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INTERPOLATION OF BESOV SPACES 

RONALD A. DEVORE AND VASIL A. POPOV 

ABSTRACT. We investigate Besov spaces and their connection with dyadic 
spline approximation in Lp(Q), 0 < p < oo. Our main results are: the deter- 
mination of the interpolation spaces between a pair of Besov spaces; an atomic 
decomposition for functions in a Besov space; the characterization of the class 
of functions which have certain prescribed degree of approximation by dyadic 
splines. 

1. Introduction. The Besov space Bq (Lp) is a set of functions f from Lp 
which have smoothness a. The parameter q gives a finer gradation of smoothness 
(see (2.4) for a precise definition). These spaces occur naturally in many fields 
of analysis. Many of their applications require a knowledge of their interpolation 
properties, i.e. a description of the spaces which arise when the real method of 
interpolation is applied to a pair of these spaces. 

There are two definitions of Besov spaces which are currently in use. One uses 
Fourier transforms in its definition and the second uses the modulus of smoothness 
of the function f. These two definitions are equivalent only with certain restrictions 
on the parameters; for example they are different when p < 1 and a is small. The 
first and simplest interpolation theorems for Besov spaces, were for interpolation 
between a pair Bq (Lp) and BO(Lp) with p > 1 fixed. In this case, the real method 
of interpolation for the parameters (0, s) applied to these spaces gives the Besov 
space B1(Lp) with -a = Oa + (1 - 0) 3. Hence, when p is held fixed the Besov spaces 
are invariant under interpolation. 

More interesting and somewhat more difficult to describe are the interpolation 
spaces when p is not fixed. Such a program has been carried out in the book of 
Peetre [P] using the Fourier transform definition of the Besov spaces. The main 
tool in describilng these interpolation spaces is to correspond to each f in the Besov 
space a sequence of trigonometric polynomials obtained from the Fourier series of 
f. In this way, the Besov space Bq (Lp) is identified with a weighted sequence 
space Iq (Lp). Interpolation properties of the Besov spaces are then derived from 
the interpolation between sequence spaces (when these are known). The success of 
this approach when p < 1 rests on the fact that the corresponding Besov spaces 
are defined using Hp norms so that each f in the Besov space is a distribution and 
therefore has a Fourier series. 
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The Besov spaces defined by the modulus of smoothness occur more naturally 
in many areas of analysis including approximation theory. Especially important is 
the case when p < 1 since these spaces are needed in the description of approxima- 
tion classes for the classical methods of nonlinear approximation such as rational 
approximation and approximation by splines with free knots (see [Pt and D-P]). 

The purpose of the present paper is to describe the interpolation of the Besov 
spaces defined by the modulus of smoothness. This is established by developing 
the connections between Besov spaces and approximation by dyadic splines. We 
shall show that a function is in Bq (Lp) if and only if it has a certain rate of 
approximation by dyadic splines (?4). In this way, we can identify Bq (Lp) with 
certain sequence spaces in a manner similar to that described above for the Fourier 
transform definition. While the basic ideas behind such an identification is rather 
simple, some of the details become technical when dealing with the case p < 1. One 
of the main difficulties encountered is that in contrast to the Fourier transform case, 
the mapping which we use to associate to each f E Lp a dyadic spline is nonlinear 
when p < 1. 

In the process of proving our interpolation theorem, we shall develop several 
interesting results about dyadic spline approximation and about the representation 
of a function f E Bq (Lp) as a series of dyadic splines (see the atomic decomposition 
in Corollary 5.3). 

2. Besov spaces. Let Q be the unit cube in Rd. If f E Lp(Q), 0 < p < oo, we 
let wr(f, t)p, t > 0, denote the modulus of smoothness of order r of f E Lp((Q): 

(2.1) Wr(f,t)p := sup IIAr(f, )IIp(Q(rh)) 
Ih I?t 

where lhl is the Euclidean length of the vector h; Ar is the rth order difference 
with step h E Rd; and the norm in (2.1) is the Lp "norm" on the set Q(rh) 
{x: x, x + rh e Q1}. Of course, when p < 1, this is not really a norm, it is only a 
quasi-norm, i.e. in place of the triangle inequality, we have 

(2.2) Ilf + gllP < 21/P[IIfIIp + IIgII]p 
Also useful is the fact that for any ,u < min(l, p) and any sequence (f) 

(2.3) 1 ft ( lifilip)1'8 

If a, p, q > 0, we say f is in the Besov space Bq (Lp) whenever 

(2.4) If IB-(Lp) (j/; (t c'Wr(f, t)p)q t /q 

is finite. Here, r is any integer larger than (x. When q = oo, the usual change from 
integral to sup is made in (2.4). 

We also define the following "norm" for Bq (Lp): 

(2.5) lIfI IB-(Lp) I= lflp + If IB-(Lp). 

