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Modified quantum trajectory dynamics using a mixed wave
function representation

Sophya Garashchuk and Vitaly A. Rassolov
Department of Chemistry and Biochemistry, University of South Carolina, South Carolina 29208

~Received 10 August 2004; accepted 16 August 2004!

Dynamics of quantum trajectories provides an efficient framework for description of various
quantum effects in large systems, but it is unstable near the wave function density nodes where the
quantum potential becomes singular. A mixed coordinate space/polar representation of the wave
function is used to circumvent this problem. The resulting modified trajectory dynamics associated
with the polar representation is nonsingular and smooth. The interference structure and the nodes of
the wave function density are described, in principle, exactly in the coordinate representation. The
approximate version of this approach is consistent with the semiclassical linearized quantum force
method@S. Garashchuk and V. A. Rassolov, J. Chem. Phys.120, 1181 ~2004!#. This approach is
exact for general wave functions with the density nodes in a locally quadratic potential. ©2004
American Institute of Physics.@DOI: 10.1063/1.1804177#

I. INTRODUCTION

Recently, the hydrodynamic or the de Broglie–Bohm
formulation of the Schro¨dinger equation~SE! ~Ref. 1! has
gained attention as an alternative approach to solving the
time-dependent SE. In principle, this formulation which is
based on the polar representation of the wave function can
give an efficient description of quantum effects in large mo-
lecular systems with the linear scaling with respect to the
system size, in contrast to the exponential scaling of the ex-
act methods of quantum dynamics. In the context of nuclear
dynamics the conceptual appeal of this formulation is that,
formally, quantum potential vanishes in the\→0 limit ~or in
the large mass limit! appropriate for description of heavy
particles such as nuclei.

The formalism, outlined below in one dimension for a
particle of massm, is based on the substitution of a wave
function in terms of its real amplitude and phase

c~x,t !5A~x,t !expS ı

\
S~x,t ! D ~1!

into SE, which gives the Hamilton-Jacobi equation on the
wave function phaseS(x,t),

]S~x,t !

]t
1

@S8~x,t !#2

2m
1V1U50, ~2!

and the equation on the wave function amplitude

]A~x,t !

]t
1A8~x,t !

S8~x,t !

m
1

A~x,t !

2m
S9~x,t !50. ~3!

The latter expresses the continuity of the wave function den-
sity. The prime denotes differentiation with respect tox. The
gradient of the phase is associated with the momentum of a
trajectory,S8(x,t)5p(x,t), which evolves in time according
to the Hamilton’s equations of motion in the presence of the
classical potentialV and the quantum potentialU,

U52
\2

2m

A9~x,t !

A~x,t !
. ~4!

In the Lagrangian frame of reference Eqs.~2! and ~3! be-
come local with respect top(x,t), once the latter is ex-
pressed in terms of a trajectory weightw(x,t) as
dw(x,t)/dt50.2 The trajectory weight is the amount of den-
sity within a volume elementdxt associated with each tra-
jectory, w(x,t)5A2(x,t)dxt . The quantum effects enter the
formulation via asingle nonlocalobject—the quantum po-
tential U—at the expense of giving up the linearity of the
standard SE. The quantum trajectories serve as a useful vi-
sualization tool3,4 and the formalism has also been adapted
for cases of nonadiabatic dynamics5,6 phase-space represen-
tations and density matrix approaches.7–13 From the compu-
tational standpoint the appeal of this formulation is that Eq.
~2! can provide an ultimate sparse moving grid, sinceA(x,t)
and S(x,t) are often slowly varying functions compared to
the complexc(x,t), and the trajectory weights are con-
served in a closed system. Several numerical strategies based
on the local interpolation of the wave function density were
suggested14–18 and some of them proved to be efficient for
model problems~scattering and dissociation! in many dimen-
sions. For general problems, however, accurate numerical
implementation of the quantum trajectory formulation is hin-
dered by the special features of quantum trajectory dynam-
ics: ~i! quantum trajectories cannot cross and~ii ! the quan-
tum potential becomes singular when the density of the wave
function vanishes. These properties lead to complicated and
rapidly varying in time and space quantum potentials and to
quantum forces that are very difficult to compute accurately.
The accuracy of the quantum potential and, consequently, the
stability and accuracy of dynamics was found to deteriorate
with time, especially in the presence of the density nodes,
which motivated the development of the representation
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transformation, adaptive moving grids, artificial viscosity
techniques, covering functions, and wave function decom-
position.19–23

