], whereas the electron neutrino flux from the sun is significantly
smaller than the total solar neutrino flux. The amount of deficit in the electron neutrino flux
is consistent with what used to be known as the solar neutrino problem. These results of the
SNO experiments have given firm evidence for the transmutation of solar electron neutrinos
into neutrinos of other flavours. It is obvious that a precise knowledge of the ν–d reaction
cross sections is of primary importance in interpreting the existing and future SNO data. We
describe here some of salient features of the recent developments in the calculation of the ν–d
reactions. The existing approaches can be classified into two categories: the standard nuclear
physics approach and the effective field theory (EFT) approach.

The standard nuclear physics approach uses the phenomenological potential which has
been highly successful in describing many different kinds of nuclear phenomena. In this
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approach an A-nucleon system is described by a Hamiltonian of the form

H =
A∑
i

ti +
A∑

i<j

Vij +
A∑

i<j<k

Vijk + · · · , (1)

where ti is the kinetic energy of the ith nucleon, Vij is a phenomenological two-body potential
between the ith and j th nucleons, Vijk is a phenomelogical three-body potential, and so on.
Since the interactions involving three or more nucleons are known to play much less important
roles than the two-body interactions, we shall concentrate on Vij . Once the Hamiltonian H is
specified, the nuclear wavefunction |�〉 is obtained by solving the Shrödinger equation

H |�〉 = E|�〉. (2)

There is large freedom in choosing possible forms of Vij apart from a well-established
requirement that, as the inter-nucleon distance rij becomes sufficiently large, Vij should
approach the one-pion exchange Yukawa potential. For the model-dependent short-range
part of Vij , one needs to assume certain functional forms and fix the parameters appearing
therein by demanding that the solutions of equation (2) for the A = 2 case reproduce the
nucleon–nucleon scattering data (typically up to the pion-production threshold energy) as
well as some of the deuteron properties. There are by now several so-called modern high-
precision phenomenological N–N potential that can reproduce all the existing two-nucleon
data with normalized χ2 values close to 1. These potentials differ significantly in the ways they
parametrize short-range physics, and, as a consequence, they exhibit substantial difference in
their off-shell behaviour.

In normal circumstances, nuclear responses to external electroweak probes are given,
to good approximation, by one-body terms; these are also called the impulse approximation
terms. To obtain higher accuracy, however, one must also consider exchange current terms,
which represent the contributions of nuclear responses involving two or more nucleons. These
exchange currents (usually taken to be two-body operators) are derived from one-boson
exchange diagrams, and the vertices featuring in the relevant diagrams are determined to
satisfy the low-energy theorems and current algebra [3, 4]. We refer to a formalism based on
this picture as the standard nuclear physics approach (SNPA). (This is also called a potential
model in the literature.)

Although SNPA has been scoring great successes in correlating and explaining a vast
variety of data, it is still important from a formal point of view to raise the following
issues. First, since hadrons and hadronic systems (including nuclei) are governed by quantum
chromodynamics (QCD), one should ultimately be able to relate this approach with QCD, but
this relation has not been established. In particular, while chiral symmetry is known to be a
fundamental symmetry of QCD, the formulation of the standard approach is largely disjoint
from this symmetry. Secondly, in the standard approach, even for describing low-energy
phenomena, we start with a ‘realistic’ phenomenological potential which is tailored to encode
short-range (high-momentum) and long-range (low-momentum) physics simultaneously. This
mixing of the two different scales seems theoretically dissatisfactory and can be pragmatically
inconvenient. Thirdly, in writing down a phenomenological Lagrangian for describing the
nuclear interaction and nuclear responses to the electroweak currents, this approach is not
equipped with a clear guiding principle; it is not clear whether there is any identifiable
expansion parameter that helps us to control the possible forms of terms in the Lagrangian
and that provides a general measure of errors in our calculation. To address these and other
related issues, a new approach based on EFT was proposed [5] and it has been studied with
great intensity (for reviews, see [6, 7]).
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The general idea of EFT is in fact rather simple. In describing phenomena characterized
by a typical energy–momentum scale Q, we expect that we need not include in our Lagrangian
those degrees of freedom that pertain to energy–momentum scales much higher than Q. This
expectation motivates us to introduce a cut-off scale � that is sufficiently larger than Q and
we classify our fields (to be generically represented by φ) into two groups: high-frequency
fields φH and low-frequency fields φL. By eliminating (or integrating out) φH, we arrive at an
effective Lagrangian that only involves φL as explicit dynamical variables. Using the notion
of path integrals, the effective Lagrangian Leff is related to the original Lagrangian L as∫

[dφ] ei
∫

d4xL(φ) =
∫

(dφL) ei
∫

d4xLeff(φL). (3)

One can show that Leff defined by equation (3) inherits the symmetries (and the patterns
of symmetry breaking, if there are any) of the original Lagrangian L. It also follows that Leff

should be the sum of all possible monomials of φL and their derivatives that are consistent
with the symmetry requirements dictated by L. Since a term involving n derivatives scales
such as (Q/�)n, the terms in Leff can be organized into a perturbative series in which Q/�

serves as an expansion parameter. The coefficients of terms in this expansion scheme are
called the low-energy constants (LECs). Provided all the LECs up to a specified order n can be
fixed either from theory or from fitting to the experimental values of the relevant observables,
Leff serves as a complete (and hence model-independent) Lagrangian to the given order of
expansion.