Different values of r > a result in norms (2.5) which are equivalent. This is 
proved by establishing inequalities between the moduli of smoothness Wr and Wr' 
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when r' < r. A simple inequality is Wr < CWr' which follows readily from (2.2). In 
the other direction, we have the Marchaud type inequality: 

(2.6) wr (f,t)p < Ctr [jjfijP + (,j W(sr/wr(f,s)y )l/Ij 

which holds for every ,u < min(l,p). This inequality can be proved by using stan- 
dard identities for differences. In ?4, we give a different proof of (2.6) using dyadic 
spline approximation. Using these two inequalities for moduli together with the 
Hardy inequality [B-B, p. 199], one shows that any two norms (2.5) are equivalent 
provided that r > a. 

There are many other norms which are equivalent to (2.5). We shall have occa- 
sion to use several of these which we describe in later sections. A simple observation 
is 

(2.7) f I B- (Lp) - lifplP + ([2 kcwr(f2) 2P]k ) 1q 
In fact, since Wr is bounded, the integral in (2.4) is equivalent to the integral of the 
same integrand taken over [0,1]. Now, the monotonicity properties of Wr allow us 
to discretize the integral and obtain that (2.7) is equivalent to (2.4). 

3. Local polynomial approximation. We want to show that wr(f, 2-k)p in 
(2.7) can be replaced by the error of dyadic spline approximation. This requires 
inequalities between the modulus of smoothness and the degree of spline approxi- 
mation. These will be given in ?4. To estimate the degree of spline approximation 
by the modulus of smoothness, we first need estimates for local polynomial approx- 
imation. We define the local error of approximation by polynomials by 

deg(Q)<r 

with deg(Q) the coordinate degree of Q. We use the notation 11 IlP(I) to denote 
the Lp norm over I; when I is omitted the norm is understood to be taken over Q. 

We shall need an estimate for the local error of polynomial approximation in 
terms of the smoothness of f. One such estimate is Whitney's theorem: 

(3.2) Er(f, I)p < c&r(f, I)p 

with lI the side length of I. Here and in what follows, c is a constant which depends 
only on r, d (and p, if p appears) unless otherwise stated. The value of c may vary 
at each appearance. 

Whitney's theorem is best known for univariate functions and p > 1. It has also 
been proved by Yu. Brudnyi [Br] for multivariate functions and p > 1. A proof of 
(3.2) for all p and all dimensions d can be found in the paper of Storozhenko and 
Oswald [S-O]. We would also like to mention that the ideas used in the univariate 
proof for p > 1 carry over to the general case. For exainple, in the forthcoming 
book of Popov and Petrushev [P-P], the reader will find a proof of this type for 
p < 1 for univariate functions. 
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The modulus of smoothness is not suitable when we want to add up estimates 
over several intervals. We therefore introduce the following modified modulus: 

(3.3) Wlr (f i Op := Wlr (f it, I)p : td A(,)pzs 
. Qt I(rs)J 

where Qt := [t, t]d. Using identities for differences, it can be shown that Wr and Wr 
are equivalent, i.e., ClWr(f,t)p < Wr(f,t)p < C2Wr(f,t)p, with constants Cl,C2 > 0 
which depend only on r, p and d (see [P-P] for a proof of this in the univariate 
case; the same proof applies to the multivariate case as well). From this, we have 
the following result. 

LEMMA 3.1. If fE Lp(I), with 0 < p < oo and if I is a cube with side length 
II, then 

(3.4) Er(f, I)p < CWr(f, II, I)p. 

This result in a slightly different form can also be found in [S-O]. 
There always exist polynomials Q of best Lp(I) approximation of coordinate 

degree < r: IIf-QIIp(I) = Er(f, I)p. In the present paper we shall also find it very 
useful to use the concept of "near best" approximation. We say Q is a near best 
Lp (I) approximation to f from polynomials of coordinate degree < r with constant 
A if 

(3.5) lf - QIIP(I) < AEr(f, I)p. 
It follows that if P is any polynomial of coordinate degree < r, then 

(3.6) Ilf - QIIp(I) < Allf -PIP(I) 
One method for constructing near best approximants of f is as follows. We let 

p < p and we let QP be any polynomial of near best Lp (I) approximation to f of 
coordinate degree < r, i.e. Ilf - QPIIP(I) < AEr(f,I)p. 

LEMMA 3.2. If p < p, and QP is as above, we have 

(3.7) 11 f- QP IIP (I) < cAEr (fI I)p 

with the constant c depending only on r, d and p. 

PROOF. Let Q be a best Lp(I) approximation to f of coordinate degree < r. 
Then, from elementary properties of polynomials (see [D-Sh, ?3], we have with 
0 := i/p- l/p, 

If - QPIIP < c(Er(f, I)p + IIQ - QPIIP) 
? c(Er (f, I)p + II1 IIQ - QP IIP) 
? C(Er(f, I)p + III'[IIf - QIIp(I) + lf - QpIIp(I)]) 
? c(Er(f, I)p + III (A + 1) Ilf - QIIp(I)) 
? c(Er(f, I)p + (A + 1)If -QIIP(I)) < CAEr(fj I)p. 

Here, the first inequality uses the quasi-norm property (2.2); the second inequality 
is a comparison of polynomial norms; the third again uses (2.2); the fourth uses 
(3.6); and the fifth inequality is Holder's inequality. 
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We introduce the following notation. If I is any cube, we let PI denote any near 
best Lp(I) approximation to f from polynomials of coordinate degree < r with 
constant A. The following lemma shows that PI is also a near best approximation 
on larger cubes. 

