
University of South Carolina
Scholar Commons

Faculty Publications Computer Science and Engineering, Department of

2-9-2006

Adaptive Evolution of Chloroplast Genome
Structure Inferred Using a Parametric Bootstrap
Approach
Liying Cui

Jim Leebens-Mack

Li-San Wang

Jijun Tang
University of South Carolina - Columbia, jtang@cec.sc.edu

Linda Rymarquis

See next page for additional authors

Follow this and additional works at: http://scholarcommons.sc.edu/csce_facpub
Part of the Computer Engineering Commons, and the Genetics and Genomics Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at Scholar Commons. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact
SCHOLARC@mailbox.sc.edu.

Publication Info
Published in BMC Evolutionary Biology, Volume 6, Issue 13, 2006.
http://www.biomedcentral.com/1471-2148/6/13
© 2006 by BioMed Central

http://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/csce_facpub?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/csce?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/csce_facpub?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/27?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.biomedcentral.com/1471-2148/6/13
mailto:SCHOLARC@mailbox.sc.edu


Author(s)
Liying Cui, Jim Leebens-Mack, Li-San Wang, Jijun Tang, Linda Rymarquis, David B. Stern, and Claude W.
dePamphilis

This article is available at Scholar Commons: http://scholarcommons.sc.edu/csce_facpub/14

http://scholarcommons.sc.edu/csce_facpub/14?utm_source=scholarcommons.sc.edu%2Fcsce_facpub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages


BioMed Central

Page 1 of 12
(page number not for citation purposes)

BMC Evolutionary Biology

Open AccessResearch article
Adaptive evolution of chloroplast genome structure inferred using 
a parametric bootstrap approach
Liying Cui1, Jim Leebens-Mack1, Li-San Wang2, Jijun Tang3, 
Linda Rymarquis4, David B Stern4 and Claude W dePamphilis*1

Address: 1Department of Biology, Institute of Molecular Evolutionary Genetics, and Huck Institutes of Life Sciences, The Pennsylvania State 
University, University Park, PA 16802, USA, 2Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA, 3Department of 
Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA and 4Boyce Thompson Institute, Cornell University, 
Ithaca, NY 14853, USA

Email: Liying Cui - liying@psu.edu; Jim Leebens-Mack - jhl10@psu.edu; Li-San Wang - lswang@med.upenn.edu; Jijun Tang - jtang@cse.sc.edu; 
Linda Rymarquis - lar24@cornell.edu; David B Stern - ds28@cornell.edu; Claude W dePamphilis* - cwd3@psu.edu

* Corresponding author    

Abstract
Background: Genome rearrangements influence gene order and configuration of gene clusters in
all genomes. Most land plant chloroplast DNAs (cpDNAs) share a highly conserved gene content
and with notable exceptions, a largely co-linear gene order. Conserved gene orders may reflect a
slow intrinsic rate of neutral chromosomal rearrangements, or selective constraint. It is unknown
to what extent observed changes in gene order are random or adaptive. We investigate the
influence of natural selection on gene order in association with increased rate of chromosomal
rearrangement. We use a novel parametric bootstrap approach to test if directional selection is
responsible for the clustering of functionally related genes observed in the highly rearranged
chloroplast genome of the unicellular green alga Chlamydomonas reinhardtii, relative to ancestral
chloroplast genomes.

Results: Ancestral gene orders were inferred and then subjected to simulated rearrangement
events under the random breakage model with varying ratios of inversions and transpositions. We
found that adjacent chloroplast genes in C. reinhardtii were located on the same strand much more
frequently than in simulated genomes that were generated under a random rearrangement
processes (increased sidedness; p < 0.0001). In addition, functionally related genes were found to
be more clustered than those evolved under random rearrangements (p < 0.0001). We report
evidence of co-transcription of neighboring genes, which may be responsible for the observed gene
clusters in C. reinhardtii cpDNA.

Conclusion: Simulations and experimental evidence suggest that both selective maintenance and
directional selection for gene clusters are determinants of chloroplast gene order.

Background
The influence of genotype on phenotype is not limited to
the coding of peptides and functional RNAs by nucleotide

sequences. An organism's phenotype is also affected by
the chromosomal arrangement of genes and the interac-
tion of gene products. Comparative genomics has
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revealed a variety of gene clusters and chromosomal seg-
ments that have remained intact over hundreds of mil-
lions of years [1]. Selection for clustering of co-transcribed
genes has been hypothesized to influence gene order
within bacterial and organelle genomes, where gene clus-
ters typically encode multiple components of a functional
pathway [2]. For example, the ribosomal proteins are
encoded by similar operons in archaebacteria, eubacteria
and plastids [3]. In eukaryotic genomes, co-expression of
neighboring genes is significantly associated with the
functional roles of the genes (such as housekeeping genes
or genes in the same metabolic pathway) [4,5]. One way
that those genes become clustered is through tandem
duplication, which usually results in functionally related
genes being adjacent. On the other hand, unrelated genes
may also be brought together through chromosome rear-
rangements (recombination, inversion and transposi-
tion).