The quantum trajectory formalism has also been used as
a starting point for approximate local methods based on ex-
pansion around individual trajectories, such as the derivative
propagation method24 and the method utilizing trajectory sta-
bility properties.25 We use the quantum trajectory framework
as a basis for a semiclassical method using the concept of the
approximate quantum potential determined from the en-
semble of trajectories with well-defined classical and
quantum-mechanical limits.2,26,27 While the implementation
of these approximate/semiclassical methods is formally in-
sensitive to the presence of the wave function nodes, it is
desirable to have an efficient and accurate description of gen-
eral wave functions, including excited states, interference
and tunneling effects. Below we demonstrate that a mixed
coordinate space/polar representation of the wave function
defines smooth nonsingular trajectory dynamics, reflecting
the overall behavior of the system, while more local features
due to interference or initial conditions are accurately de-
scribed by the coordinate space part.

II. THE MIXED REPRESENTATION APPROACH

First let us illustrate the instability problem of the exact
Bohmian dynamics in the regions of the low wave function
density. The polar representation of a wave function, Eq.~1!,
leads to a singular quantum potential near the node where
A(x,t)50. This results in the large quantum force, rapid
changes in the momentum and ‘‘jumps’’ in the phase of the
Bohmian trajectories as they move around the node. The
time propagation becomes very expensive even if the quan-
tum potential is provided, and nearly impossible with ap-
proximate methods. Figure 1 shows quantum trajectories de-
scribing the time evolution of a wave function defined att
50 as a superposition of the zeroth and the first coherent
states of the harmonic oscillator28 under the influence of the
Hamiltonian H5 p̂2/21w2x2/2 with the frequencyw52.
The wave function density exhibits a single minimum att
50 which develops into a node around timest
5$1.0,2.5,4.0%, when the quantum forces become very large.
Around these times the initially equidistant trajectories
closely approach each other as the wave function density
minimum decreases. The trajectory momenta in the nodal
region grow rapidly and reverse their direction after this
minimum reaches zero. The range of the momenta for trajec-
tories in the nodal regions and on the tails of the wave func-
tion can differ by orders of magnitude, depending on how
close a trajectory is to the node. In contrast, the wave func-
tion in its complex form remains smooth and simply changes
sign at the node. For general systems, the pattern of the node
development in the course of interference is the same. The
only exception to this picture, which is beyond the scope of
semiclassical dynamics, are the nodes of excited eigenstates,
for which singularities in the quantum potential cancel ex-
actly, the density is stationary and the trajectories have zero
momenta. In general, an efficient description of the nodes

and interference pattern based on stable nonsingular trajec-
tory dynamics reflecting the physics of the system is clearly
desirable.

This can be achieved by using a new representation of
the wave function. We allow the amplitudeA(x,t) to become
complex and representc(x,t) as

c~x,t !5a~x,t !x~x,t !expS ı

\
s~x,t ! D ~5!

instead of Eq.~1!, which is valid if zeros ofA(x,t) and
x(x,t) coincide. Functionx(x,t) is in general complex and
is chosen to make the new real amplitudea(x,t) and phase
s(x,t) smooth. Substitution of Eq.~5! into SE and separation
of the real and imaginary parts give

]s~x,t !

]t
1

s8~x,t !2

2m
1V2

h2

2m

a9~x,t !

a~x,t !
1\ ImF W

x~x,t !G50,

~6!

]a~x,t !

]t
1

s8~x,t !

m
a8~x,t !1

s9~x,t !

2m
a~x,t !

1a~x,t !ReF W

x~x,t !G50, ~7!

where terms dependent onx(x,t) are collected in a function
W,

W5
]x~x,t !

]t
1

s8~x,t !

m
x8~x,t !

2
ı\

m S x9~x,t !

2
1

a8~x,t !

a~x,t !
x8~x,t ! D . ~8!