LEMMA 3.3. For anyp > p and any cube J D I with IJI < alIl, we have 

(3.8) Ilf - PIllP(J) < CEr(f, J)p, 
with c depending at most on r, d, a and A. 

PROOF. If P is the best Lp approximation to f on J from polynomials of 
coordinate degree < r, then from (2.2) and Lemma 3.2, 

liP, - Pllp(I) < c[llf - PAllW(I) + lif - Plip(I)] 
? c[Er(fI I)p + Er(f, J)p] 
? cEr(fI J)P. 

This estimate can be enlarged to J (see [D-Sh, ?3]): 

i|PI - Pllp(J) < cEr(fI J)p. 
Hence, 

if - Pillp(J) < c[lf - Pllp(J) + IIP - P'llp(J)] < CEr(f, J). C1 

4. Dyadic spline approximation. We want in this section to describe the 
connection between Besov spaces and dyadic spline approximation. Our main goal 
is to show that Wr in (2.6) can be replaced by an error in dyadic spline approximation 
with a resulting equivalent seminorm. This means that the Besov spaces B' (Lp) 
are the approximation spaces for the approximation by dyadic splines in Lp. Such 
characterizations are known when p > 1 (see [C]; also [D-S]) and when p < 1 and 
d= 1 (see [0]). 

We let Dk denote the collection of dyadic cubes of Rd of side length 2-k and 
we let Dk(Q) denote the set of those cubes I E Dk with I C U. We introduce 
two spline spaces for this partition. The first of these is Ilk := Ik(r), the space 
of all piecewise polynomials of coordinate degree < r on the partition Dk. That 
is, S E Ilk means that in the interior of each cube I E Dk, S is a polynomial of 
coordinate degree < r. We denote by Ilk(Q) the restrictions of splines S in 11k to 
Q. 

A best (or near best) approximation Sk to f in Lp (Q) from 1k (Q) is gotten 
by simply taking S := PI, x E I, where PI, I E Dk(Q), is a best (or near best) 
approximation to f in Lp(I) by polynomials of coordinate degree < r on each cube 
I from Dk(Q). However, we shall also need to construct good approximations from 
Ilk(Q) which have smoothness. For this, we shall use the tensor product B-splines 
and the quasi-interpolants of de Boor-Fix. 

Let N be the univariate B-spline of degree r - 1 which has knots at the points 
0,1, ...,r, i.e., N(x) := r[0, 1,... , r](x -r)T- 1 with the usual divided difference 
notation. For higher dimensions, we define N by 

(4.1) N(x) := N(xi) ... N(Xd). 

These are the tensor product B-splines. They are piecewise polynomials of coor- 
dinate degree < r which have continuous derivatives DVN, 0 < v < r -2, and 
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derivatives DVN in Loo for 0 < v < r - 1. We use the notation k := (k, k, ... , k). 
The splines N are nonnegative and are supported on the cube [0, r]d. 

To get splines in the space 1k, we let 

(4.2) Nk(x) := N(2kx), k = 0, 1, ... . 

and 

(4.3) Nj,k(X) Nk(x - xj), j E Z 

where the x} 2-kj are the vertices of the cubes in Dk. The B-splines N3,k are 
a partition of unity, i.e. 

(4.4) S N3,k- 1, on Rd. 
jE Zd 

Each spline S in the span of the Nj,k can be written in a B-spline series: 

(4.5) S = E aC(S)N1, k 
j(Zd 

with the a. := aj,k the dual functionals of the N3,k. The functionals aj can be 
expressed in terms of the univariate functionals: 

(4.6) ai (S) = (Xjl (( (Xjd (S))) 

where the univariate functional a., is applied to a multivariate function g by con- 
sidering g as a function of xv with the other variables held fixed. 

There are many representations for the functionals aj . We mention in particular, 
the de Boor-Fix formula [B-F]. This representation gives that for any point Ej in 
the supp(N3), we can write 

(4.7) aj (S) = E avDv(S)($)j j E A, 
O<v<r-1 

for certain coefficients av depending on , and r. 
For approximation on Q, we need only the B-splines N3,k which do not vanish 

identically on U. We let A := A(k) denote the set of j for which this is the case and 
we let Ek := Sk(Q) denote the linear span of the B-splines N3,k, j E A. Then any 
S E Ek can be written 

(4.8) S = E Ca (S)Nj,k. 
jEA 

For the representation of a., j E A, we shall choose the points 6 as the center 
of a cube J. := Jj,k E Dk such that 

(4.9) $ E J. C supp(N3) n U, jIE A. 

With this choice, we can define a(x(f) for any f which is suitably differentiable at 
i. In particular, in this way, we have that a. is defined for any S in flk 

From (4.7), it is easy to estimate the coefficients of a spline S c flk- 
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LEMMA 4.1. We have for any O < p < oo and any S E lk, 

(4.10) IaQj(S)I < c2k/ |S|(j). 
PROOF. This is well known for one variable and p > 1. A similar proof applies 

in the general case. For example, from Markov's inequality applied to S on J3 and 
estimates for the coefficients a, (see [D]), it follows that 

(4.11) I(Xl(S)l < CIIS110(J]). 