Having specified the basic idea of EFT, we now discuss specific aspects of EFT as
applied to nuclear physics. The underlying Lagrangian L in this case is the QCD Lagrangian
LQCD, whereas, for the typical nuclear physics energy–momentum scale Q � �χ ∼
1 GeV, the effective degrees of freedom that would feature in Leff are hadrons rather than
the quarks and gluons. It is a non-trivial task to apply the formal definition in equation (3)
to derive Leff written in terms of hadrons starting from LQCD, because the hadrons cannot be
straightforwardly identified with the low-frequency field, φL in equation (3), in the original
Lagrangian. The best one could do at present is to resort to symmetry considerations and the
momentum expansion scheme. Here chiral symmetry plays an important role. We know that
chiral symmetry is spontaneously broken, resulting in the generation of the pions as Nambu–
Goldstone bosons, i.e., chiral symmetry is realized in the Goldstone mode. This feature can
be incorporated by assigning suitable chiral transformation properties to the Goldstone bosons
and writing down all possible chiral-invariant terms up to a specified chiral order [8]. The
above consideration presupposes exact chiral symmetry in LQCD. In reality, LQCD contains
small but finite quark mass terms, which explicitly violate chiral symmetry and lead to a
non-vanishing value of the pion mass mπ . Again, there is a well-defined method to determine
what terms are needed in the Goldstone boson sector to represent the effect of explicit chiral
symmetry breaking [8]. These considerations lead to an EFT called chiral perturbation theory
(χPT) [9, 10].

A problem we encounter in extending χPT to the nucleon sector is that, as the nucleon
mass mN is comparable to the cut-off scale �χ , a simple application of expansion in Q/� does
not work. This problem can be circumvented by employing heavy-baryon chiral perturbation
theory (HBχPT), which essentially consists in shifting the reference point of the nucleon
energy from 0 to mN and in integrating out the small component of the nucleon field as well as
the anti-nucleonic degrees of freedom. An effective Lagrangian in HBχPT therefore involves
as explicit degrees of freedom the pions and the large components of the redefined nucleon
field. HBχPT has as expansion parameters Q/�χ,mπ/�χ and Q/mN. HBχPT has been
used with great success to the one-nucleon sector [6].
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It is to be noted, however, that HBχPT cannot be applied in a straightforward manner to
nuclei that contain more than one nucleon. The reason is that nuclei involve very low-lying
excited states, and the existence of this small energy scale upsets the original counting rule
[5]. Weinberg’s idea to avoid this difficulty is as follows. Classify Feynman diagrams into
two groups, irreducible and reducible diagrams. Those diagrams in which every intermediate
state has at least one meson in flight are called irreducible diagrams; all others are classified
as reducible diagrams. We then apply the above-mentioned chiral counting rules only to
irreducible diagrams, and the contribution of all the irreducible diagrams (up to a specified
chiral order) is treated as an effective potential acting on nuclear wavefunctions. By summing
up the geometric series of irreducible diagrams (by solving either the Schrödinger equation or
the Lippman–Schwinger equation), we can incorporate the contributions of reducible diagrams
[5]. We refer to this two-step procedure as nuclear χPT (this is often called the �-counting
scheme [11]).

To apply nuclear χPT to a process that involves (an) external current(s), we derive a
nuclear transition operator T by evaluating the complete set of all the irreducible diagrams (up
to a given chiral order ν) involving the relevant external current(s). To preserve consistency
in chiral counting, the nuclear matrix element of T must be calculated with the use of nuclear
wavefunctions which are governed by nuclear interactions that represent all the irreducible
A-nucleon diagrams up to νth order. Thus, a transition matrix in nuclear EFT is given by

MEFT
f i = 〈

�EFT
f

∣∣ A∑
�

OEFT
� +

A∑
�<m

OEFT
�m

∣∣�EFT
i

〉
, (4)

where the superscript, ‘EFT’, means that the relevant quantities are obtained according to EFT
as described above. If this programme is carried out exactly, it would constitute an ab initio
calculation. We note that in EFT we know exactly at what chiral order three-body operators
start to contribute to T , and that, to chiral orders relevant to the applications described below,
there is no need for three-body operators. With this understanding, we have retained only
one- and two-body operators in equation (4). This unambiguous classification of transition
operators according to their chiral orders is a great advantage of EFT.

2. Standard nuclear physics approach

We now describe in some detail the latest calculations of the ν–d cross sections based on SNPA
[12, 13]. We consider four processes contributing to the total and differential cross sections
for the CC and NC reactions of neutrinos and anti-neutrinos with the deuteron:

νe + d → e− + p + p (CC) (5)

νx + d → νx + n + p (NC) (6)

ν̄e + d → e+ + n + n (ν̄-CC) (7)

ν̄x + d → ν̄x + n + p (ν̄-NC), (8)

where x = e, µ or τ .
The four-momenta of the participating particles are labelled as

ν/ν̄(k) + d(P ) → �(k′) + N1(p
′
1) + N2(p

′
2), (9)

where � corresponds to e± for the CC reactions (equations (5) and (7)), and to ν or ν̄ for the NC
reactions (equations (6) and (8)). The energy–momentum conservation reads: k +P = k′ +P ′

with P ′ ≡ p′
1 + p′

2. A momentum transferred from the lepton to the two-nucleon system is
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denoted by qµ = kµ − k′µ = P ′µ − P µ. In the laboratory system, which we use throughout
this work, we write

kµ = (Eν, k), k′µ = (E′
�, k′), P µ = (Md, 0),

P ′µ = (P ′0, P′), qµ = (ω, q).
(10)

The interaction Hamiltonian for semileptonic weak processes is given by the product of
the hadron current (Jλ) and the lepton current (Lλ) as

HCC
W = G′

F Vud√
2

∫
dx

[
JCC

λ (x)LCC,λ(x) + h.c.
]

(11)

for the CC process and

HNC
W = G′

F√
2

∫
dx

[
JNC

λ (x)LNC,λ(x) + h.c.
]

(12)

for the NC process. Here G′
F is the weak coupling constant, and Vud is the K–M matrix

element. For the weak coupling constant, instead of:
The lepton current is given by

Lλ(x) = ψ̄ l(x)γ λ(1 − γ 5)ψν(x), (13)

and its matrix element is written as

lλ ≡ 〈k′|Lλ(0)|k〉 = ūl(k
′)γ λ(1 − γ 5)uν(k) for ν-reaction,

(14)
= v̄ν̄ (k)γ λ(1 − γ 5)vl̄(k

′) for ν̄-reaction.