FIG. 1. Bohmian dynamics in the presence of the density nodes:~a! position
of the trajectories as a function of time;~b! momenta for three selected
trajectories shown with the thick, dashed, and dot-dashed lines on both
panels. Results are shown in atomic units.
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Symbols Re@ . . .# and Im@ . . .# denote real and imaginary
parts of a quantity. Now, treating Eq.~6! as the Hamilton-
Jacobi equation and identifyings8(x,t) with the no-longer-
Bohmian trajectory momentum,s8(x,t)5p(x,t), in the La-
grangian frame of reference we obtain Bohmian-like
equations fors(x,t) anda(x,t) using apartial quantum po-
tential Ua ,

Ua52
\2

2m

a9~x,t !

a~x,t !
. ~9!

Equation~6! becomes

ds~x,t !

dt
5

p2~x,t !

2m
2S V1Ua1\ ImF W

x~x,t !G D . ~10!

Equation~7! can be expressed in terms of the partial trajec-
tory weights,wa(x,t)5a2(x,t)dxt , as

dwa~x,t !

dt
522wa~x,t !ReF W

x~x,t !G . ~11!

Ideally, x(x,t) is determined by settingW50. Then, Eqs
~10! and ~11! become fully analogous to the Bohmian equa-
tions~2! and~3!: in a closed system the new weightswa(x,t)
along the modified quantum trajectories are conserved, the
partial quantum potentialUa is finite and the nodes are de-
scribed by the functionx(x,t). The new trajectories reflect
the overall behavior of the wave function and, therefore, give
a compact representation of dynamics. For an exact imple-
mentationx(x,t) can be represented in a complete basis with
the expansion coefficients determined variationally similar to
the procedure of Ref. 29.

Let us apply the new mixed representation approach to
the harmonic oscillator example discussed above. The
Hamiltonian in atomic units isH5 p̂2/m/21w2x2/2 with the
parameter valuesm51 andw52. The initial wave packet is
a Gaussian multiplied by a complex linear function

c~x,0!5S 2a

p D 1/4k exp~ ık!12Aa~x2x0!

A11k2

3exp@2a~x2x0!21ıp0~x2x0!#. ~12!

In this casep(x,t) and r (x,t)5a8(x,t)/a(x,t) are linear
functions ofx for all times, and linearx(x,t),

x~x,t !5x0~ t !1x1~ t !x, ~13!

solvesW50 which takes the following form

]x~x,t !/]t52@p~x,t !2ı\r ~x,t !#x8~x,t !/m. ~14!

Equations~13! and~14! define the time dependence ofx0(t)
andx1(t). These expressions are integrated numerically with
parameters of linearp(x,t) andr (x,t) coming from the glo-
bal least square fit;r (x,t) also defines the partial quantum
potentialUa of Eq. ~6! needed to propagate the trajectories
as described in Ref. 27. Results for the coherent wave packet
with the initial parameters$a51, x050, p051, k50.5, k
5p/3% are shown on Figs. 2~a!–2~b!. Dynamics of the new
trajectories is smooth and describes the oscillatory behavior
of the polar part of the wave function, whilex(x,t) describes
the evolution of the density minimum which passes through
the node twice~compare the trajectories to those of Fig. 1!.

Figure 2~b! shows the initial wave function density and the
density with the node at a later time. For the noncoherent
initial wave function with initial parameters$a52, x0

50, p050, k50.5, k5p/3% the new trajectories describe
the spreading and contraction of the Gaussian ‘‘envelope’’
function, while x(x,t) represents the internal structure of
c(x,t) as shown on Figs. 2~c!–2~d!. The numerical imple-
mentation of the modified quantum trajectory dynamics is
orders of magnitude cheaper than the cost of the Bohmian
dynamics even with the full quantum potentialU being
available in analytical form for this system.