Unless selection is acting to maintain or promote gene
clusters, gene orders in genomes subjected to rearrange-
ments should become randomized with respect to func-
tion or co-expression profiles. Significant clustering has
been inferred using permutation tests that compare
observed physical distances between pairs or blocks of co-
expressed or functionally related genes to a null distribu-
tion constructed from randomized gene orders [4,5].
However, this approach is limited since the evolutionary

history of the genome was not considered. When compar-
ing gene orders among related species, it is possible to
estimate the ancestral genome and to simulate a null dis-
tribution for changes in gene order using a model. This
evolutionary approach can be used to test directly the
influence of selection on genome structure, that is,
whether present-day genome structure has been influ-
enced by directional selection for clustering of function-
ally related genes.

Small genomes, especially those of organelles and bacte-
ria, are well suited to global comparisons of gene order.
Like eukaryotic genomes, they are subject to structural
changes such as inversion, transposition or translocation,
as well as gene loss and (more rarely) gene gain. Chloro-
plast DNAs in most land plants share a highly conserved
gene content and similar gene orders [6]. Most cpDNAs
include two identical regions in opposite orientations
called the inverted repeat (IR), flanked by large single
copy (LSC) and small single copy (SSC) regions. The IRs
generally contain the bacterial-like rRNA gene clusters,
and the genes involved in photosynthesis (photosystem I/
II, cytochrome b6/f, and ATP synthase) are arranged simi-
larly in chloroplast and cyanobacterial genomes [2,3,7].
Despite these well-characterized patterns, it is unknown
to what extent the conserved gene order reflects a slow
intrinsic rate of neutral chromosomal rearrangements,
rather than selection against alternative gene orders. A

Extensive rearrangement in Chlamydomonas reinhardtii and Chlorella vulgaris cpDNAsFigure 1
Extensive rearrangement in Chlamydomonas reinhardtii and Chlorella vulgaris cpDNAs. Representative cpDNAs 
from land plants and green algae are arranged to reflect their phylogenetic relationships. The scale bar indicates 20 kb. Each 
genome is linearized and drawn as a grey bar. Genes are drawn as colored rectangles and with those encoded on the positive 
strand above the genome bar. Colored lines connect the homologs included in this study and the functional category is shown 
by specific colors.
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model of neutral rearrangement of gene order is required
to test formally whether gene orders evolve under selec-
tion which prefers some gene arrangements over others.

Nadeau and Taylor first proposed a model for the neutral
evolution of gene order in comparisons of mouse and
human chromosomes [8]. This "random breakage model"
provides a null hypothesis for the evolution of gene order.
It assumes a random distribution of break points and
allows all possible gene orders without restrictions. The
random breakage model has been used to infer organis-
mal phylogenies from gene order data [9]. The gene order
difference can be measured using the inversion distance,
which is the minimal number of inversions necessary to
transform one gene order to another. Currently, the most
accurate heuristic approach is implemented in the
GRAPPA software [10], which is generally suitable for
small taxon sets because the algorithm scores inversion
medians for all nodes iteratively across all possible phyl-
ogenies. Algorithms for genomes with arbitrary rearrange-
ments, a few deletions and duplications have been
developed [11], and the capacity of GRAPPA can be scaled
up with the discovering method (DCM) to potentially
very large data sets [12].

The random breakage model does not account for recom-
bination hotspots, which have been reported from
human-mouse genome comparisons [13]. However, at
this time it may be difficult to model these hotspots,
because the precise locations of reused breakpoints are
unknown due to insufficient resolution of gene orders
and potential errors in homology assessment given the
scale of eukaryotic chromosomes [14]. Thus, the fragile
breakage model [13], as an alternative to the random
breakage model, has not been well established.

Whereas gene order is generally conserved among land
plant cpDNAs, very little synteny is observed between this
group and cpDNAs of the chlorophytic green algae C. rein-
hardtii [15,16] and Chlorella vulgaris [17]. The apparently

increased rearrangement rate is associated with invasion
by a large number of short dispersed repeats (SDRs), for
which the evolutionary distribution is still poorly defined.
The large number of rearrangements provides an excellent
opportunity to test whether natural selection has pre-
ferred some changes in gene order. Here we present novel
statistics and parametric tests that lead us to reject the
models of random rearrangement in favor of directional
selection for clustering of functionally related genes in C.
reinhardtii. We also present experimental evidence that
adaptive evolution of chloroplast genome structure could
be driven by the advantage of concerted regulation con-
ferred by polycistronic transcription.

Results
Functional clusters are not randomly distributed
We compared gene orders of representative cpDNAs from
land plants, including tobacco (Nicotiana tabacum, [Gen-
Bank:NC_001879]) [18] and liverwort (Marchantia poly-
morpha, [GenBank:NC_001319]) [19], a charophytic
green alga (Chaetosphaeridium globosum [Gen-
Bank:NC_004115]) [20], chlorophytic green algae (Neph-
roselmis olivacea [GenBank:NC_000927] [21], C. vulgaris
[GenBank:NC_001865] [17], C. reinhardtii [Gen-
Bank:BK000554] [16]), a green flagellate alga with uncer-
tain affinities (Mesostigma viride [GenBank:NC_002186])
[22], and the plastid of Cyanophora paradoxa [Gen-
Bank:NC_001675] [23] (Figure 1) (Additional file 1,
Additional file 3).

