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New enhanced tunneling in nuclear processes
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The small sub-barrier tunneling probability of nuclear processes can be dramatically enhanced by collision
with incident charged particles. Semiclassical methods of theory of complex trajectories have been applied to
nuclear tunneling, and conditions for the effects have been obtained. We demonstrate the enhancement ofa
particle decay by incident proton with energy of about 0.25 MeV. We show that the general features of this
process are common for other sub-barrier nuclear processes and can be applied to nuclear fission.
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Tunneling in nuclear processes has been a subject of study
for many years since this is a substantial mechanism of
nuclear decay and nuclear reactions, including nuclear fis-
sion and fusion(see, for example, Refs.[1,2], and references
therein). The recent interest in understanding the processes
of underbarrier tunneling[3–11] has been stimulated by the
calculation of bremsstrahlung radiation ina decay when the
a particle is moving under the barrier[12]. In this paper we
consider another feature of quantum tunneling: the possible
enhancement of nuclear decay due to interactions with low
energy charged particles. This enhancement has the same
origin as the tunneling enhancement in nonstationary fields
recently discovered in condensed matter physics[13,14], and
can manifest itself in different underbarrier processes.

For the sake of simplicity, we consider nucleara decay.
According to the theory of Gamov, the probability of the
transition ofa particle through the nuclear Coulomb barrier
is mainly ruled by the exponential factor[15,16]

W, expf− AasEdg, s1d

where

AasEd =
Î8M

"
E

R0

Ra

dRÎ2Ze2

R
− E s2d

is the classical action measured in units of" f17g. M is the
mass ofa particle,Z is the charge of the daughter nucleus,
R0 is the nuclear radius, and the classical exit pointRa is
determined by zero of the square root. Let us study how this
probability changes when the decayed nuclei are placed in
the beam of protons with the energy less than the barrier
height 2Ze2/R0. This situation resembles the process of
quantum tunneling of particles controlled by a weak and
varying in time electromagnetic field considered in Refs.
f13,14,18–20g, where the specific tunneling enhancement
mechanisms have been studied. The difference between our

case and these processes is mainly in the nature of the exter-
nal electromagnetic fieldsthe beam of protons, in our cased.
The low energy projectile protons can be treated as a source
of a pulsed electromagnetic fields interacting with thea de-
cayed nuclear target.

According to the results of papers[13,14], two different
regimes of tunneling are possible if the proton energy and its
time of the underbarrier motion satisfy the necessary condi-
tions. The first regime is the assistance of tunneling, when
the a particle gains a part of proton energy, which can be
called the positive assistance. The second one, which occurs
when thea particle transfers a part of its energy to the pro-
ton, is called the negative assistance of tunneling. Under con-
ditions of the negative assistance, thea particle tunnels at
lower energy where the barrier is less transparent. Neverthe-
less, contrary to any expectation, the regime of negative as-
sistance of tunneling is unusual, since, under certain condi-
tions, tunneling probability does not become exponentially
small even for a barrier which is normally not very transpar-
ent. This phenomenon is called Euclidean resonance. Both
mechanisms of positive and negative assistance are con-
nected with the coherent multiquanta interference in the un-
derbarrier motion. We know that the enhancement of tunnel-
ing occurs when a singularity of the nonstationary field
coincides in position with a singularity of the classical New-
tonian trajectory of the particle on the complex time plane.
To study these processes in nuclei, we apply the semiclassi-
cal approach(based on the method of trajectories in complex
time) developed for tunneling in nonstationary fields.

Consider the assistance ofa decay by the Coulomb field
of incident protons when its energy is less than the height of
the Coulomb barrier. In the absence of a proton, one can
calculate the decay probability using formulas(1) and(2). A
low energy incoming proton interacts with the nucleus only
electromagnetically, since it is stopped by the nuclear Cou-
lomb field at a distance much larger than the radius of strong
nuclear forces. The time of interactions of the proton with
the decayeda particle(underbarrier motion time) is about of
a characteristic nuclear timeDt,10−21 s. The proton can
excite the nucleus to increase the energy of emitteda par-
ticle E by the amount ofDE during the interaction timeDt.*Email address: gudkov@sc.edu
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This leads to the increase of the action in Eq.(1) by the
amount 2DtDE/" (the rigorous definition ofDt is given be-
low). At the same time, the energy gain by the exciteda
particle makes its tunneling easier due to the reduction of the
actionAasEd→AasE+DEd. Then, the resulting action for the
proton induceda decay is

