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ERROR BOUNDS FOR GAUSSIAN QUADRATURE AND 
WEIGHTED-L1 POLYNOMIAL APPROXIMATION* 

RONALD A. DEVOREt AND L. RIDGWAY SCOTT: 

Abstract. Error bounds for Gaussian quadrature are given in terms of the number of quadrature points 
and smoothness properties of the function whose integral is being approximated. An intermediate step 
involves a weighted-L' polynomial approximation problem which is treated in a more general context than 
that specifically required to bound the Gaussian quadrature error. 

AMS(MOS) subject classifications. 65D30, 41A55, 41A10 

1. Introduction. The purpose of this note is to establish error bounds for Gaussian 
quadrature that reflect the fact that the accuracy is not degraded by certain singularities 
in the function to be integrated if they occur at the boundaries of the interval of 
integration rather than in the interior. It is well known that polynomial approximation 
can achieve greater accuracy at the boundary than in the interior (cf. Timan [5, p. 
262]). The basic result to be derived says that the error in N-point Gaussian quadrature 
approximating the integral of f on [-1, 1] is bounded by 

(1.1) CSN s If (s)(X)I(1 - X2)s12 dx 

for all integers s '-2N such that the above integral makes sense. Here, Cs is a constant 
independent of N and f. The main point of course is that f may have certain singularities 
at x = +1 such that the above integral is finite for some value of s, whereas it would 
not be finite if the same singularities occurred for -1 < x < 1. If f has no singularities 
in the interval [-1, 1], then an error bound such as (1.1) is not of great interest, as 
one would expect an exponential rate of convergence in this case (cf. Davis and 
Rabinowitz [1, p. 239]). 

Theorem 3 below gives a result slightly sharper than (1.1) which allows one to 
interpret (1.1) as being valid for nonintegral s via an interpolation argument. This 
interpolation argument can be used to determine, for example, the rate of convergence 
with respect to N for a function with a power law singularity at the boundary (see 
Remark 4 in ? 4). Thus bounds of the type (1.1) appear to be the right way to predict 
the accuracy of Gaussian quadrature when applied to general classes of singular 
functions. However, our main motivation for proving (1.1) came from the so-called 
discrete ordinates method for the transport equation [3]. To bound the error in this 
method, one must consider the error in Gaussian quadrature applied to a one-parameter 
family of (singular) functions fy(x), where the strength of the singularity of f at the 
boundary (in x) varies with y. Moreover, the singularities are not simple power law 
singularities, so the estimate (1.1) appeared essential to handle this problem. 

* Received by the editors August 18, 1981, and in revised form July 15, 1983. This research was 
sponsored by the U.S. Army under grant DAAG29-80-C-0041. It is based upon work supported by the 
National Science Foundation under grants MCS-81-01661 and MCS-81-01631. 
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29208. 

t Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109. 
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Bounds of the type (1.1) can also be given for composite rules using N points on 
a mesh that is quadratically graded near + 1, provided the basic rule has order of 
accuracy s (see Remark 5 in ? 4). The techniques of proof for the case of composite 
rules are more elementary than those in the single-interval case. We include this simply 
for comparison and completeness. 

In the following, we shall use interchangeably the words "bound" and "estimate," 
i.e. we shall refer occasionally to (1.1) as an "error estimate" even though it is not an 
asymptotic estimate of the actual error, rather simply an "estimate from above." 

Our technique of proof is in two parts. Firstly, we analyze a Peano kernel for the 
quadrature error. This has the effect of establishing the bound (1.1) for s = 1 and 
reducing further estimates to a weighted-L' approximation problem for polynomials. 
This part of the analysis is presented in ? 2. Secondly, we consider weighted-L' 
approximation by polynomials and prove estimates for the error. This is done in ? 3. 

Finally, the estimates of ?? 2 and 3 are combined in ? 4 to give error bounds for 
Gaussian quadrature of the type (1.1) for all s- :1. The calculations in ? 2 are done 
specifically for Gaussian quadrature, although they clearly extend to more general 
quadrature approximations based on orthogonal polynomials for weighted integrals. 

The weighted-L' approximation estimates show that, for a rather general class of 
weights w > 0 and sufficiently smooth f, there is a polynomial P of degree at most N 
so that 

(1.2) J If(x)-P(x)Iw(x) dx-CsN`sJ If(s)(x)I(1jx)s/2w(x) dx 

for any s and N such that N+ 1 _ s _ 1 In the case w-1 and s = 1, (1.2) has been 
established by N. X. Ky [2]. 