To measure the genome structure in terms of clustering by
chromosome locations and gene functions, we defined
"sided blocks" as contiguous genes coded on the same
strand of the plastid chromosome, and "functional clus-
ters" as blocks of functionally related genes (see Meth-
ods). The randomness in the observed distribution of
shared genes in chloroplast genomes with respect to gene
function was assessed using a Kolmogorov-Smirnov test.
The null hypothesis was rejected in all seven cpDNAs
investigated for genes in functional categories such as ATP

Table 1: The Kolmogorov-Smirnov test of gene clustering by the functional category in cpDNAs §

cpDNA Dn (p-value)
Translation and 
transcription

Photosystem I and II Electron Transport ATP synthase

Chlorella 0.214(.6418) 0.488(.0066) 0.750(.0000) 0.833(.0000)
Chlamydomonas 0.198(.6866) 0.473(.0060) 0.780(.0000) 0.769(.0000)
Nephroselmis 0.209(.6207) 0.484(.0046) 0.703(.0000) 0.846(.0000)
Mesostigma 0.275(.2786) 0.549(.0008) 0.769(.0000) 0.846(.0000)
Chaetosphaeridium 0.242(.4388) 0.484(.0046) 0.714(.0000) 0.846(.0000)
Marchantia 0.341(.0986) 0.473(.0060) 0.714(.0000) 0.846(.0000)
Nicotiana 0.264(.3283) 0.473(.0060) 0.769(.0000) 0.846(.0000)

§The test statistic Dn measures whether the distribution of functionally related genes is random in gene clusters. Total 85 shared genes between 
seven cpDNAs were included.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001879
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001319
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_004115
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_000927
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001865
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BK000554
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_002186
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001675
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synthases and electron transport (p << 0.05, Table 1).
While this test suggests some degree of functional cluster-
ing in all chloroplast genomes, it does not take into
account the phylogenetic relationship of these organisms,
so it is unclear whether functional clustering in chloro-
plast genomes is a legacy of genome organization in a
cyanobacteria-like ancestor, or the product of selection on
gene order in the face of genome rearrangements.

Extensive rearrangements from the ancestral chloroplast 
genome to C. reinhardtii
In order to investigate evolutionary changes of gene order,
we constructed a phylogeny of seven representative cpD-
NAs and rooted with the sequence of C. paradoxa [23].
Maximum parsimony, neighbor joining and maximum
likelihood analyses of an alignment of 50 concatenated
protein sequences including a total of 19,836 aligned sites
(Additional file 2), all yielded identical fully resolved

topologies with high bootstrap support (Figure 2A). Mes-
ostigma was placed as a basal charophyte lineage in one
previous analysis [24]. The unrooted phylogeny of seven
cpDNAs (Figure 2B) is congruent with the alternative
placement of Mesostigma either as a basal charophyte [24]
or basal to both charophyte and chlorophyte lineages
[22]. This tree was used as the reference phylogeny for
gene order inference.

We scored the orders of 85 genes shared in the seven
genomes (Gene orders are in additional file 3). Then we
used modified versions of GRAPPA [11,25] to compute
the inversion distance between ancestral nodes and each
terminal node (Figure 2B; see Methods). The branches
leading to two chlorophytic green algae, C. reinhardtii and
C. vulgaris, are much longer than the branches leading to
the other taxa, and that many more steps were inferred on
the C. reinhardtii lineage relative to the C. vulgaris lineage.
Gene duplications or deletions were mapped before scor-
ing the ancestral genomes with inversions, and were not
counted as rearrangements. IRs were present in all inferred
ancestral nodes, and one copy was lost in C. vulgaris.
Ancestral gene orders were scored on all the phylogenies
using a two-step approach (see Methods). Due to the
computational time limit (the full search for ancestral
gene orders may require months), we stopped scoring all
possible ancestral gene orders with the data set after 25
days and took the best scored ancestral gene orders at that
time (Additional file 4).

The cpDNAs of two land plants, N. tabacum and M. poly-
morpha, were separated by an estimated 7 inversions based
on the data set. One large inversion (~30 kb) in the LSC
region has long been recognized to separate the two
genomes [26]. Additional rearrangements are directly
observable through comparison of gene order files for the
two species (see additional file 5 for the sequences of gene
order rearrangements). Using GRAPPA, all rearrange-
ments were inferred as inversions, but the total number of
inversion events estimated by GRAPPA may be greater
than the true (but unknown) mixture of inversions and
transpositions because one transposition could result in
the same change in gene order as two or three inversions.