Since IJ3 I = 2-kd, (4.10) follows from (4.11) and the well-known inequality between 
LP and LOO norms for polynomials (see e.g. [D-Sh, ?3]); C1 

Closely related to (4.10) is the following. 

LEMMA 4.2. IfS = EjEA ajN3,k is in Ek, then for any 0 < p < ox, we have 

) l/p 

(4.12) C1liSIlp < (E a3(S)IP2 -kd < C211S|ip 

with C1, C2 depending at most on d and r. 

PROOF. Again this is well known (see [B]) when p > 1 and the general case is 
proved in the same manner. For example, since Ek C Hk, the right side of (4.12) 
follows from (4.10) and the fact that a point x falls in at rnost rd of the cubes J3. 
For the left inequality, we use the fact that at most rd terms in the representation 
of S are nonzero at a given point x. Hence 

IS(x)IP < c E ICa IPNj,k(X)P. 
EA 

Integrating with respect to x and using the fact that the integral of Nrk is less 
than c2-kd (because N3,k < 1) gives the desired result. C1 

Now, let f be any function which is r - 1 times continuously differentiable at 
each of the points $. Then a, (f) is defined for all j and we define 

(4.13) Qk(f) = E C WN3,k- 
EA 

The Qk are called quasi-interpolant operators. In particular Qk is defined for all 
S E Hk, and it follows that Qk is a projector from Hk onto Ek: Qk(S) = S whenever 
S E Ek- 

We want to examine the approximation properties of the Qk. For this, we 
introduce the following notation. If I E Dk, we let I be the smallest cube which 
contains each of the J3 for which suppN3,k n I # 0. Then, I c Q and III < clII 
with c depending only on d and r. 

LEMMA 4.3. If S C rIk and 0 < p < oo, then for each I c Dk(A), we have 

(4.14) JJQk(S)JJp(I) <_ CIISIlp(i), 

and 

(4.15) 1IS - Qk(S) Ip(I) < CEr(S, I)p. 
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PROOF. We let A, be the set of j such that Nj,k does not vanish identically on 
I. We use the representation (4.13) and the estimate (4.10) for the functionals aj, 
to find 

(4.16) JjQk(S)jjp(I) < MaX ICj(S)l Nj,k (I) 
jEAi ~ jE-A, 

<II cl1/P max 2 dP|S|(j) < C||S|IPi(), 
jEA, 

because of (4.4). This is (4.14). 
To prove (4.15), we let I E Dk and let P be a polynomial of best Lp(I) approx- 

imation to S of coordinate degree < r. Silnce Qk(P) = P, we have by (2.2) and 
(4.14), 

(4.17) IS - Qk(S)IIp(I) < C[IS - Pllp(I) + IIQk(S - P)jpI(I)] 
< clIS - Pllp(I) = cEr(S,I)p. 0 

COROLLARY 4.4. If 0 < p < oo, then IIQk(S)IIp < ClISIlp for all S E Ek- 

PROOF. This follows immediately from (4.14) when p = oo. When 0 < p < oo, 
we raise both sides of (4.14) to the power p and then we sum over I E Dk((Q). Since 
each point x E Q appears in at most c of the cubes I, with c depending only on r 
and d, the corollary follows. C1 

We want to describe a class of methods for approximating each f in Lp(Q) by 
smooth dyadic splines from Sk. For each I E Dk and f E Lp(Q), we let PI := P (f) 
be a near best Lp(I) approximation to f from polynomials of coordinate degree < r 
with an absolute constant A. We then define Sk := Sk(f) E 1k, k = 0,1,. ..., to be 
the piecewise polynomial 

(4.18) Sk := PI(X), x E irQterior(I), for all I E Dk. 

From (3.8), we have 

(4.19) lf - PIIp(I) < cEr(f, I)pl I E Dk, 

with c depending only on r, d and A. 
Going further, for each f E Lp (Q), we define 

(4.20) Tk = Tk(f) = Qk(Sk(f)), k = 0,1. 

Then Tk is in Sk and we have 

(4.21) IITk(f)llp < CllfIlp 

with c depending only on r, d and A. Indeed, since PI is a near best approximation 
to f, we have IIPIllp(I) < cllflp(I), I E Dk(Q). Hence, IISk(f)IIp < CllfIlp and 
therefore (4.21) follows from Corollary 4.4. 

THEOREM 4.5. For any of the operators Tk in (4.20) and for each f E Lp(Q), 
we have 

(4.22) If - Tk(f)Ilp < CWr(f2 2k)p, k = 0,1,... 

with c depending only on r, d, p and A. 
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PROOF. From (4.15), we have for each I E Dk(Q), 

(4.23) Ilf - TkIlp(I) < c[Jlf - SkIlp(I) + IISk - Qk(Sk)jIp(I)] 

? c[jlf - Pjljp(I) + Er(Sk, I)p] 

< c[Er (f, I)p + Er (Ski I)p]. 

Now, for any cube J C I with J E Dk, we have from (4.19) 

(4.24) IISk - PIIlp(J) = IIPJ - PII|P(J) < c[|If - PIIP(J) + lIf - PIIIP(J)] 
< C[Er(f, J)P + Er(f, I)P] < CEr(f, I)p. 