III. THE LINEARIZED IMPLEMENTATION

For general potentials the wave function nodes will de-
velop in the process of interference for any initial wave func-
tion. In order to describe this behavior we will have to intro-
duce the mixed representation in the course of dynamics. In
line with the approximate quantum potential approach geared
toward large semiclassical systems, we will determinex(x,t)
approximately. In Refs. 27 and 30 we define the energy-
conserving approximate quantum potential based on the lin-
earization of the nonclassical component of the momentum
operator,r (x,t)5A8(x,t)/A(x,t), which produces linearized
quantum force~LQF!. The optimal LQF parameters$a0 , a1%
minimize a functional I 5*@r (x,t)2a02a1x#2A2(x,t)dx.
After the trajectory discretization the LQF parameters are
found in terms of the first and second moments of the trajec-
tory distribution. In the mixed representation we can define
an approximate partial quantum potentialUa in a similar
way, now usingr (x,t)5a8(x,t)/a(x,t) as the nonclassical
momentum and the full wave function densityuc(x,t)u2

5a(x,t)2ux(x,t)u2 as a weighting function in the optimiza-
tion procedure. The functionx(x,t) is taken to be linear
~which is sufficiently accurate in the vicinity of a node!, and

FIG. 2. The mixed representation dynamics of a coherent wave packet in a
quadratic potential: modified trajectories as a function of time~a! and the
wave function density~b!. Dynamics of a noncoherent wave packet: modi-
fied trajectories~c! and the wave function density~d!. The legend for the
panel~d! is the same as on the panel~b!.

8713J. Chem. Phys., Vol. 121, No. 18, 8 November 2004 Modified quantum trajectory dynamics

Downloaded 15 Mar 2011 to 129.252.71.114. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



it is defined in such a way that allx-dependent terms in Eq.
~10! cancel provided that the linearized nonclassical momen-
tum, r̃ (x,t) is used throughout. The parameters ofx(x,t)
will satisfy

]x~x,t !

]t
52

1

m
@ p̃~x,t !2ı\ r̃ ~x,t !#x8~x,t !. ~15!

Functionp̃(x,t) is the linearized component of the momen-
tum operator found as the least square fit top(x,t) weighted
by the wave function density. With the linearx(x,t), given
by Eq.~13! and satisfying Eq.~15!, Eq.~11! for the trajectory
weights can be written as

dwa~x,t !

dt
52

2wa~x,t !

m
~Wr1Wi !, ~16!

where

Wr5Re@x21~x,t !x1~ t !#@p~x,t !2 p̃~x,t !#, ~17!

Wi5\ Im@x21~x,t !x1~ t !#@r ~x,t !2 r̃ ~x,t !#. ~18!

Equation ~16! cannot be solved exactly along a trajectory
sinceWi includes a nonlocal termr (x,t), but the contribu-
tion of Wi can be evaluated in average using integration by
parts. The final equation for thej th trajectory weight is

dwa~xj ,t !

dt
52

2wa~xj ,t !

m S Wr2\ Im@x0* ~ t !x1~ t !#

3(
i

r̃ ~xi ,t !wa~xi ,t ! D . ~19!

The total normalization of the wave function is strictly con-
served.

In general, the accuracy of this description will depend
on adjustment of the balance between the polar and coordi-
nate space representation of a wave function in the course of
dynamics. For example, in the context of the LQF method
for a wave function which is a Gaussian att50, a constant
x(x,t) will be adequate at short times. At a later time the
linear x(x,t) will be introduced to improve the accuracy. Its
parameters can be defined from the minimization of a func-
tional

I 5E Uc8~x,t !

c~x,t !
2g~x!2

1

z1xU
2

a2~x,t !dx, ~20!

whereg(x)5a01a1x is a complex linear function approxi-
mating the linear part of the momentum operator compo-
nentsr (x,t) andp(x,t), with respect to complex parameters
$a0 ,a1 ,z%. Once optimalz, which is zero ofx(x,t) in the
complex plane, is known the functionx(x,t) is obtained
from x8(x,t)/x(x,t)51/(x1z). As in the LQF method the
minimization procedure, once discretized over the trajecto-
ries is expressed in terms of the moments ofx andp and is
linear with respect to$a0 , a1%. The only nonlinear part re-
quiring iterative solution is optimization ofz. Once param-
eters ofx(x,t) are determined new weightswa(x,t), mo-
mentap(x,t) and phasess(x,t) for the trajectories are found
by equating the wave function in the old, in this case polar
representation given by Eq.~1!, with the new mixed repre-
sentation given by Eq.~5!. For improved description the pro-

cedure can be repeated in the course of dynamics, updating
the mixed representation as the new minima or other linear-
izable features in the density develop. This strategy allows us
to propagate arbitrary wave packets with a node or multiple
nodes if it is combined with the LQF formulation on spatial
domains.31