Increased order in the genome structure after 
rearrangements
Two genomic structural characteristics were measured: the
propensity of adjacent genes to be clustered on the same
strand (using the sidedness index Cs) and the clustering of
functionally related genes (using the functional cluster
index, Cf) (see Methods). Both indices were calculated for
the inferred ancestral gene orders and extant daughter lin-
eages. Among land plants and charophytes, the inferred
sidedness among ancestral genomes was similar to extant
lineages, however, among the chlorophytes an opposite

The phylogeny of cpDNAsFigure 2
The phylogeny of cpDNAs. (A) The cpDNA phylogeny 
based on analysis of 50 concatenated proteins. The phylog-
eny includes major green plant and algal lineages and the out-
group Cyanophora. The bootstrap support values from 
maximum parsimony/neighbor joining/maximum likelihood 
analyses are labeled near each node. (B) Estimated inversion 
distances considering 85 common genes on the cpDNA phyl-
ogeny. There is an increase of rearrangements on branches 
leading to C. reinhardtii. and C. vulgaris, from a common ances-
tor indicated by an arrow.
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trend was observed, especially in the C. reinhardtii lineage
(Additional file 3). The large number of rearrangements in
the C. reinhardtii cpDNA lineage resulted in dramatically
increased sidedness relative to the inferred most recent
common ancestor of C. reinhardtii and C. vulgaris (Cs
ancestor = 0.6966, Cs observed = 0.8710; Figure 3A). A

small increase of Cs was found in the N. olivacea lineage
and there was almost no change in the lineage leading to
C. vulgaris. A large increase was also observed in the func-
tional clustering index, Cf, for C. reinhardti (Cf ancestor =
0.01674, Cf observed = 0.03397; Figure 3B), whereas the
trend was less profound in other lineages (Additional file
3). Thus, even if the ancestral genome already had a
"sided" structure, sidedness increased with genome rear-
rangements as C. reinhardtii cpDNA evolved. The inferred
increase in sidedness and functional clustering in the face
of the large number of rearrangements on the lineage
leading to C. reinhardtii might be adaptive, if such
increases were not expected under random rearrange-
ments.

To test the null hypothesis that the changes in Cs and Cf
were consequence of random genome rearrangements
rather than a consequence of directional selection (H0:
random rearrangement; HA: constraints in rearrange-
ments), we simulated random rearrangements starting
with the inferred ancestral genome along the branch lead-
ing to C. reinhardtii. Although inversions are the most
abundant type of rearrangement in cpDNAs [27], we also
considered the contribution of transpositions under three
inversion to transposition ratios, while the total number
of rearrangements was fixed according to the branch
length inferred using GRAPPA (Figure 2B). Three simula-
tions with 10,000 replicates were conducted with inver-
sion to transposition ratios of 1:0, 10:1 and 1:1 under the
random breakage model. The mean Cs values for the three
sets were 0.5929, 0.6084 and 0.5948, respectively, and the
95% confidence intervals were (0.5056,0.6742), (0.5281,
0.6854) and (0.5169, 0.6742), respectively. All datasets
simulated under the random breakage model showed a
significant decrease of sidedness from the ancestral level
(p < 0.0001). In contrast, the Cs value calculated for C.
reinhardtii increased significantly to 0.8710 (Figure 3A),
greatly exceeding the sidedness that would be expected in
a genome that had undergone this much evolutionary
change relative to its ancestor. Simulations using inferred
ancestral genomes for land plant lineages (e.g. N. taba-
cum) also strongly reject the null hypothesis of random
rearrangements (results not shown).

Given the large number of rearrangements observed in the
C. reinhardtii lineage, Cf was also predicted to decrease sig-
nificantly under the random breakage model, but Cf did
not decrease as observed in C. reinhardtii (Figure 3B). The
simulations with three models described above (all inver-
sions, a small fraction of transpositions, and equal inver-
sions and transpositions) all yielded a large decrease in
clustering as expected (the observed Cf in C. reinhardtii is
0.03397, and the 95% confidence intervals for Cf in simu-
lated genomes were 0.00744–0.01401, 0.00812–
0.014299 and 0.0750-0.01418, respectively). When trans-

Comparison of sidedness and functional cluster indices in C. reinhardtii cpDNA to those of simulated genomesFigure 3
Comparison of sidedness and functional cluster indi-
ces in C. reinhardtii cpDNA to those of simulated 
genomes. (A)The sidedness index Cs observed in C. rein-
hardtii (indicated by an arrow) is significantly larger than Cs of 
gene orders simulated under the random breakage model 
(inversion only) and the estimated ancestral genome indi-
cated in Figure 2B. (B) The functional cluster index Cf for C. 
reinhardtii (indicated by a solid horizontal line) is greater than 
that for the inferred ancestral genome (dashed line), in con-
trast to the decrease predicted by three sets of simulations 
under the random breakage model. Models 1, 2 and 3 speci-
fied the inversion/transposition ratios to be 1:0, 10:1 and 1:1, 
respectively, in simulations with 10,000 replicates. The box 
section of the box plot indicates the first quartile, median and 
the third quartile of the distribution.