2. Error estimates for Gaussian quadrature. Consider Gaussian quadrature 
approximation of the form 

1 ~~N 
(2.1) f f(x) dx - E ojjf (xj) =: IN(f ) 

j=1 

({xj} are the zeros of the Legendre polynomials and {Cw} are the integrals of the 
associated Lagrange interpolation polynomials, cf. G. Szego [4]). The ordering 
-1 <X1 ... < XN < 1 will be assumed, and we introduce x0:= -1 and XN+1:= 1. We 
wish to establish estimates of the error 

(2.2) eN(f):= Jf(x) dx-IN(f) 

in terms of N and properties of f. 
Assume N- :2 (our final estimate in Theorem 1 will hold for N = 1 as well, as 

may be easily checked). The Peano kernel theorem allows us to write 

eN(f) = J K(t) f '(t) dt, 

at least for smooth f, where K(t) = eN(H,), Iti 1, (cf. (3.3) below) and H, is the 
Heaviside function 
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It follows that 

K(t)=1-t-L wj j-t-1. 
Xj>t Xj<t 

The Chebyshev-Markov-Stieltjes inequality (cf. G. Szego [4, p. 50]) implies that 

j~~~~j ' 1 +xj _ i +xi+1, j ,, N. 
i=l 

Therefore, for j= 1, , N, 

x, l- xi K ( xj-)-s O K ( xj + x) _ xlxj. 

Since K vanishes in each interval [xj-1, xj] and its slope is one almost everywhere, 

max {IK(x)I: xE [xj-1, xj]} _x - xj-l, 

for j = 1, , N + 1. To bound xj - xj-,, recall that (cf. G. Szeg6 [4, p. 122]) 

(2.4) x,=-cos Oj where (2N + l) Oj E:[2j - 1, 2j], Xi ~~~~~~~IT 

for j=1, ,N. Thus 

xi-xj_1=cos O_1-cos o =J sin OdO 
oj_1 

-(Oj- Oj-1) max {sin 0: OE [Qj-1, 0j]} 

-(2N) max {sin 0: 0 e [Oj-,, Ojl}. 

To bound the latter term, observe that, since (sin 0)/ 0 is decreasing on [0, r], (2.4) 
implies 

sin o0( )sin Opij(0') sin 01 i 4 sin 0 ji 

for 0 E [Qij-, Oj] and j = 2, , N. From the symmetry properties of the Oj's (cf. [4]), 
it then follows that 

sin 0 4 sin O0, 0 E [0j-1, Oj], j=2,. * N 

as well. Thus we have 

(2.5) max {sin 0: 0OE [01j-, j]}_ 4 min {sin 0: OE [Oj-1, 0j]} 

for j= 2, ,N. Thus we find, for j= 2, * * *, N, 

xj - xj 1 6r min {sin 0: 0OE [0,j-, 0j]}/N 

= 6r min I /1-cos2 0: 0 E [Oj-F, 0j]}/N 

= 6r min h- x e [Xj_l, xj]}/N. 

Therefore, we have 

(2.6) IK(x)I_ , 
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at least for x between x1 and XN. For x E [-1, x1] 

IK(x)Il1+ Xx 1X+x 

v'i/-xos alcA/l-x - 
V/2 V2N 

A corresponding estimate holds by symmetry for x E [XN, 1], SO (2.6) is valid for all 
xE [-1, 1]. Thus we have proved that 

Ien(f)I 6irN' J IfN(x)Iv/1x2dx 

Since (2.4) implies that 

N 2N+1 

for x E [x1, XN] and N- 2, (2.6) implies further that 

(2.7) IK(x)I 6rr(1- x2) 

for x E [x1, XN]. But for x E [-1, x1] U [XN, 1], IK(x)I = 1- IX. Thus (2.7) holds for all 
x E [-1, 1], giving the following estimate: 

IeN(f)I _ 6ir J If'(x)I min {VN , 1 -X2} dx. 

These estimates hold for all f E L1([-1, 1]) whose weak derivatives are integrable with 
respect to the weight 1- x2, as can be seen by approximating f via smooth functions 
(cf. the definition of the space Y' given later in ? 3). Summarizing the above, we 
have the following: 

THEOREM 1. Let eN(f) denote the error in N-point Gaussian quadrature applied 
to f eL'([-1, 1]) (see (2.1)-(2.2) for definitions). If the weak derivative, f', of f is 
integrable with respect to the weight 1 - X2, then 

IeN(f) l- 6iT J If'(x) Imin {1N , 1 -x2} dx. 