A =
2DtDE

"
+ AasE + DEd. s3d

In condensed matter physics, this equation would describe
the process of the positive photon-assisted tunneling with the
probability exps−Ad f13g. The first term in Eq.s3d results
in a reduction of the probability due to quanta absorption
and the second one describes tunneling in a more trans-
parentshigher energyd part of the barrier. Since the flux of
tunneling particles in a nonstationary field is also a non-
stationary one, the expression exps−Ad relates to the maxi-
mal value of the tunneling probability. This maximal tran-
sition probability is determined by a finite value of the
energy transferDE, which provides a minimum of the
action A, and, hence, it is defined by the condition]AsE
+DEd /]DE=0.

Equation(3) describes the tunneling assisted by a given
external nonstationary field. In our case, the role of this field
is played by the proton not with a “given” but a rather with
a “flexible” motion affected by both the nucleus and thea
particle. The increase of the value ofa particle energy must
be accompanied by the corresponding decrease of the proton
energy value[from its initial value« down to s«−DEd]. In
the language of trajectories, both the particles should finish
the underbarrier motion at the same momentt=0 with the
zero velocity just to proceed in real time outside the barrier.
This means that thea particle and the proton participate in
the cooperative motion from the nuclear surfacest= it0d to
outside of the barrierst=0d. This cooperative motion can be
described by the joint actionAap which accounts the inter-
particle Coulomb interaction. In contrast to thea particle, the
proton does not start its full motion at the nuclear surface but
it starts outside the barrier. Therefore, the true action should
be corrected as

A = Aap −
2isp

"
, s4d

where the second termsbeing real and negatived accounts for
the phase shift of the process of the artificial move of the
proton from outside of the barrier to the nuclear surface. The
classical imaginary action of the protonsp can be deter-
mined from the corresponding Hamilton-Jacobi equation. At
the limit of a weaka-proton Coulomb coupling, one can
estimate 2isp/".Aps«d, whereAps«d is the proton analog of
the actions2d,

Aps«d =
Î8m

"
E

R0

re

drÎZ0e
2

r
− «. s5d

Here,m is the proton mass andZ0 is the charge of decayed
nucleus. The actionAap is defined on the jointa-proton clas-
sical trajectory in imaginary time when both particles, with

initial energiesE sa particled and « sprotond, meet on the
nuclear surface. The energy exchange between thea particle
and the proton occurs fast and weakly contributes to the joint
action Aap which can be written asAap.AasE+DEd+Aps«
−DEd. Then, the total action takes the form

A = AasE + DEd + Aps« − DEd − Aps«d. s6d

The classical timet0 of the underbarrier motion, which is
proportional to the derivative of the action with respect to
energy, has the same value both for thea particle and for the
proton since they move together

2t0

"
= −

] AasE + DEd
] DE

=
] Aps« − DEd

] DE
. s7d

Therefore, Eq.s7d determines the certain energy transferDE
which provides an extreme of the actions6d. At the limit of a
very small energy transfersDE!«d, the proton motion be-
comes nonflexible. This corresponds to the action of Eq.s3d,
with Dt=t0, which can be obtained from Eq.s6d after expan-
sion onDE. In this case, the tunneling motion of thea par-
ticle is affected by the nonstationary field

VintsRW ,itd =
2e2

uRW − rWsitdu
, s8d

where rWsitd approximately describes the classical trajectory
of the free proton. The total actions6d can be written in the
explicit form

A =
2pZe2

"
Î 2M

E + DE
− 4Î R0

"2/s4MZe2d

+
pZ0e

2Î2m

"
S 1

Î« − DE
−

1
Î«
D . s9d

Then, the relation between the optimum energy transferDE
and the energy of the incident proton« is given by Eq.s7d:

« − DE

E + DE
= S m

4M
D1/3

, s10d

where we disregard the small difference between charges of
the parent and daughter nuclei. It should be noted that gen-
erally the energy transferDE is determined by Newtonian
equations for thea particle and the proton in imaginary time,
which are coupled by the interactions8d. As a consequence,
the value ofDE depends on the anglef between directions
of radial motions of these two particlesswe consider both
particles to have zero angular momentad. For example,DE is
positive for f=180° andnegative forf=0° sparallel mo-
tiond. This means that the conditions10d of the optimum
energy transfer is fulfilled for a certain angle between
directions of classical motion of two particles.