0.9

A

B

Model 1 Model 2 Model 3

 F
u

n
ct

io
n

al
 c

lu
st

er
 in

d
ex

 C
f 

0.4 0.5 0.6

F
re

q
u

en
cy

Ancestral
C. reinhardtii

x1
0

C. reinhardtii

Sidedness Cs

-3

Figure 3

Ancestral genome

0.7 0.8

0
01

02
03

04
0

005
0 001

0051
0002



BMC Evolutionary Biology 2006, 6:13 http://www.biomedcentral.com/1471-2148/6/13

Page 6 of 12
(page number not for citation purposes)

position was included in simulations, decreases of Cf were
on a similar scale to the inversion-only simulations.
Taken together, these results indicate that the remarkable
increase in sidedness and functional clustering observed
in C. reinhardtii cpDNA has not been the outcome of
solely chance events. Instead, the strong deviation from
the range of outcomes expected under various random

breakage models implies that the genome structure is the
outcome of a directional selective process.

The increased level of organization in C. reinhardtii
cpDNA was associated with both maintenance of ances-
tral clusters and growth of new clusters. There were six
conserved blocks containing 19 of the 85 genes shared
between the C. reinhardtii and the C. vulgaris cpDNAs.
These blocks include concentrations of genes from a sin-
gle functional category, such as ribosomal proteins (rpl23-
rpl12-rps19, rpl16-rpl14-rps8), Photosystem II (psbL-psbF,
psbB-psbT-psbN-psbH), translation apparatus (rrn16-trnI-
GAU – trnA-UGC – rrn23-rrn5), and ATP synthase subu-
nits (atpF-atpH). Moreover, a number of small clusters of
functionally related genes inferred in the ancestral
genome were brought together in C. reinhardtii ("rear-
ranged clusters" in Figure 4B). These include transcrip-
tion/translation genes (trnH-M-F; rpl/rps; rps3-rpoC2),
electron transport genes (petA-petD), and photosynthetic
genes (psbD-psaA exon 2-psbJ) (Figure 4B). The new clus-
ters contributed to the increase of Cf in the C. reinhardtii
chloroplast genome.

Coordinated expression of genes in functional clusters
Co-transcription of several clusters shown in Figure 4B
has been previously documented, including psbD-psaA
exon 2-psbJ-atpI [28], psbF-psbL [29], petA-petD [30], and
psbM-psbZ [31]. Co-transcription of rpl and rps genes has
been found in land plant chloroplasts [32]. We docu-
mented co-transcription for an additional novel func-
tional cluster, shown in Figure 4A. Using RNA gel blots,
tricistronic transcripts of rpl36-rpl23-rpl2 and possibly
dicistronic rpl2-rps19 species could be detected. Taken
together, it appears that the clusters of functionally related
genes observed in C. reinhardtii cpDNA may be frequently
co-transcribed.

Discussion
By reconstructing the possible ancestral gene order in
chloroplast genomes and simulating rearrangements, we
have been able to formally test and reject the null hypoth-
esis that C. reinhardtii cpDNA has evolved through ran-
dom rearrangements. Instead, we found that its observed
gene order deviates strongly from the degree of sidedness
and clustering expected under a random breakage model.
Euglena gracilis cpDNA also has a high degree of sidedness
[33], however, the asymmetry of its coding strand is con-
centrated in one half of the genome and associated with
GC content, which could be influenced by asymmetrical
replication of the chromosome [33]. In C. reinhardtii, the
sidedness is not associated with GC content and we
hypothesize that it is driven by co-transcription of genes
in a functional cluster. Whereas some clusters of co-tran-
scribed genes (e.g. rpl23-rpl2-rps19, rpl16-rpl14-rps8) were
maintained in both C. reinhardtii and C. vulgaris, novel

Selected functional clusters from C. reinhardtii cpDNAFigure 4
Selected functional clusters from C. reinhardtii 
cpDNA. (A) Evidence for co-transcription of the genes 
rpl36-rpl23-rpl2-rps19. The gel was loaded with total RNA 
from wild-type cells, and shows new evidence for co-tran-
scription (see text). The top left lane is an over-exposure of 
the rpl36 gel. Transcripts 1 and 2 (3.5 and 3.3 kb) are tricis-
tronic rpl36-rpl23-rpl2, transcript 3A (2.5 kb) is rpl36-rpl23, 
and transcript 3B (2.5 kb) is probably rpl2-rps19. Single gene 
transcripts are labeled "mono". (B) Rearranged functional 
clusters, which were absent from the inferred common 
ancestor of C. reinhardtii and C. vulgaris, were identified in C. 
reinhardtii (genes connected by bold black lines). Cyan lines 
connect conserved clusters retained from the ancestor 
cpDNA. The genes are displayed in the coding direction, and 
from top to bottom relative to their order in the genome. 
The exception is psbN, which is on the opposite strand rela-
tive to other genes shown (psbT-B-N-H). A scale bar of 1 kb 
is shown below and at the left of each gene cluster.
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clusters clearly formed in the C. reinhardtii lineage (Figure
4B).