The hadronic charged current has the form

JCC
λ (x) = V ±

λ (x) + A±
λ (x), (15)

where Vλ and Aλ denote the vector and axial-vector currents, respectively. The superscript (±)

denotes the isospin-raising (-lowering) operator for the ν̄(ν)-reaction. The hadronic neutral
current is given by the standard model as

JNC
λ (x) = (1 − 2 sin2 θW )V 3

λ + A3
λ − 2 sin2 θWV s

λ , (16)

where θW is the Weinberg angle. V s
λ is the isoscalar part of the vector current, and the

superscript ‘3’ denotes the third component of the isovector current. The hadron current
consists of one-nucleon impulse approximation (IA) terms and two-body exchange current
(EXC) terms.

Since the incident neutrino energy of the solar neutrinos in the lab-frame is rather low
(Eν � 20 MeV), the dominant contribution to the cross section is defined by the space
component, A, of the axial current (Aµ). Therefore, the theoretical precision of σνd is
controlled essentially by the accuracy with which one can calculate the nuclear matrix element
of A.

We decompose A as A = AIA + AEXC, where AIA and AEXC are the impulse approximation
and exchange-current contributions, respectively. Since AIA is well known [14–18], the
theoretical uncertainty is confined to AEXC. Among the various terms contributing to AEXC,
the �-excitation current (A�) gives the most important contribution, and A� involves the
coupling constants for the AµN� vertex, the πN� vertex and the ρN� vertex, and the
corresponding form factors. Although the quark model is believed to provide reasonable
estimates for these coupling constants, it is at present impossible to test their individual
values empirically; only the overall strength of the �-excitation current can be monitored with
electroweak processes in a few-nucleon system. Carlson et al [19] used the tritium β-decay
rate, �

β
t , and to fix the strength of the �-excitation current, and the same strength was used

in [13].
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2.1. Impulse approximation current

The IA current is determined by the single-nucleon matrix elements of Jλ. The nucleon matrix
elements of the currents are written as

〈N(p′)|V ±
λ (0)|N(p)〉 = ū(p′)

[
fV γλ + i

fM

2MN

σλρq
ρ

]
τ±u(p), (17)

〈N(p′)|A±
λ (0)|N(p)〉 = ū(p′)[fAγλγ

5 + fP γ 5qλ]τ±u(p), (18)

where MN is the average of the masses of the final two nucleons. For the third component of
the isovector current, we simply replace τ± with τ 3

2 . For the isoscalar current

〈N(p′)|V s
λ (0)|N(p)〉 = ū(p′)

[
fV γλ + i

f s
M

2MN

σλρq
ρ

]
1

2
u(p). (19)

The non-relativistic forms of the IA currents are given by

V ±
IA,0(x) =

∑
i

fV τ±
i δ(x − ri ), (20)

V ±
IA(x) =

∑
i

[
fV

p′
i + pi

2MN

+
fV + fM

2MN

∇ × σi

]
τ±
i δ(x − ri ), (21)

A±
IA,0(x) =

∑
i

[
fA

2MN

σi · (p′
i + pi ) − ifP ω

2MN

σi · ∇
]

τ±
i δ(x − ri ), (22)

A±
IA(x) =

∑
i

[
fAσi +

fP

2MN

∇(∇ · σi )

]
τ±
i δ(x − ri ), (23)

V s
IA,0(x) =

∑
i

fV

1

2
δ(x − ri ), (24)

V s
IA(x) =

∑
i

[
fV

p′
i + pi

2MN

+
fV + f s

M

2MN

∇ × σi

]
1

2
δ(x − ri ). (25)

It is useful to rewrite pi + p′
i = q + P ± 2pN , where the (±) sign corresponds to i = 1

(i = 2), and the derivative operator pN should act on the deuteron wavefunction; in the
laboratory system we are working in, we have P = 0.

As for the q2
µ dependence of the form factors we can use [39, 20]:

fV

(
q2

µ

) = GD

(
q2

µ

)
(1 + µpη)(1 + η)−1, (26)

fM

(
q2

µ

) = GD

(
q2

µ

)
(µp − µn − 1 − µnη)(1 + η)−1, (27)

fA

(
q2

µ

) = −gAGA

(
q2

µ

)
, (28)

fP

(
q2

µ

) = 2m

m2
π − q2

µ

fA

(
q2

µ

)
, (29)

f s
M

(
q2

µ

) = GD

(
q2

µ

)
(µp + µn − 1 + µnη)(1 + η)−1, (30)

with

GD

(
q2

µ

) =
(

1 − q2
µ

0.71 GeV2

)−2

, (31)
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GA

(
q2

µ

) =
(

1 − q2
µ

1.04 GeV2

)−2

, (32)

where µp = 2.793, µn = −1.913, η = − q2
µ

4m2 and mπ is the pion mass.

2.2. Exchange currents

The axial-vector EXC, A
µ

EXC, consists of a pion-pole term and a non-pole term, Ā
µ

EXC. Using
the PCAC hypothesis, however, we can express A

µ

EXC in terms of the non-pole contribution
alone:

A
µ

EXC = Ā
µ

EXC − qµ

m2
π − q2

µ

(q · ĀEXC − ωĀEXC,0). (33)

We therefore need only specify a model for the non-pole terms; the total contribution of
A

µ

EXC can be obtained with the use of equation (33). Regarding the space component of the
axial-vector current, as mentioned earlier, we employ AEXC adjusted in such a manner that the
experimental value of �

β
t be reproduced. Thus, following Schiavilla et al [21], we consider

the π -pair current (denoted by πS), ρ-pair current (ρS), π -exchange �-excitation current
(�π), ρ-exchange �-excitation current (�ρ) and πρ-exchange current (πρ). The explicit
expressions of these two-body currents (acting on the ith and j th nucleons) are as follows:

Ā±
ij (q;πS) = −fA

m

f 2
πNN

m2
π

σj · kj

m2
π + k2

j

f 2
π (kj )

× {
(τ i × τ j )

±σi × kj − τ±
j [q + iσi × (pi + p′

i )]
}

+ (i � j),

Ā±
ij (q; ρS) = fA

g2
ρ(1 + κρ)

2

4m3

f 2
ρ (kj )

m2
ρ + k2

j

(
τ±
j {(σj × kj ) × kj

− i[σi × (σj × kj )] × (pi + p′
i )} + (τ i × τ j )

±{qσi · (σj × kj )

+ i(σj × kj ) × (pi + p′
i ) − [σi × (σj × kj )] × kj }

)
+ (i � j),

Ā±
ij (q;�π) = 16

25
fA

f 2
πNN

m2
π (m� − m)

σj · kj

m2
π + k2

j

f 2
π (kj ) (34)

× [
4τ±

j kj − (τ i × τ j )
±σi × kj

]
+ (i � j),

Ā±
ij (q;�ρ) = − 4

25
fA

g2
ρ(1 + κρ)

2

m2(m� − m)

f 2
ρ (kj )

m2
ρ + k2

j

× {
4τ±

j (σj × kj ) × kj − (τ i × τ j )
±σi × [(σj × kj ) × kj ]

}
+ (i � j),

Ā±
ij (q;πρ) = 2fA

g2
ρ

m

σj · kj(
m2

ρ + k2
i

)(
m2

π + k2
j

)fρ(ki )fπ (kj )(τ i × τ j )
±

× [(1 + κρ)σi × ki − i(pi + p′
i )] + (i � j),

here mρ and m� are the masses of the ρ-meson and �-particle, respectively; fA is the axial
form factor given in equation (28). The total three-momentum transfer is q ≡ ki + kj , with
ki(j) being the momentum transferred to the ith (j th) nucleon; pi and p′

i are the initial and
final momenta of the ith nucleon. The form factors, fπ(k) and fρ(k), for the pion-nucleon
and ρ-nucleon vertices are parametrized as

fπ(k) = �2
π − m2

π

�2
π + k2 , fρ(k) = �2

ρ − m2
ρ

�2
ρ + k2 (35)
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with �π = 4.8 fm−1 and �ρ = 6.8 fm−1. The quark model has been used to relate the
coupling constants of the πN�, ρN� and AµN� vertices to the πNN, ρNN and AµNN

vertices, respectively. Schiavilla et al [21] have pointed out that the experimental value of �
β
t

can be reproduced if the strengths of Ā(�π) in equation (34) and Ā(�ρ) in equation (34)
are reduced by a common factor of 0.8. We employ here the same adjustment of Ā(�π)

and Ā(�ρ). For the third component of the isovector current, we simply replace τ±
i and

(τ i × τ j )
± with τ 3

i

/
2 and (τ i × τ j )

3/2, respectively. (The same prescription is applied to
the other exchange currents as well.) For the time component we use the one-pion exchange
current (the so-called KDR current [22]), which gives the dominant exchange current to Ā±

0ij .
The explicit form of the KDR current, with a vertex form factor supplemented1, reads

Ā±
0ij (q;KDR) = 2

ifA

(
f

mπ

)2

f 2
π (kj )

σj · kj

m2
π + k2

j

(τ i × τ j )
± + (i � j). (36)

Regarding the vector exchange currents, we first note that the time component should be
negligibly small since its contribution vanishes in the static limit. For the space component,
V , we take account of the pair, pionic and isobar currents. As in [12], we adopt the one-pion
exchange model for the pair and pionic currents and the one-pion and one-ρ-meson exchange
model for the isobar current. Their explicit expressions are

V ±
ij (q; pair) = −2ifV

(
f

mπ

)2

f 2
π (kj )

σi (σj · kj )

m2
π + k2

j

(τ i × τ j )
± + (i � j), (37)

V ±
ij (q;π) = 2i

(
f

mπ

)2

fπ(ki )fπ (kj )
(σi · ki )(σj · kj )(ki − kj )(

m2
π + k2

i

)(
m2

π + k2
j

) (τ i × τ j )
± + (i � j),

(38)

V ±
ij (q;�) = −i4π

fV + fM

2m

[
f 2

π (kj )

m2
π + k2

j

q × {
c0kjτ

±
j + d1(σi × kj )(τ i × τ j )

±}
(σj · kj )

+
f 2

ρ (kj )

m2
ρ + k2

j

q × {
cρkj × (σj × kj )τ

±
j + dρσi × (kj × (σj × kj ))(τ i × τ j )

±}]

+ (i � j). (39)

The numerical values of the various parameters are

f 2

4π
= 0.08, c0m

3
π = 0.188, d1m

3
π = −0.044,

cρm
3
ρ = 36.2, dρ = − 1

4cρ.

(40)

These values lead to np → dγ cross sections that agree with the experimental values.

2.3. Multipole expansion of hadron current

To evaluate the two-nucleon matrix element of the hadron current, we first separate the centre-
of-mass and relative wavefunctions,

〈r1, r2 | d(P )〉 = eiP ·Rψd(r)

〈r1, r2 | NN(P ′)〉 = eiP ′·Rψp′(r),
(41)

1 For A0 and the vector currents, we use the same form factors as in [12]. They are parametrized as in equation (35),
but the numerical values of �π and �ρ are: �π = 6.0 fm−1, �ρ = 7.3 fm−1.