Since the number of cubes J E Dk contained in I depends only on d and r, 
(4.24) gives Er(Sk, I)p < CEr (f ,I)p. If we use this in (4.23), we obtain 

(4.25) jjf - Tkljj(I) < cEr(f, I)P. 

Now, each point x e Q appears in only a constant depending only on r and d 
number of cubes I. Hence, if we raise both sides of (4.25) to the power p and sum 
over all I in Dk(Q) and use (3.4), we obtain 

(4.26) lIf-Tkllp(1) < C Wr(f, II,I)P 
IEDk (Q) 

< ct-df |/rrs z ,(f,x)/P dxds 
Qt Q(rq) 

with t := -iaxly < c2-k. Here, we have used the fact that Wr (f,t')p < CWr(f,t)p 

provided t' < t < ct'. Finally, (4.22) follows from (4.26) because each of the interior 
integrals on the right side of (4.26) does not exceed wr (f, t)p which from the usual 
properties of moduli is < Cwr (f, 2-k)p. f 

Theorem 4.5 shows that the error of dyadic approximation can be majorized by 
the modulus of smoothness. Namely, if we let 

(4.27) Sk(f)p := inf lif - Slip, 

then we have 

COROLLARY 4.6. For each f E Lp(Q), and for each r = 1, 2, .. ., we have 

(4.28) Sk(f)p < C&Jr(f, 2 k)p k = O, 1i.... 

It is also important to note that Tk(f) is a near best approximation from Ek. 

COROLLARY 4.7. If f E Lp(Q), then 

lIf - Tk(f)Ilp < CSk (f)p 

with c depending only on r, d, p and A. 

PROOF. Let S be a best Lp(Q) approximation to f from Ek. Then since 
Qk(S) = S, we have f-Tk(f) = f-S + Qk(S-Sk(f)). If we use the fact that 
Qk is bounded (Corollary 4.4), we obtain 

[lif - T,(f)/lp] < C[l/f - Slip + ||S - Sk(f)/lp] 
< C[lf- S//p + l/f - Sk(f)llp < Ck(f)p 
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Here, the last inequality uses the fact that Sk (f) is a near best approximation from 
lIk with constant A and the error of approximating f from HIk is smaller than the 
error in approximating f from Sk (because Sk C HIk). ? 

We also need inverse estimates to (4.28). We let s_,(f)p := IlfIlp. 
THEOREM 4.8. For each k > 0, and each r = 1,2,..., we have for A 

min(r, r - 1 + l/p) and for each f ELp 

(4.29) Wr (f 12-k)p < c2 k) 
X 

[23"'.5j(f )p ]8 
A 

provided , < min(1, p). 

PROOF. We let Uk be a best approximation to f from Sk and let Uk := Uk- 
Uki1, k = 0,1,..., with U-1 := 0. If lhl < r-12 k and x E Q(rh), we write 

k 

(4.30) Ar (f, x) = \rh (f - Uk, x) + E Ar (Uj, x) . 
j=0 

Then, from (2.3), 

(4.31) l r (f) IIp(Q(rh)) < c (Sk(f) + E ||Ar (Uj) IIP (Q/(rh)) 
j=o 

To estimate ll\r (u1)Ilp(Q(rh)), we write uj in its B-spline series: 

(4.32) u3.= a v,3, (u3)N^,,3. 
vEA(j) 

For any x, at most c B-splines (4.32) are nonzero at x with c depending only on r 
and d. Hence, 

(4 .33) | i\r (uj, x) lp < C E |lavo, -(u -)|P |Arh (N,, j, x) I P. 

vEA(j) 

Now, we shall give two estimates for Ar (Nv, -, x). The first of these is for the set 
F which consists of all x such that x and x + rh are in the same cube I E Dj and 
N,,j does not vanish identically on I. Since N,,j is a polynomial on I whose rth 
order derivatives do not exceed c2Jr, we have 

(4.34) L'\r (N., -1 x)I < c(231h )r, x E F. 

Our second estimate is for the set F' which consists of all x such that x and 
x + rh are in different cubes from Dj and N,,j does not vanish identically on both 
of these cubes. Since N,,j E W,;51 (Sobolev space) has (r - 1)th derivatives whose 
Loo(Q) norms do not exceed c2i(r1), we have 

(4 35) -N X) I < c(23 lhl )r 11 x E F/. 

Now, the set F has measure < c2-id because the support of N,,3- has measure 
< c2-id. Also, F" has measure < c1hI2-3(d-1). Indeed, for x to be in F', we must 
have dist(x,bound(I)) < rlhl for the cube I which contains x. The measure of all 
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such x E I is less than c1h12 (dl). Since N,,j vanishes on all but c cubes with c 
depending only on r and d, we have I'I < clhl2-3(d-l) as claimed. 