If f' is integrable with respect to /1 - x2, then 

IeN(f) N | If '(x)I IV1 _ X2 dx. 

Estimates involving higher derivatives of f can also be derived by estimating Peano 
kernels. For example, one may write, for any 1 _ k ' 2N, 

eN(f) = J Kk(x)f(k)(x) dx 
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(K1 = K in the previous notation). Kk is a C(k-2) piecewise (kth degree) polynomial 
(with knots {xi}) satisfying 0 = Kk(+1)= K(k-1) (+K1) and K(k) =(_l)k between 
knots. Moreover, K (k-1)(xj +) - K(k- (x -)= (l)k-l1, j=1 , N. Using these 
facts together with a special oscillation property of K2, it can be shown that 

1K2(X)I C min {1N2 (1-x2)2}. 

However, it becomes increasingly difficult to estimate the higher-degree kernels Kk, 
k '-3. Thus the following approach proves more fruitful. 

Observe that eN(f) = eN(f - P) for any P e GP2N-1, where OP, denotes the set of 
polynomials of degree not exceeding r. Therefore, Theorem 1 implies that 

(2.8) IeN(f)I_ inf F If IP(x)w(x) dx, 
PE-O2N-2 J 1 

where w is the weight function 

w(x) = 6r min {VN X 1- x2}. 

Thus, estimates of eN(f) are reduced to a weighted-L' approximation problem for 
polynomials. Such problems will be considered in the next section. The results of ? 3 
on approximation will be combined in ? 4 with the results of this section to give higher 
order estimates of the form 

(2.9) IeN(f)I Cs J f(s)(x)Imin {(vN ),(1-x2} dx 

for arbitrary positive integers s and N such that N ' s/2. 

3. Weighted-L' approximation. In this section, we shall prove a weighted-L' 
polynomial approximation result of the form 

1 1 

(3.1) inf ' IU-PI(x)w(x) dx?C_wN-5 JF u(S)(x)lw(x)(1-x2)s'2dx, 
P C"-VN -1 -1 

where 9 denotes the set of polynomials of degree not exceeding N, s is a positive 
integer, CSW is a constant independent of N and u, and w is a positive, integrable 
weight function to be discussed in more detail subsequently. Rather than state our 
abstract conditions on w and u initially, we shall develop them in the course of deriving 
(3.1). However, suffice it to say that (3.1) will be proved for a class of weights including 
the Jacobi weights 

(3.2) w(x) = (1 + x) (1 -x), ac, ,3> -1. 

As a first step, recall the Heaviside function H,(x) defined in (2.3). If u is sufficiently 
smooth, we may write 

(3.3) ~~u(x) =P(X +( -)! H(x)(x -t)s-lu(s)(t) dt 

for all x E [-1, 1], where P1 E 9s-1 Let Al E GPN-s+1 be an arbitrary family depending, 
say, piecewise continuously on t, and define 
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Then P e 9#N, and Holder's inequality and Fubini's theorem imply that 

(3.5) 

L u -P|(x)w(x) dx (s-_)! F{F | |t-HtI(x)Ix-tIs-lw(x) dx} u(s)(t) dt. 

Thus to prove (3.1), it suffices to construct A, in such a way that 

(3.6) 1A -H I(x)Ix- tIs-l w(x) dx c C,N-s(l - t2)s/2W(t). 

For t near ?1, this is relatively easy to do under the following assumption: 
(Al) .There is a constant A1 such that 

1 

(i) I w(x)dx?' A1(l-t)w(t) for0O-?t?l-1 

and 

t 

(ii) J w(x) dx A1(1+ t)w(t) for-1? to0. 

EXAMPLE 1. Assumption (Al) holds for the Jacobi weight w(x)= 
(1 + x)a(1-x) provided a, f >-1. 

Proof. To see this, it suffices to verify, say, (i). Then 

r1 1 r1 

I W(X)dX=J'(l+ Xr a(l X)P0dX?2<,)max{a,O}'( w(x) dx = (- ) -xl xc2A.t o (1 -x)P3 dx 
t t t 

2max{a,}( - t)'l+ 21a1 
- -(l+t)a(l-t)l+P=A1(ll-t)w(t). O 

LEMMA. Suppose Assumption (Al) holds. Define At by 

A forallxe[-1,1] ift>O, 

1 for all xE [-1, 1] if t C 0. 