One should emphasize that a finite angle between escap-
ing a particle and proton corresponds only to the language of
trajectories in imaginary time. The formalism of imaginary
time, which allows us to find a maximal value of effect,
provides a trajectory for the action minimization rather than
describes real particle motion. For example, real particles(in
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real time) with zero angular momenta are distributed isotro-
pically in our case despite the final angle in imaginary time
description.

One can see that the energy transferDE during the tun-
neling process can be either positive(positive assistance of
tunneling) or negative(negative assistance of tunneling). The
latter case, as mentioned above, is unusual, since the action
can tend to zero and tunneling probability does not become
exponentially small(Euclidean resonance) even for a barrier
which is normally hardly transparent. Indeed, by substituting
expression(10) into Eq. (9) we obtain

A =
2pZ0e

2

"
Î 2M

E + «
F1 +S m

4M
D1/3G3/2

−
8

"
ÎMZ0e

2R0

−
pZ0e

2

"
Î2m

«
. s11d

If DE is negative, the proton energy« can be chosen small
fsee Eq.s10dg and the last term in Eq.s11d may reduce the
action A down to a zero value. It should be noted that the
above equation is correct if exps−Ad!1. WhenA becomes
of the order of unity or less, one should use a generic
formalism with the multiinstanton approach, which leads
to the similar estimate of the actionA. As follows, the
proton energy« in Eq. s11d cannot be sufficiently small to
keepA to be finite.

Let us give an example of the calculation of the energy
transferDE using the method of complex trajectories. Con-
sider a classical parallel motion of thea particle and the
proton(the angle between particlesf=0) when onlyx com-
ponents are involved and are determined by the Newton
equations

M
]2Rx

] t2 = −
2Ze2

Rx
2 +

2e2

srx − Rxd2, m
]2rx

] t2 = −
Z0e

2

rx
2 −

2e2

srx − Rxd2 .

s12d

In the vicinity of the complex timet0, when particles meet
each other, the solutions of these equations have the form

Rxsitd
Rs

=
rxsitd

rs
= S t0 − t

t0
D2/3

, s13d

whereRs andrs are some constants to be defined. The energy
DE, gained by thea particle,

DE = 2e2E
0

t0 dt

sRx − rxd2

] Rx

] t
, s14d

diverges close tot0 and should be regularized by the condi-
tion Rss1−t /t0d2/3.R0. sIt should be noted that in contrast
to the large contribution of the diverged interactionVint to
DE, its contribution to the actionA is not divergent and even
rather small.d Then,

uDEu =
2e2

R0
S rs

Rs
− 1D−2

, s15d

where the ratioRs/ rs satisfies the relation

M

2m
SRs

rs
D3FS1 −

Rs

rs
D2

+
2

Z0
G = S1 −

Rs

rs
D2

−
1

Z0
SRs

rs
D2

.

s16d

Considering the uraniuma decay as an example

92
235U + p → 90

231Th + a + p, s17d

with the energy ofa particleE=4.678 MeV, we can fix the
ratio M /m=4, and obtain the parameterRs/ rs.0.715.
These lead to the energy transferuDEu.1.89 MeV and
nonphysicalsnegatived value of «. This means that in the
case of the classical trajectory withf=0, the energy trans-
fer is larger than the optimum valuefsee Eq.s10dg. The
optimum DE swhich leads to an extreme value of the ac-
tion Ad corresponds to a finitef of the classical trajectory
and can be found numerically using the above scheme.

The analysis of the expression for the action(11) shows
that at«=«0, where

«0 = ES m

4M
D1/3

. 1.85 MeV, s18d

the energy transferDE=0, when the anglef.30°. Under
those conditions, the actions11d coincides with the action
of the conventionala decays2d, resulting in the tunneling
probability

W, exp f− Aas4.678 MeVdg . e−80.75. 10−35. s19d

The probability s19d, being normalized by the nuclear at-
tempt frequency 1021 s−1, describes experimental data rea-
sonably wellf15,16g.