Using these two estimates for the measure of F and F' together with (4.34) and 
(4.35), we obtain 

(4.36) J|h l(N.,-)lI < c[lhlrP2jrP2-jd + lhl(r-l)P2j(r-l)Plhl2-3(d-l)] 
? 3 Q(rh) 

< cjhlpj'\P23P2-jd 

because 1h12-k < r-1 < 1. 
Now, we integrate (4.33) and use (4.36) to find 

(4.37) ||l\r (Uj) Ilp < c|hl|\2j'\ E I |v,,(uj)|P2 -jd 
/ 

< cjhj'23jjujjjp < clhlA2jA[sj(f)p + sj-.(f)p], 

where the next to last inequality is (4.12) and the last inequality is the triangle 
inequality applied to uj = f - Uj-l - (f - Uj). 

If we use (4.37) in (4.31), we obtain 

(4.38) I'Ir (f )IIp( (rh)) < c (SkI(fI' + Ihl i [2jAsj(f)v)1 

If we now take a sup over all lhl < r-12-k (4.38) gives 

Wr(f,2-k)p < cwr(f,rl12 k)p < c2- k (2kA\Sk(f)t + E [2jAsj(f)L) 1/ 

Since the term 2k)0/,sk(f)/ can be incorporated into the sum, we obtain (4.29). 0 

It is also possible to estimate wir for each r' < r: 

(4I39) trlh(f,2k)p 

< c2-r E 
(2r'8 j(f)p)" 

/ Vj=-l 
Indeed, this is proved in exactly the same way as we have derived (4.29), except 
that, in place of (4.34) and (4.35), we use the inequality 

(4.40) JlAr (N, - 
x)l < clhIr 2jr 

which follows from the fact that N,,j has all derivatives of order r' in Lo. 
With (4.39), we can easily prove the Marchaud type inequality (2.6). 

COROLLARY 4.9. There is a constant c depending only on p, r, and d such that 
for each f E Lp, we have the inequality (2.6). 

PROOF. We have by (4.28): sj(f)p < cw(f, 2-j)p, j = 0, 1. Also, 8-1(f)p 
If lIfIIp. Using this in (4.39) gives for 2-k-1 < t < 2-k, 

k (26 l 

Wrl (f, t)p < CWirl (f,2-k)p < c2 -kr' Ilf lt' + E[2jr Wr(f I2-3')P]Ab 

and (2.6) then follows from the monotonicity of Wr. El 
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5. Other seminorms for Besov spaces. The estimates of the last section 
allow us to introduce several norms which are equivalent to IIf IIB(L,). If a (ak) 

is a sequence whose component functions are in the quasi-normed space X, we use 
the 1q (X) "norms" 

00 \ll/q 

(5.1) | a1lll-(x) := E[2 k, IakIIX]q) 
k=o 

with the usual change to a supremum norm when q = ox. When (ak) is a sequence 
of real numbers, we replace ilakllx by lakl in (5.1) and denote the resulting norm 
by 11(ak)lllCk . 

Useful for us will be the discrete Hardy inequalities 

(5.2) 11(bk)lIll < cll(ak)Ill- 

which hold if either 

k Al/zi 
(i) lbkl < c2 kA [23)la I] | or 

(5.3) Vj=o 

(ii) lbk I < c (E laj 1z' 
Vj=kJ 

with ,u < q and (in (i)) a < A. Here, the constant c in (5.2) depends only on r, d 
and 1/(A - a) in case of (i) and 1/ae, in the case of (ii). 

In the following theorem, we let Tk := Tk(f) be defined as in (4.20) for a given 
r = 1,2,... and given near best approximations PI with constant A. We let 
tk tk(f) := Tk - Tkl with T-1 := 0 and let A := min(r - 1 + l/p, r), as before. 

THEOREM 5.1. Let 0 < (X and 0 < q,p < 00. If a < A, then the following 
norms are equivalent to N(f) := ilf IIB,-(Lp) with constants of equivalency depending 
only on d, r and A and the constant of (5.2): 

(i) Nj(f) := ll(SkM8)ll1 + llfllpi 

(5.4) (ii) N2 (f) = i(f - Tk ()) iiq (Lp) + ii f lip 

(iii) N3W f) : ll(tk (f)) lllq(Lp) 

PROOF. From Theorem 4.5, sk(f)p < if - Tk(f)ip < Cwr(f,2-k)p. Hence, 
N1(f) < N2(f) < cN(f). On the other hand, from Theorem 4.8 and the Hardy 
inequality (5.2) above, we have N(f) < cNi(f). This shows that N(f), N1(f) 
and N2(f) are all equivalent. Since lltkllp < c[iif - Tkllp + ilf - Tk-liip] we have 
N3(f) < cN2(f). In the other direction f-Tk = k tj and therefore from (2.3), 
we obtain for k =-1,0,1,.... 

if - Tkilp < ( llt lit,) 
k+1 

Note, when k = -1, this is an estimate for Ilf lp. Now, from the Hardy inequality 
(5.2), we have N2(f) < cN3(f) and therefore N2(f) and N3(f) are equivalent. O 
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The norm N1 of Theorem 5.1 shows that a function f is in BI (Lp) if and only if 
(Sk(f)) is in la. In the terminology of [D-P], we have that the approximation class 
Aa for dyadic spline approximation in Lp is the same as the Besov space BI (Lp). 
Related to this is the following Bernstein type inequality for dyadic splines. 