Then 

kt -HtI(x)lx - tIs-lw(x) dx A1(l - t2)SW(t) 

for all te[-l, 1]. 

Proof. Suppose t> 0. From (2.3) and Assumption (Al), we have 
#1 1 

I,kAt-Htl(x)lx tIs-lw(x) dx= } Ix tIS-lw(x) dx (1-t)s-l w(x) dx -1 ~~~~~~t t 
Al(l - t)sw(t) ? Al(l - t2)SW(t). 

The case t 0< is similar. O 
COROLLARY. Let K _ 1 be arbitrary, and suppose (Al) holds. Then for any N 1 

and t E [-1, 1] such that l1 - t2 < K/N, the choices for At given in the lemma satisfy the 
estimate (3.6) with Cs = Al Ks. 
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In view of this corollary, it suffices to assume that /1- _t2 K/N, where K can be 
chosen later at our discretion. We shall subsequently construct, for certain values of 
t, At = A t,r,N E "P N-2r+1 such that 

(3.7) IHt-Atl(x) C 
Cr(1N 

lx - t1-2r+l fo [-1 1] 

where r is any positive integer (to be chosen later depending on w and s). Furthermore, 
At will be monotone, nondecreasing, with At(-1) = 0 and Ar(+1) = 1. Hence also 

(3.8) jHt-Atj(x)-1 forallxcE[-1,1]. 

Assuming these properties of At for some t for the moment, we proceed to prove (3.6) 
for such t. Let 8=V1-`t2/N. Then 

J lHt-Atl Ix-tIS-l w(x) dx 

(3.9) 

; Ii |Ix-t| S-l w(x) dx + Cr J Ix-t s-2rw(x) dx 62r-1 

where we used the bounds (3.8) and (3.7) on the first and second integrals, respectively. 
Thus the estimate (3.6) follows easily from the following two assumptions: 

(A2) Let s be a positive integer. Then there exist constants A2 < o and 2_ y < x 
such that, for all 8 > 0 and t E [-1, 1] satisfying 1- t 

f w(x + t)xsl dx _ A2w(t)0s. 
IxI_8 

(A3) There exist A3<oo, 2y <oo and 0<ko<oo such that, for all 8>0 and 
te -1, 1] satisfying 1- t2_ y8 and all k_ ko, 

f w(x + t)IxI k dx _ A3w(t)S k+l. 

It+XI_1 

In applying (A2) and (A3) to (3.9), note that, for 8= /i1- t2/N, the condition 
1- t2 _ y8 is equivalent to Vi=- t y/N. This will therefore be satisfied if K _ y, a 
requirement we now impose on K. Choosing r such that 2 r - s =: k '-ko thus proves 
(3.6) for t such that (3.7)-(3.8) hold. Before proving the bounds (3.7) and (3.8), we 
show that (A2) and (A3) hold for Jacobi weights. 

EXAMPLE 2. Assumption (A2) holds for the Jacobi weights w(x) = (1 + x)a(1 -x)" 
for all a,,83E R. 

Proof. Take y= 3. By a change of variables, 

Sf w(x + t) a_ __ 

3_5 |lw(X+t)Ixls-l dx =VS {xI + ( +1: )(1 )xs1 dx 
w(t) jXI=1 + 1 w( 1 _t 

But for 1-t2 _ 38, I/(1 + t) E [0, 2]. Thus the integrand is bounded by 3max{IaIl11}1. 0 
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EXAMPLE 3. Assumption (A3) holds forthe Jacobi weights w(x) = (1 +x)a(1 -x)l 
for all a, 3 > -1. 

Proof. Take y = 2 and ko:= 2 + max {Ia, 3, 0}. Then 

w(xt) 

lx+tl_ 1 

=k-1 (1 W(t + t)X-k d+ | w(t -X) -k 
= kJ w(t) dx | w (t) x dx) 

+l (+ L (i- ) ( +1k) xkdx) 

=:L(t, 8, a, 3, k)+I+(t, 8, a, /3, k). 

Since I+(t, 8, a, 13, k) = IL(-t, 8, 13, a, k), it suffices to show that, for all ItI VI1 - y8, 

I_(t,6, a, 3, k)?'C provided k-2+max{a,0}. 