Co-transcription of neighboring genes in the C. reinhardtii
chloroplast is a widely documented phenomenon. We
demonstrated that in addition to the ribosomal protein
clusters, global analyses support the elevated level of clus-
tering of other functionally related genes. The aggregate of
genes in clusters include most essential genes involved in
translation and transcription, and some photosynthetic
genes. Coordinated transcription may play a crucial role
in the regulation of plastid gene expression in response to
light or circadian rhythms [34,35]. It is also possible that
some clusters contain cis-elements, similar to the artificial
polydeoxyadenosine sequences [36], which enhance tran-
scription efficiency. Moreover, most of the putative co-
transcription units are not conserved across chlorophytes.
Therefore, the majority of functional clusters observed in
C. reinhardtii represent new gene arrangements.

In the chloroplast gene order phylogeny (Figure 2B), the
C. reinhardtii lineage resides on a long branch compared
to the C. vulgaris lineage, and both genomes are more rear-
ranged than that of N. olivacea, relative to the common
ancestral genome of the three chlorophyte lineages. The
elevated rate of chloroplast genome rearrangement in C.
reinhardtii is associated with invasion of SDRs, which
heavily populate the non-coding regions, increasing the
total length of the intergenic regions compared to C. vul-
garis cpDNA by one-third [16]. Although simple sequence
repeats are common to microbial genomes [37], such ele-
ments are rare in most sequenced chloroplast genomes.
Within the Chlamydomonas genus (Chlorophyceae), C.
reinhardtii and C. gelatinosa cpDNAs exhibit a prevalence
of repetitive DNA and a high degree of gene order varia-
tion compared to the C. moewusii/C. pitschmannii lineage
[15,38,39]. The sister lineage to C. reinhardtii in our study,
C. vulgaris (Trebouxiophyceae), contains numerous
cpDNA repeat sequences. Besides chlorophyte algae,
members of angiosperm families, including Campanu-
laceae [40], Fabaceae [41,42] and Geraniaceae [43], also
contain repeat elements in rearranged cpDNAs, albeit of a
much lower copy number [40-43]. These repeat elements
may act as molecular "grease" that facilitates non-homol-
ogous recombination and creates a pool of diverse
genome structures subject to selective retention. Future
investigations will test whether the increased rates of rear-
rangement in plastid genomes with dispersed repeats typ-
ically lead to increased sidedness and functional
clustering as we infer for C. reinhardtii.

Gene order changes reflect relatively rare evolutionary
events and are expected to result in much less homoplasy
than substitution events in nucleotide or protein
sequences over a deep time scale [44]. Phylogeny recon-

struction using GRAPPA is highly accurate even for diver-
gent genomes [45], and thus the ancestral gene orders
inferred in our study contained sufficient phylogenetic
information. The only other software for genome rear-
rangement phylogeny, BADGER [46], performed poorly
on this data set (results not shown). GRAPPA usually
inferred unique ancestral gene orders on many data sets
we tested. Furthermore, analyses on simulated data have
shown that the inferred gene orders scored almost as well
as true ancestral gene orders [47]. In our simulation tests
of three genomes with 85 genes each, and branch lengths
of 50, 20 and 20 (roughly corresponding to the branches
leading to C. reinhardtii, C. vulgaris and N. olivacea; see
Methods), the average score for ancestral gene orders com-
puted by GRAPPA was only about 7% less than the true
scores. In practice, we observed that the less optimal gene
orders generally required more rearrangements. There-
fore, it is quite likely that any error in our estimation of
ancestral gene order has resulted in a downward bias in
the inferred number of rearrangements on the branch
leading to C. reinhardtii. Increasing the number of rear-
rangements on this branch would only lead to a more cer-
tain rejection of the neutrality of rearrangements.

The accuracy of ancestral genome reconstruction also
depends on the degree of divergence among extant taxa
and taxon sampling. For example, accurate reconstruction
of ancestral genomes at the mammalian CFTR locus was
achieved at the DNA level [48]. The high-quality recon-
struction was attributed to a dense sampling of syntenic
genome sequences from eutherian mammals, and the lack
of gene order rearrangement at the locus. Because the C.
reinhardtii cpDNA is one of the most rearranged chloro-
plast genomes sequenced to date, we included all availa-
ble chlorophyte chloroplast genomes for evolutionary
distance estimation and ancestral gene order reconstruc-
tion. The accuracy of our ancestral gene order estimation
may improve with inclusion of additional chlorophyte
plastid gene orders as they become available, but we do
not foresee a substantial reduction in the inferred number
of rearrangements separating C. reinhardtii and C. vulgaris
from their common ancestor.

Inversions are thought to be much more common than
transpositions in chloroplast genome evolution [27], and
our estimation of ancestral genome order was made with
the assumption that all rearrangements were inversions.
However, we did consider the contribution of inversions
and transpositions under different scenarios in the simu-
lation from the ancestral genome. It should be noted that
there is not a unique phylogeny distance measure using
transposition only, because computationally one transpo-
sition is equivalent to two or three inversions [49]. For
this reason, we designed our simulations to allow for var-
ious ratios of inversion and transposition events. The
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results of our simulation study did not vary significantly
under these scenarios.