Solar neutrinos, SNO and neutrino–deuteron reactions 2605

where r = r1 − r2 and R = r1+r2
2 , and ψd and ψp′ represent, respectively, the deuteron

wavefunction and a scattering-state wavefunction with asymptotic relative momentum p′.
Then the matrix element of the hadron current for charged-current reaction is given by

jCC
λ ≡ 〈NN(P )′|JCC

λ (0)|d(P )〉
=

∫
dr ψ∗

p′(r)

[∫
dR e−iq·RJCC

λ (0)

]
ψd(r). (42)

As for the neutral-current reaction, we just replace JCC
λ with JNC

λ . In the following equations,
Jλ without superscript applies for both NC and CC. Eliminating the dependence of the current
Jλ(x) on the centre-of-mass coordinate, R, we can write

jλ = 〈ψp′ |
∫

dx eiq·xJλ(x)|ψd〉, (43)

where Jλ(x) ≡ Jλ(x)|R=0. Similarly, we define Vλ(x) ≡ Vλ(x)|R=0 and Aλ(x) ≡
Aλ(x)|R=0. We now introduce the standard multipole expansion of the nuclear currents
[23]. The multipole operator for the time component of a current is defined by

T JM
C (J ) =

∫
dx jJ (qx)YJM(x̂)J0(x), (44)

where jJ (qx) is the spherical Bessel function of order J , q ≡ |q|, and x̂ ≡ x/|x|. The
electric and magnetic multipole operators are defined by

T JM
E (J ) = 1

q

∫
dx ∇ × [jJ (qx)Y JJM(x̂)] · J (x), (45)

T JM
M (J ) =

∫
dx jJ (qx)Y JJM(x̂) · J (x), (46)

where Y JJM(x̂) are vector spherical harmonics. The longitudinal multipole operator is
defined by

T JM
L (J ) = i

q

∫
dx ∇[jJ (qx)YJM(x̂)] · J (x). (47)

Using the conservation of the vector current, the longitudinal multipole operator of the vector
current can be related to the charge density operator as

T
Jo

L (V) = −ω

q
T

Jo

C (V). (48)

An explicit form of the electric multipole operator for the vector current is given by

T JM
E (V) = −i

√
J

2J + 1

∫
dx jJ+1(qx)Y JJ+1M(x̂) · V(x)

+ i

√
J + 1

2J + 1

∫
dx jJ−1(qx)Y JJ−1M(x̂) · V(x). (49)

Here again we can use the current conservation to rewrite equation (49) into a form that has
the correct long wavelength limit of an electric multipole operator:

T JM
E (V) = −

√
J + 1

J

ω

q
T JM

C (V) − i

√
2J + 1

J

∫
dx jJ+1(qx)Y JJ+1M(x̂) · V(x). (50)
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2.4. Cross sections

Following the standard procedure, we obtain the cross section for the CC reaction as

dσ =
∑
ī,f

δ4(k + P − k′ − P ′)
(2π)5

G2
F cos2 θC

2
F(Z,E′

�)
∣∣lλjCC

λ

∣∣2
dk′ dp′

1 dp′
2, (51)

and the cross section for the NC reaction as

dσ =
∑
ī,f

δ4(k + P − k′ − P ′)
(2π)5

G2
F

2

∣∣lλjNC
λ

∣∣2
dk′ dp′

1 dp′
2. (52)

The matrix elements, lλ and jλ, have been defined in equations (14) and (42), respectively.
In equation (51), we have included the Fermi function F(Z,E′

�) to take into account the
Coulomb interaction between the electron and the nucleons. In fact, this factor is relevant
only to the νe + d → e− + p + p reaction, for which we should use F(Z = 2, E′

�); for the
ν̄e + d → e+ + n + n reaction we have F(Z = 0, E′

�) ≡ 1.
Substitution of the multipole operators defined in equations (44)–(47) leads to

lλjλ =
∑
JoMo

4πiJo(−1)Mo〈ψp′ |

× [
T

JoMo
C �

Jo−Mo
C + T

JoMo
E �

Jo−Mo
E + T

JoMo
L �

Jo−Mo
L + T

JoMo
M �

Jo−Mo
M

]|ψd〉, (53)

where the lepton matrix elements are given as

�JM
C = YJM(q̂)l0, (54)

�JM
E =

(√
J + 1

2J + 1
Y J−1JM(q̂) +

√
J

2J + 1
Y J+1JM(q̂)

)
· l, (55)

�JM
M = Y JJM(q̂) · l, (56)

�JM
L =

(√
J

2J + 1
Y J−1JM(q̂) −

√
J + 1

2J + 1
Y J+1JM(q̂)

)
· l. (57)

To proceed, we use a scattering wavefunction of the following form:

ψp′(r) =
∑

L,S,J,T

4π(1/2, s1, 1/2, s2|Sµ)(1/2, τ1, 1/2, τ2|T , Tz)(LmSµ|JM)

× iLY ∗
L,m(p̂′)ψLSJT (r) (58)

with

ψLSJT (r) = 1 − (−1)L+S+T

√
2

∑
L′

YL′SJ (r̂)RJ
L′,L;S(r)ηT,Tz

, (59)

YLSJ (r̂) = [YL(r̂) ⊗ χS](J ), (60)

where χS (ηT ) is the two-nucleon spin (isospin) wavefunction with total spin S (isospin T).
The above wavefunction is normalized in such a manner that, in the plane wave limit, it
satisfies

RJ
L′,L;S(r) → jL(p′r)δL,L′ . (61)
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The partial wave expansion of the scattering wavefunction (equation (58)) gives

lλjλ =
∑

L,S,J,T ,m

∑
Jo,Mo

(−1)Mo iJo−L (4π)2

√
2J + 1

(1/2, s1, 1/2, s2|Sµ)

× (1/2, τ1, 1/2, τ2|T , Tz)(1mdJoMo|JM)(LmSµ|JM)YL,m(p̂′)

×
∑

X=C,E,L,M

〈
T

Jo
X

〉
�

Jo−Mo
X , (62)

where md is the z-component of the deuteron angular momentum. We have used here a
simplified notation

〈OJo〉 = 〈ψLSJT ‖OJo‖ψd〉 (63)

for the reduced matrix element defined by

〈J ′M ′|OJoMo |JM〉 = 1√
2J ′ + 1

(J,M, Jo,Mo|J ′,M ′)〈J ′‖OJo‖J 〉, (64)

where OJoMo are the multipole operators that appear in equations (44)–(47).