By a change of variables, note that 

I_(t 6, a, 8, k) (+( )y) (1- )y) y- dy. 

Let M:=(1-t)/8. Thus, for a0, 

I-- (1 +Y), (1 _M-1Y)1y-k dy _<2a J (1 - M- y)1Ya-k dy 

M 

2 f ( (1 M yM-1 Y))Y-2 dy 
1 

In the first estimate above, we used the fact that, for It|I _ 1, 

(1 + t) ? (1 - t)(1 + t) 2 #ys = 8. 

For a < 0, one has 

I_= (1 -m-1 Y)1y-k dy= (1 _M-1 Y)9Y-2 dy. 

A simple calculation shows that, for M- :1, 

J (1 -tM-1Y)-2 dy=" Cs for all ,8>-1, 

completing the proof. 0 
We now construct At satisfying (3.7)-(3.8). We shall do so by choosing 

(3.10) At(x) := | t A(Y) dy,. 

where At E jPN-2r approximates the Dirac 8-function. In particular, St will be nonnega- 
tive and will have integral on [-1, 1] equal to one. Thus At satisfies the claimed 
monotonicity property as well as having the required values at +1. Hence (3.8) will 
follow automatically. 
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To construct 8t, first note that it suffices to take 8,(x):= 2 for all x E [-1, 1] for 
N < 4r (recall that we restrict t to satisfying ='1 - y v/N in (3.7)-(3.8)). For N _ 4r, 
let n be the greatest integer not exceeding N/2r. Note that N/n-' 3r. Let Tn denote 
the Chebyshev polynomial of degree n, and let {ti: 1 _ i ' n} be its zeros: 

T (x) := cos(n(cos-' x)), t, := cos /2) )=: cos Oi i = 1, n. 
/ 

We shall establish (3.7)-(3.8) for t e {ti: 1 ' i - n}. Define 

(3.11) [(x) := ( ] 

where ci is chosen so that -1 ,St (x) dx = 1. We now estimate the size of ci. Observe 
that 8,n +, i(x)=8 i(-x), so that cn+1 i=ci. Thus we may suppose that i?(n+1)/2. 
Also, we have n ' 2. Furthermore, 

ITn(x)I = Icos n6I >2 for InO-iIrTI'3. 

Thus, writing x = cos 0, we see that for InO - iT ' 7T/3. 

Tn(X) _1 1 1 /(i +1/3)IT\ - | cos 0-cos0- '- cos ( - + -cos Oj 
(x -ti) 2 2 n / 

[5.r\no 1 1 ~ [5T 
max {sin ( - iE 2' 31 }] / sin 

because sin 6/0 is decreasing on [0, ir]. The measure of the set {x =cos 0: nO - iiI 
IT/3} is 

(i-1/3)ir (i+1/3)I\ {2r2 (i?1/3)IT\l 7r( cos -cos n '3 min {sin ) 3n sin Oi, 

since n - 2 and sin Oi =min {sin ((i? )l/n)} unless i = (n+ 1)/2, in which case sin Oi 
2min {sin ((i+ )ir/n)}. Therefore 

= y [T(X)]2r dx 5Tsin ) -]r( sin n ). 

Thus 

(3.12) Ci -< 5(rsi ) = 15(5 r Cr( 

To complete the estimate (3.7), observe that 

St (y) dy, ti, 

IHt -At I(x) = ci 

{ t, (y) dy, x>ti- 
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Therefore, 

I|Ht - A t|I(X) CC y=2r dyCC|-j 

Combined with (3.12), this proves (3.7) for t = ti. Hence (3.6) is now verified for t = ti. 
For the general case t1+1 < t < ti, define At:= At,. Note that, since sin 0/ 0 is decreasing 

on [0, i] (cf. 2.5), 

_<v min {sin 0j, sin 0j+j}/ n _ | sin 0 dO = tj-tj+ 
3n e 

_ 3r min {sin Oi, sin 0j+1}/n_ 3i/1-t2 
n 

Therefore, 

LHt - At(x)x - tls-1 w(x) dx = lIHt - A,I(x)x - tls- w(x) dx 

-|_ IHt-HtIj(x)jx-tIs-lw(x) dx 

+ lHti-Ati |(x)lx-tIs-l w(x) dx. 