The GRAPPA-IR algorithm was developed to account for
the inverted repeat (IR) region found in most plastid
genomes The IR region seems to evolve at a slower rate in
both nucleotide sequence and gene order than the single
copy regions [50], and frequent intra-molecular recombi-
nation homogenizes the two copies [6,51]. The most con-
served gene set in the IR region is the rRNA operon. In IR-
containing green plastids, the order of rRNA genes is con-
served, but the IR boundaries can vary greatly even within
one genus [52]. The IR may restrict rearrangements that
cross the boundary of single copy regions, and thus con-
centrate gene order changes within single copy regions.
However, this hypothetical constraint of the IR on
genome rearrangements seems to have been lost in the C.
reinhardtii/C. vulgaris lineage. Notably, both lineages have
undergone extensive rearrangements since their diver-
gence from a common ancestor, and they contain only a
few conserved clusters encoding rRNA or ribosomal pro-
teins. In either genome, genes that typically reside
together in the LSC region have often been scrambled and
scattered. When comparing the ancestral genome to the C.
vulgaris gene order, there was no distinction of LSC and
SSC regions although many large clusters were still shared
(additional file 4). If there were constraints on the break-
point locations, as experimentally identified in bacterial
inversion mutants [53], it would limit the possible paths
of evolution, and these constraints on the ancestral gene
orders would increase the number of rearrangements rel-
ative to the estimations derived from GRAPPA. Therefore,
as discussed above, our approach of detecting strong devi-
ation from expectation is conservative in that the number
of rearrangements may be underestimated.

Recent studies of plant, animal and fungal genomes have
shown that genes involved in the same pathways or genes
sharing similar expression patterns are often spatially clus-
tered [1,5,54]. In eukaryotes, the operon structure has
only been demonstrated in the nematode Caenorhabditis
[55]. Comparative analyses of yeast genomes indicate that
rearrangements brought together duplicate genes forming
the DAL cluster involved in allantoin metabolism [56]. In
this study, we demonstrated that positive selection for
increased clustering has influenced gene order in the chlo-
roplast. Gene clusters, as opposed to separated genes, per-
mit polycistronic transcription and thus fewer
transcriptional regulation units. Co-transcription may be
facilitated by close spacing of genes in cpDNA because
transcription termination is inefficient [57]. Although
post-transcriptional RNA processing often creates multi-
ple single-gene transcripts, co-transcription foments an
initial stoichiometric accumulation of RNA correspond-
ing to each gene in a cluster. Thus, large clusters can be

advantageous in coordinating gene expression on this
level.

Experimental approaches are necessary to understand
whether these gene clusters function as operons. Because
chloroplast primary transcripts are heavily processed – as
just one example, the psbB cluster in maize accumulates as
at least 15 distinct mRNA species with varying transla-
tional capacities [58] – direct analysis of the functional
advantages of clustering in chloroplasts is challenging.
Indeed, Chlamydomonas may be a special case, since unlike
land plants it has a single rather than multiple RNA
polymerases [35]. This situation does not allow differen-
tial expression by promoter selectivity, and may therefore
serve as a selective force that favors physical grouping of
genes rather than evolution of promoter sequences of dis-
persed genes.

Conclusion
In conclusion, we infer that gene order in the C. reinhardtii
plastid evolved in a non-random fashion, and hypothe-
size that genome structure has been influenced by direc-
tional selection acting on variation generated by an
increased rate of rearrangement. Our results provide
strong evidence that genetic responses to natural selection
occur at the level of genome organization. By estimating
the ancestral gene order and simulating rearrangements
under a null model, we provide a formal demonstration
that the chloroplast genome of C. reinhardtii has been
shaped by natural selection. Although the model of natu-
ral selection on gene order remains to be developed,
application of our methods to sequences of additional
chlorophyte plastid genomes would help to improve the
accuracy of the ancestral genome reconstruction and
inferred branch lengths. The complex process of gene
duplication and loss in bacterial and eukaryotic nuclear
genomes presents challenges to reconstruction of ances-
tral gene orders. Still, the development of new compara-
tive tools [59] gives us hope that the type of analysis
presented in this paper will soon be applicable to eukary-
otic genomes.

Methods
Functional clustering of chloroplast genes
We defined a "functional cluster" as contiguous genes
encoded on one strand from one of the following catego-
ries: transcription/translation, photosystem I and II, elec-
tron transport (cytochrome b6/f complex), and ATP
synthase (See additional file 1).

Kolmogorov-Smirnov test of random clusters
A random cluster consists of genes from any functional
category. The n = 85 genes shared in the seven chloroplast
genomes shown in Figure 1 were divided into 11 equal
sized blocks of rj = 7 genes and one block of 8 genes so that
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the block sizes and number of blocks are equal. If mij genes
were from the functional category i (total Ti genes) in the
jth block, the observed cumulative frequency was ui =
∑imij/rj. The Kolmogorov-Smirnov test measures the devi-
ation of the observed ui from the expected from the ran-
dom breakage model [13]. The test statistic Dn was
calculated for each functional category separately.