2.4.1. Cross sections for charged-current reaction. For the CC reaction, observables of
interest are the total cross section and the lepton differential cross sections. We therefore
integrate equation (51) over the momenta of the final two nucleons. Then equation (51) leads
to

dσ = G2
F cos2 θC

3π2
F(Z,E′

�)|M|2δ(Md + k − E′
� − P ′0)J̄p′2 dp′k′2 dk′ d�k′ , (65)

where

|M|2 =
∑

LSJ,Jo

{∣∣〈T Jo
C (V)

〉∣∣2
(

1 + k̂ · β +
ω2

q2
(1 − k̂ · β + 2q̂ · βq̂ · k̂) − 2ω

q
q̂ · (k̂ + β)

)

+
∣∣〈T Jo

C (A)
〉∣∣2

(1 + k̂ · β) +
∣∣〈T Jo

L (A)
〉∣∣2

(1 − k̂ · β + 2q̂ · βq̂ · k̂)

+ 2 Re
[〈
T

Jo
C (A)

〉〈
T

Jo
L (A)

〉∗]
q̂ · (k̂ + β) +

[∣∣〈T Jo
M (V)

〉∣∣2

+
∣∣〈T Jo

E (V)
〉∣∣2

+
∣∣〈T Jo

M (A)
〉∣∣2

+
∣∣〈T Jo

E (A)
〉∣∣2]

(1 − q̂ · k̂ q̂ · β)

∓ 2 Re
[〈
T

Jo
M (V)

〉〈
T

Jo
E (A)

〉∗
+

〈
T

Jo
M (A)

〉〈
T

Jo
E (V)

〉∗]
q̂ · (k̂ − β)

}
. (66)

In the above, k′ ≡ |k′| and β ≡ k′/E′
�; p′ is the relative momentum of the final two nucleons,

and p′ ≡ |p′|. Of the double sign in the last line of equation (66), the upper (lower) sign
corresponds to the ν (ν̄) reaction. The appearance of the factor J̄ in equation (65) needs an
explanation; when relativistic kinematics is adopted, there arises a Jacobian, J , associated
with the introduction of p′ but it is a good approximation to use J̄ , the angle-averaged value
of J (see [12] for details).

For the total cross section, the use of relativistic kinematics gives

σ =
∫

dT

∫
d(cos θL)

G2
F cos2 θC

3π

J̄E′
�

(√
P ′2

µ

/
2
)
p′k′

1 + E′
�(1 − k cos θL/k′)/

√
P ′2

µ + q2
F(Z,E′

�)|M|2, (67)

where T is the kinetic energy of the final NN relative motion and θL is the lepton scattering
angle (cos θL = k̂ · k̂′) in the laboratory frame. If instead we use non-relativistic kinematics,
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the results would be

σ =
∫

dT

∫
d(cos θL)

G2
F cos2 θC

3π

E′
�(2Mr)p

′k′

1 + E′
�(1 − k cos θL/k′)/(MN1 + MN2)

F (Z,E′
�)|M|2,

(68)

where MNi is the mass of the ith nucleon, and Mr is the reduced mass of the final NN system.
Equation (65) also leads to the double differential cross sections for the νe + d →

e− + p + p reaction:

d2σ

d�k′ dE′
�

= G2
F cos2 θC

12π2
F(Z,E′

�)J̄ p′k′E′
�

√
P ′2

µ + q2|M|2. (69)

The electron energy spectrum and the electron angular distribution are obtained from
equation (69) as

dσ

dE′
�

=
∫

d�k′

(
d2σ

d�k′ dE′
�

)
eq (70)

dσ

d�k′
=

∫
dE′

�

(
d2σ

d�k′ dE′
�

)
eq (70)

. (70)

2.4.2. Cross sections for neutral-current reaction. The total cross section for the NC reaction
can be calculated in essentially the same manner as above. The result is

σ =
∫

dT

∫
d(cos θL)

2G2
F

3π

J̄E′
�

(√
P ′2

µ

/
2
)
p′k′

1 + E′
�(1 − k cos θL/k′)

/√
P ′2

µ + q2
|M|2, (71)

where |M|2 is given by equation (66) with, however, the charged current replaced by the
neutral current. By contrast, in calculating neutron differential cross sections we can no
longer integrate over the relative momentum of the final nucleons. We therefore work with
the following expressions:

d2σ

d�p′
n

dTn

=
∫

d�k′
G2

F

3(2π)5

Epk′2p′
nEn

Ep − p′
p · k̂

′
∑

md,sn,sp

|jλl
λ|2, (72)

where we have indicated explicitly averaging over the initial spin and summing over the final
spins. The energy and momentum of the final proton (neutron) are denoted by (E′

α,p′
α) with

α = p (α = n); Tn is the kinetic energy of the neutron. The neutron energy spectrum and the
neutron angular distribution are then evaluated as

dσ

dTn

=
∫

d�p′
n

(
d2σ

d�p′
n

dTn

)
eq (73)

dσ

d�p′
n

=
∫

dTn

(
d2σ

d�p′
n

dTn

)
eq (73)

. (73)

3. Effective field theory calculation

Recently the EFT approach has been successfully applied to the calculations of the ν–d cross
sections by Butler, Chen and Kong [24] and by Ando et al [25]. The results of [24] (after one
free parameter is fine-tuned) agree with those obtained in SNPA. This fact can be considered to
give strong support for the basic soundness of the standard approach. Ando et al [25] carried
out an EFT calculation of σνd free from any adjustable parameter; we outline their approach
here. The approach employs a formalism developed in the studies of the solar pp fusion
reaction [26, 27] and the solar Hep process [28, 27] using heavy-baryon chiral perturbation
theory (HBχPT). The transition operators are constructed from two-body irreducible diagrams
according to Weinberg’s counting scheme [5] and the nuclear matrix elements are evaluated
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by sandwiching the EFT-controlled transition operators between the nuclear wavefunctions
that are obtained by solving the Schrödinger equation involving high-quality realistic nuclear
interactions.