This first term, via (A2), is bounded by 

'ti 

I X-tiS-i w(x) dx A2(ti - t)SW(t) _ A2(ti - ti+)SW(t) 

3 (Tl- t2)w(t)2 CrsQ1N_ t2)w(t). 

(The application of Assumption (A2) is valid provided, e.g., min { 1- t ,1-_t2+ } 
y(ti - ti+1). The reader may easily check that this holds if the constant K, mentioned 
in the corollary and the subsequent discussion, is chosen sufficiently large, depending 
on r and y. This observation applies as well to the application of Assumptions (A2) 
and (A3) in the next set of inequalities.) Since (3.7)-(3.8) hold for ti, the second term 
is bounded by ( :=V/1It2/N) 

c 62{- I | Ix - tJ-2r+lX - tiS-i w(x) dx + { Ix-t S-l w(x) dx 
1x-tj-_2jtj-tj+jj 1 x-tj--2jtj-tj+j1 

_ Cr(28)2' r Ix-t| 2rw(x) dx + 2SA2Iti - ti+11sw(t) 
Jx-tI-21tjt-tj+ 1 

? C (2a)23'A3(2ti - tI+) s-2r+1 w(t) + 2SA2Iti - ti+1ISw(t) 

assuming (A2) and (A3) hold. Therefore, (3.6) is now proved for all t E [-1, 1], and 
hence the estimate (3.1) is established for smooth u and for weights w satisfying 
Assumptions (A1)-(A3). In fact, in view of the lemma, one can improve (3.6), and 
hence (3.1), by replacing the expression (VN/1 - t2/N)s by min {(\fi7P/N)s, (1 - t2yj. 
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To extend the result to more general u, define, for positive integers s, 

(3.13) IIullK, = [Iu(x)I + Iu(s)(x)I(l - x2)s]w(x) dx 

where u(s) is interpreted as a weak derivative. Define 

(3.14) Yws := {u E= L' o(]-l, 1[): 1jull,s < x}l. 

Assuming (A2)-(A3), we have w(t) > 0 for ItI < 1 (provided w 0). Then Ys is 
a Banach space having C'([-1, 1]) as a dense subspacel. Using this density, we arrive 
at the following theorem, which summarizes our results. 

THEOREM 2. Let w be a positive, integrable function on [-1, 1] satisfying Assump- 
tions (A1)-(A3), where s in Assumption (A2) is some positive integer. Let u E Ys (see 
(3.13)-(3.14) for the definition). Then for any positive integer N_ s- 1, 

(3.15) 

inf 
J Iu-PI(x)w(x) dxC'5Cs, J Iu(S)(x)Imin{( Nx),(1-x2)s}w(x) dx, 

where O denotes polynomials of degree not exceeding N and Cs, w is a constant indepen- 
dent of N and u. 

Remark 1. If u (sX)(1_-x2)s'2 is integrable on [-1,1], the above estimate may 
be simplified to yield 

inf J u -PI|(x)w(x) dx_ Cs_ wN J Iu (x)I(l x1)'w(x) dx. 

Remark 2. Assumptions (A2)-(A3) imply, in particular, that w(t) > 0 for Iti < 1, 
unless w 0. But such a condition is necessary for an estimate such as (3.15) to hold. 
To see this, suppose that w is continuous at t and w(t) = 0. Choose a sequence {uj} 
of smooth functions with u5s) positive, supported in {x + t: lxi ' 1/ j} and J11 u(s) (x) dx = 

1 (take j' 1/(1-ItI) for simplicity). Then uj converges in L' to u(x):= 
H,(x) (x - t)s-/(s -1)! as j tends to infinity. The right-hand side of (3.15) applied to 
uj tends to zero. However, the left-hand side certainly will not do so since uo N for 
any N. 

4. Higher-order error estimates for Gaussian quadrature. In this section, we 
combine the results of previous sections to prove an estimate of the form (2.9). From 
(2.8), we know that 

IeN(f) I -<C inf if'-PI (x) w(x) dx, 
l l ~~P(E G2N-2J1 

where w(x):= min P - x2/N, 1 - x2}. It is easy to check that, if a collection of weights 
wi satisfies (Al), (A2) or (A3), then so does the weight function min {wi}. Thus 

1 Proof. Define u,(x) := u(rx), 0< r< 1. Then as r - 1, Ur' u in Y . Let ur,? be obtained from Ur by 
mollifying: ur,,:= Ur * 8, where supp {8I} = [-E, E] and 8? has integral one and is smooth. Then ur, ? is smooth 
on [-1, 1] for E_1-r, and ur, ruin Y.Now let r*1, E:=1-rO to getU,,K*Uin Yw. 0 
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Theorem 2 applies to the weight w since it is a minimum of two Jacobi weights, yielding 

IN(f)I -CS| If(s)(x)I mm {( ,v1N) ,(1 -x2)sI} w(x) dx 

= Cs { If(s)(x)Imin {Q1Nx), (1 xx2)s} dx. 