Phylogeny of chloroplast genomes
Alignments of 50 proteins shared in the 8 chloroplast
genomes shown in Figure 2A were concatenated into one
data matrix (Additional file 2). 1,000 bootstrap replicates
were conducted on the data set using PAUP* 4.0b10 with
maximum parsimony and using MEGA with neighbor-
joining methods and the Poisson-corrected distance. Max-
imum likelihood analysis with 100 bootstrap replicates
was performed using PHYLIP3.6 with JTT distance and
gamma = 0.5. GRAPPA was not used to construct the ref-
erence phylogeny.

Inferring ancestral gene orders
The ancestral gene order was inferred from the gene orders
of extant genomes on the best-scored tree following two
steps. First, the gene contents for the LSC, SSC and IR
regions of ancestral genomes of IR-containing cpDNAs
were inferred based on parsimony. Changes in gene copy
number due to IR expansion or contraction were consid-
ered the last step of gene order changes, and thus the gene
contents of ancestral genomes were determined. The
ancestral gene orders on the phylogeny for five genomes
(excluding C. vulgaris and C. reinhardtii) were computed
using GRAPPA-IR [25], which is a modified version of
GRAPPA that scores rearrangements independently
within LSC, SSC or IR. Second, the chlorophyte algal gene
orders (the extant chloroplast gene orders of N. olivacea,
C. reinhardtii and C. vulgaris and the inferred ancestral
genome of N. olivacea from step one) and the gene order
of M. viride were used for the inference of the common
ancestral gene order of C. vulgaris and C. reinhardtii. The
data set contains duplicated trnV-UAC and trnG-GCC in
C. vulgaris, trnE-UUC and psbA in C. reinhardtii and three
trans-splicing psaA exons in C. reinhardtii. The IR regions
contained rRNA genes in the same order and orientation
in each genome except that one copy was lost in the line-
age leading to C. vulgaris. To score the genomes with gene
duplications and deletions, multiple data sets were cre-
ated each containing genomes with equalized gene con-
tents by the following assignment rules: one copy of each
duplicate genes outside the typical IR was chosen; the IR
region lost in C. vulgaris was inserted to all possible loca-
tions in that genome. Preferably, we should test all these
datasets (3,936 total) with inversion medians; however,

such computation on one dataset alone will take more
than a month. To overcome this limitation, these datasets
were computed using breakpoint medians, and the assign-
ment yielded the shortest tree was chosen for a full evalu-
ation by GRAPPA. Because the gene contents of LSC and
SSC in C. reinhardtii were different from other chloroplast
genomes in the study, we allows free rearrangements such
that genes in LSC or SSC could commute across the IR.

Ancestral gene order simulation
A set of simulation experiments were conducted to evalu-
ate the accuracy of ancestral genome reconstruction with
long branches. Three genomes with 85 genes each were
generated from a defined ancestral gene order, and the
branch lengths (inversion distances) were 50, 20 and 20,
respectively. The true gene order score was 90 (equals the
tree length). The scores were computed for inferred ances-
tral gene orders by GRAPPA using inversion medians and
the random breakage model and then compared to the
true score. The experiment was repeated on 30 data sets.

Random genome rearrangement simulation
Gene orders were simulated under the assumption that
the rearrangements involve random breakpoints placed
between genes. Initial gene orders were set based on the
inferred ancestral gene orders estimated. Random rear-
rangement operations on the initial genomes were per-
formed for the number of replicates according to the
number of rearrangements inferred by GRAPPA. The
parameters input to the model were the ratios of inversion
and transposition (1:0, 10:1, 1:1) to test the sensitivity of
the findings to the specific rearrangement model. The sim-
ulated genomes had identical gene content but scrambled
gene orders relative to those observed in extant genomes,
with the exception that inverted repeats were maintained.
Test statistics (below) were calculated for each simulated
replicate of 10,000 total and the frequency distributions
were used to test the null hypothesis of random rearrange-
ment.

Sidedness index (Cs)
We designed the sidedness index (Cs) to measure the
degree to which neighboring genes are clustered on the
same strand (side) of the chromosome. A "sided block"
includes only adjacent genes on one strand, and the
number of sided blocks in a genome is designated as nSB,
while the total number of genes is n. Cs is defined as

Cs = (n-nSB)/(n-1).

When Cs reaches the maximum of 1, all genes are located
on one side. If every gene resides on the strand opposite
its neighbors, Cs approaches a minimum of zero.
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Functional cluster index (Cf)
We divided a genome of total n genes to J sided blocks (r1,
r2,...rJ). In a block, we assigned genes to functional catego-
ries. Let the numbers of genes in the ith functional cate-
gory and the jth block be mij, the functional cluster index
Cf is

A larger value of Cf indicates that functionally related
genes are more clustered into blocks.

RNA analysis
Wild-type CC-124 cells were grown in Tris-Acetate-Phos-
phate medium [60] under continuous light to mid-log
phase. RNA was isolated from 10 mL of cells as previously
described [61]. For filter hybridization, 5 µg of total RNA
was fractionated in 1.2% agarose and 6% formaldehyde
gels, transferred to nylon membranes, and probed with
gene-specific PCR products labeled by random priming
according to Church and Gilbert [62].
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