It is sufficient for practical purposes to consider up to next-to-next-to-next-to-leading
order (N3LO) in HBχPT. To this order there is only one unknown LEC, denoted by d̂R in [27].
Like L1A in [24], d̂R controls the strength of the axial-current-four-nucleon contact coupling
and subsumes short-distance physics that has been integrated out. An important point noted in
[27] is that, since the tritium β-decay rate �

β
t is also sensitive to d̂R , the d̂R can be determined

from the well-known experimental value of �
β
t . This allows us to calculate σνd without any

parameter.
The ν–d reactions can lead to various values of the relative orbital angular momentum, L,

of the final two nucleons. We concentrate here, however, on the L = 0 state (1S0), since it is
this partial wave that involves the d̂R term and since the contributions of higher partial waves
are well understood in terms of the one-body operators. As in SNPA, the one-body currents
can be obtained from the phenomenological form factors of the weak-nucleon current.

The two-body current operators are derived from the chiral lagrangian L, which is
expanded as L = ∑

ν̄ Lν̄ = L0 + L1 + · · ·, where L0 and L1 are LO and NLO Lagrangians,
respectively. Their explicit expressions are

L0 = N̄ [iv · D + 2igAS · �] N + f 2
π Tr

(
−� · � +

χ+

4

)
, (74)

L1 = 1

2mN

N̄
[
(v · D)2 − D2 + 2gA{v · �, S · D}
− (

8ĉ2 − g2
A

)
(v · �)2 − 8ĉ3� · � − (4ĉ4 + 1)[Sµ, Sν][�µ,�ν]

− 2i(1 + κV )[Sµ, Sν]f +
µν

]
N +

gA

mNf 2
π

[−4id̂1N̄S · �NN̄N

+ 2id̂2ε
abcεµναβvµ�a,νN̄Sατ bNN̄Sβτ cN ], (75)

where vµ is the velocity vector vµ = (1, 
0) and Sµ is the spin operator 2Sµ = (0, 
σ). The
explicit expressions of the fields, Dµ,�µ, f +

µν and χ+, are given in [29], and fπ is the pion
decay constant. The LECs, ĉi , have been determined at the tree level [30]

ĉ2 = 1.67 ± 0.09, ĉ3 = −3.66 ± 0.08, ĉ4 = 2.11 ± 0.08. (76)

The two-body transition operators can be constructed from two-body irreducible Feynman
diagrams up to N3LO in Weinberg’s counting rule [5]. Since the tree-level two-body operators
are higher in chiral counting than the tree-level one-body operators by two orders, we can
limit ourselves to tree diagrams for the two-body operators. In addition, since the gP term is
highly suppressed, we do not consider it in the two-body operators.

The diagrams for the two-body operators are given in figure 1. Since there are only
nucleons and pions in L, the effects involving exchange of heavier mesons such as the σ and
ρ mesons are embedded in the contact term, diagram (f) in figure 1. The � is a momentum
scale below which our nucleon–pion-only description is expected to be valid. To prevent
the exchanged momentum from surpassing �, the cut-off function, S�(
k) = e−
k2/(2�2), has
been introduced in calculating the Fourier transforms of the two-body transition operators
[27]. As noted in [27], the short-range part of the two-body contributions can be lumped
together into an axial-current-four-nucleon contact coupling term with the strength d̂R , where
d̂R = d̂1 + 2d̂2 + 1

3 ĉ3 + 2
3 ĉ4 + 1

6 . Then, for a given value of �, the d̂R has been determined

from the empirical value of �
β
t . The results are [27]

d̂R = 1.00 ± 0.07, 1.78 ± 0.08, 3.90 ± 0.10, (77)
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V, A

X

V

X

A

X

V, A

V

V, A

X

(a) (b) (c) (d) (e) (f )

Figure 1. Diagrams for two-body current operators of order ν = 1 (a, b) and ν = 2 (c, d, e, f ).
The wavy lines with V and A attached denote the vector and axial-vector current, respectively, the
dashed line denotes the pion, and vertices without (with) ‘X’ arise from the LO (NLO) Lagrangian.

for � = 500, 600, 800 MeV, respectively. The explicit expressions of the current operators
for the CC reaction have been given in [29].

The total cross sections calculated using the non-relativistic formula are

σνd(Eν) =
∫

dp

∫
dy

1

(2π)3

2p2k′2

k′/E′ + (k′ − Eνy)/(2mN)
F(Z,E′)

1

3

∑
spin

|T |2, (78)

with the energy conservation relation valid up to 1/mN ,

md + Eν − E′ − 2mN − 1

mN

[
p2 +

1

4

(
E2

ν + k′2 − 2Eνk
′y

)] = 0, (79)

where Eν (E′) is the energy of the initial neutrino (final lepton), p is the magnitude of the
relative three-momentum between the final two nucleons, k′ is that of the outgoing lepton
(k′ = | 
k′|), and y is the cosine of the angle between the incoming and outgoing leptons
(y = k̂ν · k̂′). F(Z,E′) is the Fermi function and md is the deuteron mass. The transition
matrix T decomposition is T = T1B + T2B, where T1B and T2B are the contribution of the one-
body and two-body operators, respectively. The expressions for T1B and T2B are presented in
[31] and [25], respectively.