COROLLARY 5.2. If r = 1,2,... and a < A, then for each S E En, 

(5.5) || S ||B-(L ,) < C2,n| S IIP 
with c independent of S and n. 

PROOF. Since S E En, Sk(S) = 0, k > n, and for k < n, we have Sk(S)p < ||S||p. 
Hence, for q < oX, 

n 

N, (S)q < c 1? [2 sk,k(S)p]q < c2',nq||S||p 
k=-1 

and (5.5) follows from Theorem 5.1. Similarly for q = 00. O 

Another interesting application of Theorem 5.1 is the following atomic decompo- 
sition for functions f in BI (Lp). According to Theorem 5.1, we can write f = E tk 
with the notation of that theorem. Since tk E Sk, we have 

(5.6) tk = E oCe,kNv,k 

vEA(k) 

with N,,,k the B-spliines for Dk. Hence, 
00 

(5.7) f = E E Cev,,kNv>,k 

k=O vEA(k) 

with convergence in the sense of Lp. 

COROLLARY 5.3. Let 0 < q, p < 00 and r = 1,2,.... If 0 < a < A, then a 
function f E Lp is in B' (Lp) if and only if f can be represented as in (5.7) with 

(5.8) N4(f) =(Z 2 aq ( C) E vkkP2 ) K < 00 

k=0 3 EA(k) 

(and the usual modification if either p or q = 00) and N4(f) is equivalent to 
11 f I IB- ( L p) 

PROOF. From Lemma 4.2, 

\ /p 

11tkllp (V C E Yv,k )P 

Hence from Theorem 5.1, N4(f) is equivalent to N3(f) which is in turn equivalent 
to N(f). 5 

A different atomic decomposition was given by M. Frazier and B. Jaewerth [F-J] 
for Besov spaces defined by the Fourier transformi. In the case d = 1, there is also 
an atomic decomposition using spline filnctions by Ciesielski [C]. 
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6. Interpolation theorems. We are now interested in proving interpolation 
theorems for Besov spaces. If alo, a, > 0, and 0 < po, p1, qo, q < oo, we introduce 
the abbreviated notation Bi B'- (Lp2) and 4I := I'- (Lpt), i = 0, 1. 

We recall that if Xo, X1 is a pair of quasi-normed spaces which are continuously 
embedded in a Hausdorff space X, then the K-functional 

(6.1) K(f, t, Xo, X1) := inf {llfollxo + tllfi llxi } 
f =fO +fi 

is defined for all f E Xo + Xl. This K-functional determines new function spaces. 
If 0 < 0 < 1 and 0 < q < ox, we define the space Xo,q := (XO,Xl)o,q as the set of 
all f such that 

(6.2) IlflIXe,q I= lfIlXo+x + (f [t-OK(f, t)] t q 

is finite. 
We wish to establish a connection between the K-functional for Bo, B1 and the 

K-functional for 10,11. For this, we fix a number 0 < p < Po, P1 and an integer r 
such that aco, a, < r - 1. We let PI(f) be the best Lp(I) approximation to f from 
polynomials of coordinate degree < r. According to Lemma 3.2, if Sk (f ) is defined 
by (4.18), and Tk(f) is defined by (4.20) then N2(f) and N3(f) of Theorem 5.1 are 
equivalent to the norm of Bq (Lp). 

If f E Lp, we let Tf := (tk(f)). In this way, we associate to each f E Lp a 
sequence of dyadic splines and f E Bq (Lp) if and only if Tf E Iq (Lp) and from 
Theorem 5.1 

(6.3) Ilf JIB-(Lp) - JITf 111 (Lp)i 

for all a, q > 0, provided p > p. 

THEOREM 6. 1. There are constants C1, C2 > 0 which depend only on p, r, d, cXo, 
and cex such that 

(6.4) ciK(f, t, Bo, B1) < K(Tf, t, 1o, 11) < c2K(f, t, Bo, B1), t > 0, 

whenever f E Bo + B1. 

Proof of lower inequality. We suppose that a := (ak) E 11 is such that Tf - a 
is in lo. We define gk := Tk(ak) := Qk(Sk(ak)) as in (4.20). Then by (4.21), 
IlgkpII1 < clIakIlP1. Now, we let 9 := gk with convergence in Lp1. Since E>k 9 
is in Sk, we have from (2.3) 

0 0oo 11( 

k+1 Pi kI 

provided ,u < P1. Here, when k = -1, s- (f)p I I f IIp, as usual. If we take also 
,u < ql, we have from the Hardy inequality (5.2) and the equivalence of the norms 
N and N1 in Theorem 5.1 that 
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We can prove a similar estimate for f - g. Namely, 

(6.6) Sk(f - 9)po < (t1 - gj) < ( iitJ g-iiio)l 

Now t3 = QJ(tJ) because Qj is a projector. Also since t3 E Jlj, we have Sj(a3 -t3) = 

S1(aJ) - t3. Hence, 

litJ - gjIIPO = I1Q3-(tj - Sj(aj))iip0 = IlQj (Sj (t3 -aj))IIPO 
< ct3 - a31iipo 

because of (4.21). If we use our last inequality in (6.6) and then argue as in the 
proof of (6.5), we obtain 

(6.7) if - g9lBo < ciiTf - aiioi. 