The mixed representation can also be viewed as a first
correction to a Gaussian wave function in an anharmonic
system. As an illustration we consider scattering of a low-
energy Gaussian wave packet on the Eckart barrier represent-
ing the transition state of the H3 system. In atomic units
scaled by the reduced mass of hydrogenm5918me the po-
tential V is given by V5D cosh22(gx) with the parameter
valuesD516.0 andg51.3624. The mass ism51, the unit
of energy is@hartree#3m, the unit of time is@a.u.#3m21.
The initial wave packet is a Gaussian,c(x,0)5(2a/
p)1/4exp@2a(x2x0)

21ıp0(x2x0)#, with a set of parameters
$a52.0,x0523.0,p053.0%. The total energy of the wave
packet is approximately equal to the one third of the barrier
height. The wave packet transmission probabilities as a func-
tion of time are shown on Fig. 3. In the classical limit of the
quantum potential being zero, the transmission probability is
zero, since the classical energy of all the trajectories is less
than the barrier height. The LQF method underestimates the
transmission probability by a factor of 3: the approximate
quantum potential redistributes the quantum potential energy
between the trajectories reflecting the fact that the wave
packet has low-amplitude components of the energy eigen-
states with energies higher than the barrier height. Introduc-
tion of x(x,t) at t50.1, labeledN51 on the figure, and an
additional reexpansion att50.15, labeledN52, improves
the agreement with the quantum result describing tunneling
due to the dynamical changes in the wave function density.

IV. CONCLUSIONS

We presented an approach to the description of the inter-
ference and the wave function nodes in the context of quan-
tum trajectories. The approach is based on the mixed

FIG. 3. The wave packet transmission probability for the Eckart barrier as a
function of time. The LQF result is shown with the dashed line, the quantum
result is shown with the solid line. The mixed representation results with
x(x,t) introduced att50.1 and with an additional reexpansion att50.15
are marked with circles and triangles, respectively. The total energy of the
wave packet is about one third of the barrier height. Time is shown in atomic
units scaled by massm5918me .
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coordinate/polar representation of the wave function. The
modified trajectories governed by the polar part of the wave
function give an efficient representation of the overall dy-
namics, while the coordinate space partx(x,t) describes the
interference features of the wave function density. This
mixed description avoids the problems associated with the
instability of the quantum trajectories and with the singulari-
ties of the quantum potential at the nodes of the wave func-
tion. At the same time the mixed description incorporates the
feature of the quantum trajectories being the ‘‘ultimate’’
moving grid for the wave function.

In the context of semiclassical dynamics with the ap-
proximate quantum potential applicable to large systems, we
also presented an approximate way of defining the coordi-
nate space part of the wave function. All parameters in this
model are found analytically from the moments of the posi-
tion and momentum distributions, except for zero ofx(x,t)
in the complex plane. The wave function normalization re-
mains strictly conserved. The energy is not formally
conserved, most likely due to the averaging procedure of
obtaining time-dependent trajectory weights. Further im-
provements of the approximation and reexpansion methods
are desirable and are currently under investigation. In par-
ticular, the multidimensional generalization of the method is
conceptually straightforward, but its implementation requires
multidimensional nonlinear optimization with respect to a
complex vector instead of a single parameterz of Eq. ~20!
and will be presented in a future publication.~Generalization
of the linear functiong(x) of Eq. ~20! is completely analo-
gous to the multidimensional version of the LQF method30

and leads to a linear optimization problem.! Combination of
the method with the LQF defined on spatial domains31 can
describe multiple local features of the wave function.

As a concept, the mixed wave function representation
allows one to balance the efforts between the polar represen-
tation, which is very efficient for diffuse structureless wave
functions, and the coordinate space representation, which is
better suited for description of the localized features of the
wave function. The resulting trajectory dynamics is driven
by the overall time evolution of the wave function providing
a compact description in terms of trajectories. The dynamics
can be made smooth and free of singularities making it
computationally cheap. Local features due to quantum-
mechanical interference or due to the initial form of a wave

function, that would require tight fixed grids, are describable
in coordinate space in terms ofx(x,t). We believe, that this
flexibility will give a better description of the interference
and tunneling effects within the semiclassical dynamics in an
efficient manner.
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