We summarize this final result as 
THEOREM 3. Let eN( f ) denote the error in N-point Gaussian quadrature approxima- 

tion to the integral of f on [-1, 1] (see (2.1)-(2.2) for definitions). Suppose that 
(1-x2)sf(s)(x) (weak derivative) is integrable on [-1,1], i.e., f E Ylswhere s is any 
integer such that 1 ' s 2N. Then 

(4.1) IeN(f)I Cs _If(s)(x)Imin { (1 -x2)} dx, 

where Cs is independent of N and f. 
Remark 3. If f(s)(X)(1 - X2)sl2 is integrable on [-1, 1], the above estimate 

simplifies to 

IeN(f)I _ CSN- 
s I f(s)(x)I(1 _ x2)12 dx. 

This is the estimate anticipated in (1.1). 
Remark 4. Supposef(x)=(1-x)g(x),where o>-1 andge Cs([-1, 1]),where 

s is the least integer greater than 2o- + 2. Then applying Theorem 3 to f yields, for 
any E>O, 

Je(A f l Ct (1 -x) 51x)/N-s dx + | (1 -x)-51-2) ds} 

? C{N SE' S/2+1 + E0+1} 

Taking E = N-2 yields the bound 

IeN(f) CN-2-2 

in agreement with the asymptotic extimate of Davis and Rabinowitz [1, (4.6.1.13)]. 
Remark 5. The weight V/i - x2 in the error bounds above arises primarily because 

the Gaussian quadrature points form a quadratically graded mesh near the boundary 
points x = +1; cf. (2.4). Similar bounds can thus be obtained for composite rules on 
such a mesh. To be precise, let yi=-1 +(i/n)2 for i=O, 1, * , n, and suppose that 
{wj, e,: j= 1, ... , J} is a fixed quadrature rule of order s on [O, 1]; i.e., suppose there 
is some function K E L([O, 1]) such that for all sufficiently smooth f 

f(e) d{- E w1f(6j)= f(S)(6)K(6) de, 
o j=1 o 

with s some positive integer (we assume ei E [0, 1] for all j). Define, for i = 1,9 * * n, 
J 

MPf = \ Yi L wif (yi_l + ej\ Yi) 
j=1 

where Ayi = yi - yi-1. For i = n + 1, ... , 2n, define Ii(f) by reflection: 

In+i(f) = In+l_i (g), g(x) =f(-x) for x E [-1, 0]. 
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Then by simple scaling we have 

f | f(x) dx-Ii(f) |_KIIL-(ro 1])(Ay)S jf(S)(x)j dx. 
Yi-i Yi-i 

Using the fact that, for 2-i_ n, 

3(i -1) __ 
____2 

Ayi 2 3 min{ ,1_yi_i 

together with the symmetry of the quadrature rules around x = 0 thus yields 

r-Yj 2n-1 Yi 

f(x) dx - E Ii(f) | 3IKIIL| If (s)(x)I mi {n-S( - x2)s/2, (1 - x2)s} dx. 
Yi i=2 Yi 

Provided that the end intervals can be estimated in a similar way, one has a result as 
in Theorem 3. Specifically, if fj $ 0 for all j (i.e., if f = 0 is not a quadrature point), then 

IK()I C Cs, {E [0 1], 

and we easily see that 

||f (x) dx - I, ( f) l _ C |I|f (')(x)j(1l + x)s dx. 

Using symmetry again and the definition of Yl, we thus find 

(4.2) f(x) dx - E Ii(f) C I f(s)(x)I mmi{ns(1 - x2)s/2, (1- X2)s} dx 

for some constant C independent of f and n. Of course, if 0 = 0 is a quadrature point, 
a result such as (4.2) cannot hold since the right-hand side is finite for, say, 
f (x) = (1 + X)-112. 
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