4. Radiative corrections

At the level of precision provided by the above-described two approaches, the radiative
corrections to neutrino–deuteron interactions become relevant [32–34]. According to [34],
radiative corrections increases σCC

νd by 4% at low Eν and by 3% at the higher end of the solar
neutrino energy, while radiative corrections lead to an Eν-independent increase of σNC

νd by
∼1.5%. These corrections for σCC

νd consist of the ‘inner’ and ‘outer’ corrections. The former is
sensitive to hadronic dynamics but energy-independent, while the latter is largely independent
of hadronic dynamics but has energy-dependence. A related question is what value should be
used for the weak coupling constant. One possibility is to use the standard Fermi constant,
GF, which has been derived from µ-decay and hence does not contain any hadron-related
radiative corrections. Another possibility is to employ an effective coupling constant (denoted
by G′

F) that includes the so-called inner radiative corrections for nuclear β-decay [35]. Since
the inner corrections are established reasonably well, it seems more natural to use G′

F [35]
obtained from 0+ → 0+ nuclear β-decays, since this allows one to take account of the bulk of
the ‘inner’ corrections.

To obtain reasonable up-to-date estimates of the remaining ‘outer’ corrections, we may
proceed as follows. For σCC

νd , we may adopt as the ‘outer’ correction the difference between the
result of the paper [34] (4%–3%) and the estimated ‘inner’ corrections (2.4%). For σNC

νd , there
is no ‘outer’ corrections at the level of precision in question. In adopting this prescription, we
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are leaving unaddressed a delicate issue of the possible difference between radiative corrections
for the single nucleon and radiative corrections for multi-nucleon systems.

It should be mentioned that calculations of radiative corrections for neutrino–deuteron
reactions can be important for deeper understanding of the strong-interaction-dependent parts
of the radiative corrections for 0+ → 0+ nuclear β-decays and for neutron β-decay. The
radiative corrections for the ν-d reactions have a specific feature that they belong to the axial-
vector part of hadronic matrix element. Note that, for 0+ → 0+ nuclear β-decays, only the
radiative corrections for the vector-current matter. Meanwhile, since neutron β-decay receives
contributions from axial-vector as well as vector currents, one might think that it is sensitive
to radiative corrections of both types. It turns out, however, that effectively neutron β-decay
is only sensitive to the radiative corrections for Fermi-type transitions. There are two main
reasons for this. First, the ‘outer’ corrections (which do not depend on nucleon structure)
are naturally the identical [36, 37] for the Fermi and Gamow–Teller transitions, since they
are related to the point-like (structureless) nucleon. The ‘inner’ corrections are different, for
the two types of transitions, but they lead to the effective renormalization [36] of the ratio
of axial-vector and vector nucleon coupling constants, λ = fV /gA. This is a crucial result
since all observables in neutron β-decay can be expressed in terms of λ rather than in terms of
gA. (This is correct for lower-order approximations [36] which are sufficient for the accuracy
of the existing experimental data for neutron β-decay.) It is therefore impossible to extract
the non-renormalized constant, gA, from neutron decay experiments within the current level
of accuracy; i.e. until we reach the accuracy of 10−5 [38]. The ν–d reaction involves the
disintegration of a deuteron from the ground-state 3S0 (T = 0, L = 0, S = 1) to continuum
dominated by the state 1S0 (T = 1, L = 0, S = 0). Therefore, this process is dominated by a
Gamow–Teller transition and, as a consequence, the radiative corrections are pure axial-vector
corrections. This fact leads to a unique opportunity to study in details the ‘inner’ corrections
and to obtain information about the bare axial-vector coupling constant by comparing ν–d
reactions and neutron β-decay.

5. Summary

Within the SNPA detailed calculations of the ν–d cross sections have been done by Nakamura
et al [12, 13]. As demonstrated in [19], the exchange currents in SNPA are dominated by the
�-particle excitation diagram [19], and the reliability of estimation of this diagram depends on
the precision with which the coupling constant gπN� is known. In the calculations [12, 13] the
gπN� was fixed by fitting the experimental value of �t

β , the tritium β-decay rate. Meanwhile,
an EFT calculation [24] of the ν–d cross sections by Butler, Chen and Kong (BCK) based
on the PDS scheme [40] agree with those of SNPA in the following sense. EFT calculations
often involve some LECs that are not known a priori and hence need to be determined
from empirical input. Indeed, in the calculation [24], the coefficient (denoted by L1A) of a
four-nucleon axial-current coupling term appears as such an unknown parameter, although a
naturalness argument (based on a dimensional analysis) gives an order-of-magnitude estimate,
|L1A| � 6 fm3. BCK therefore determined L1A by requiring that the cross sections of SNPA
be reproduced by their EFT calculation. With the value of L1A fine-tuned this way, the cross
sections obtained in [24] show a perfect agreement with those of the papers [12, 13] for all the
four reactions (CC and NC channels for ν and ν̄) for the entire solar neutrino energy range,
Eν � 20 MeV. Moreover, the optimal value, L1A = 5.6 fm3, obtained in [24] is consistent
with the value expected from the naturalness argument. The fact that an EFT calculation (with
one parameter fine-tuned) reproduces the results of the standard approach very well strongly
indicates that SNPA captures the basic physics involved.
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An EFT-controlled parameter-free calculation was carried out by Ando et al [25], and
the ν–d cross sections obtained in this calculation were found to agree within 1% with those
obtained in SNPA [13]. These results show that the ν–d cross sections used in interpreting the
SNO experiments [1] are reliable at the 1% precision level, and hence the evidence for neutrino
oscillations reported in those experiments is robust against nuclear physics ambiguities. A
recent ‘self-calibrating’ analysis [41] of the SNO data and Super-Kamiokande data has given
a value of L1A consistent with the information obtained from ν̄–d reaction experiments with
the use of reactor-generated anti-neutrinos [42, 43]. This analysis confirms that the possible
corrections to the calculated cross sections are within the claimed accuracy at the level of
1%–2%. Therefore, further detailed estimations of the radiative corrections for the ν–d
reactions are highly desirable for further improvments in the descriptions of these reactions.
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