At «,«0, the optimum energy transferDE becomes finite
and negative, the optimum anglef decreases, and the action
(11) reduces in comparison withAasEd. Upon reduction of«,
the action(11) turns to zero at a certain proton energy«R,
which relates to Euclidean resonance. For the reaction(17)
«R=0.25 MeV, the accompanied energy transfer isDE
=−1.15 MeV, and the angle between the incident proton and
the emitteda particle isf.11° (when, formally,f=0 thea
particle always moves between the nucleus and the proton).
In other words, when the energy of the incident proton is
about«=0.25 MeV, the energy of the emitteda particle be-
comesE− uDEu=3.53 MeV (instead ofE=4.678 MeV) and
the energy of outgoing proton becomes«+ uDEu =1.40 MeV.
The cross section of the reaction(17) is not exponentially
small at«=«R and has a very sharp peak in the vicinity of the
proton energy. The typical behavior of the tunneling prob-
ability as a function of the proton energy« is shown in
Fig. 1.

Positive assistance of tunnelingsDE.0d corresponds to
the domain«.1.85 MeV and Euclidean resonance at«
=0.25 MeV occurs at the region of negative assistance
«,1.85 MeV. At «.«R, the shape of the peak is propor-
tional to expf−s«−«Rd /D«g, whereD«.3310−3 MeV.

The estimation of the resonance proton energy as«R
=0.25 MeV is made for zero angular momenta ofa particle
and proton, because the contribution from proton momenta
less thanLmaxsLmax

2 /2m0
2,e2Z0/R0d results simply in smear-
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ing of «R for about a few percents. This also leads to the
estimate of the geometrical cross section of this reactionsg

=pb2 where the impact parameterb=Lmax/Î2m«. The cross
section for the considered process is the product of the geo-
metrical cross sectionsg,100 b and the probability of the
enhanced tunneling.

It should be noted that at«=«R, the exit point ofa particle
is 7.3R0 and of the outgoing proton is 10R0. The incident
proton is stopped by the nuclear Coulomb field at the dis-
tance of about 54R0, as shown in Fig. 2.

Therefore, the trajectories in imaginary time are only a
convenient language to describe the effect. In real(physical)
time, the proton does not approach the nucleus and interacts
with it solely via the Coulomb field.

We use the method of complex trajectories for calcula-
tions of underbarrier processes instead of numerical solution
of the Schrödinger equation mostly because of an insuffi-
ciency of the existing algorithms to solve this type of
Schrödinger equation in a reasonable amount of time(see,
also Ref.[6]).

The idea of stimulation of nuclear tunneling processes by

incident charged particles can be applied in the similar way
to nuclear fission processes on the basis of models with
nuclear fragments tunneling under the action of the external
varying Coulomb field. However, the validity of this ap-
proach for fusion reactions is less obvious and requires a
further study.

In summary, protons, approachinga decaying nuclei, cre-
ate the nonstationary Coulomb field, acting on the tunneling
a particle. Due to these interactions the Euclidean resonance
can appear at low proton energy and the Coulomb barrier
becomes practically transparent for the passage of thea par-
ticle. For example, normally,92

235U emits a particle with the
energy of 4.678 MeV. When the energy of the incident pro-
ton is close to its resonant value of 0.25 MeV, the energy of
outgoing protons becomes 1.40 MeV and the energy of emit-
ted a particles becomes 3.53 MeV.

This work was supported in part by the U.S. Department
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FIG. 1. The right side of the energy dependence(smooth en-
hancement) of the tunneling probability corresponds to the domain
«.1.85 MeV and is related to positive assistance of tunneling. The
Euclidean resonance occurs at«=0.25 MeV at the region of nega-
tive assistance tunneling«,1.85 MeV.

FIG. 2. (a) The trajectory of thea particle;(b) The trajectory of
the proton. These classical trajectories in imaginary time are only a
convenient way to describe the effect. In real time the proton does
not approach the nucleus and interacts with it solely via the Cou-
lomb field.

BRIEF REPORTS PHYSICAL REVIEW C69, 037602(2004)

037602-4


	New enhanced tunneling in nuclear processes
	Publication Info

	tmp.1334600420.pdf.i5Xjc