Since a E 11 is arbitrary, (6.5), (6.7) and the definition of the K-functional give 
the lower inequality in (6.4). O 

For the proof of the upper inequality in (6.4), we shall need a result about 
approximation in a quasi-normed space X. We suppose that Z is a linear subspace 
of X such that each element x E X has a best approximation from Z. We let 

(6.8) E(x) := inf lix - zilx. ZEZ 
We say that z is a near best approximation to x with constant A if 

(6.9) lix - zll < AE(x). 

LEMMA 6.2. Let X and Z be as above. If x E X and z E Z is a near best 
approximation to x with constant A, then for each y E X, there is a z' E Z such 
that z' is a near best approximation to y and z - z' is a near best approximation to 
x - y with constants c depending only on X and A. 

PROOF. Let -y be such that Iiu + vll < -I(Ilull + llvll) for all u, v E X (all norms 
in this proof are for X). 

Case: E(x - y) < E(y). We let z' := z" + z with z" a best approximation to 
y - x. Then, by definition z - z' is near best for x - y with constant 1. On the 
other hand, 

IIY - z'll = Ily - z - z"il < -I(iiy - x - z"li + lix - zll) < -y(E(x - y) + AE(x)) 
< (E(x -y) + IAE(y) + IAE(x - y)) < (-I + 2_y2A)E(y). 

Case: E(y) < E(x - y). The same as the previous case with x - y and y 
interchanged. O 

Proof of the upper inequality in (6.4). We suppose that g is any function in B1 
for which f - g is in Bo. We let PI be the polynomials which make up Sk := Sk(f ) 
Then PI is a best Lp (I) approximation to f from polynomials of coordinate degree 
< r. Therefore, we can apply Lemma 6.2 to obtain a near best Lp(I) approximation 
QI to g from polynomnials of coordinate degree < r such that PI - QI is also a near 
best Lp(I) approximation to f - g. 

We let Uk, Rk be obtained from QI and PI - QI, I E Dk, by using quasi- 
interpolants in the same way that Tk was defined from the PI. Since Qk is linear, 



412 R. A. DEVORE AND V. A. POPOV 

we have Rk = Tk - Uk. Then, by Corollary 4.7, Uk and Rk are respectively near 
best Lp1 and Lpo approximations to g and f - g from Sk, k = 0,1. 

We let tk := Tk-Tkl1, Uk := Uk-Uk-1, rk := Rk-Rk-1, k = 0,1,... , with 
our usual convention R1 :=0, U-1 :=0. We then have for k = 0,1, 

|Uk ||p1 < C[Sk(g)p1 + Sk-1()P1p], 

i|rk llPO < C[Sk(f - 9)po + Sk-l(f - 9)po]. 
With u:= (Uk), it follows from Theorem 5.1 that 

||Tf - uo + tilulll < C[[lf - gliBo + tIIgIIBl]. 

The upper estimate in (6.4) then follows from the definition of the K-functional. 5 
For Bo, Bl,l0, 11 and Tf as above, we have for any q > 0 and 0 < 0 < 1, 

(6.10) f E (Bo, Bi)O,q if and only if Tf E (lo, 11),q . 
Il f 11 (Bo,B1 )o,, - JITf II (10,11 )0 q 

Indeed, this follows immediately from the definition of the spaces Xo,q. 
Now (6.10) allows us to deduce information about the interpolation spaces be- 

tween Bo and B1 from known theorems (see [P, p. 98]) about the interpolation 
between 10 and 11. The simplest case to describe is when po = P1 = p. We then 
have 

(6.11) (I'oo (Lp), lI'l (Lp))0q = lc(Lp) where Ol = Oao + (1- 0)aj. 
From this, (6.10), and Theorem 5.1, we obtain 

COROLLARY 6.2. If 0 < ceo,ce, and 0 < pq0,oql < oo, we have for each 
0 < 0 < 1 and 0 < q < 0, 

(6.12) (B'oo (Lp), Bc' (Lp))0q = B (Lp), with ce := Oceo + (1- O)cel. 

When po :$ pl, the interpolation spaces between Lpo and Lp, can be described 
in terms of the Lorentz spaces Lp,q (see [B-B, p. 183] for their definition and 
properties). We have for 0 < qo, qi < 00 (see [P, p. 98]), 

(6.13) (lo, 11)0,q = lc(Lp,q) 

with l := Sol + (1 - 0)aj; l/q := O/qo + (1 - 0)/q, and 1/p:= 0/po + (1 - 0)/pi. 
In the special case when q = p, we have Lp,q = Lp and therefore, we obtain 

COROLLARY 6.3. If 0 < a0,c1 and 0 < po,pl,qo,ql < ox, then for each 
0 < 0 < 1 and for l/q := 0/qo + (1 - 0)/q,; l/p := 0/po + (1 - 0)/pi, we have 

(6.14) (Bc'o (Lpo) , Bc, (Lp,))0 = B'(Lp), with a := Ooo + (1 -0)aj, 
provided p = q. 

7. An embedding theorem for Besov spaces. As an application of the 
results of the previous sections, we shall prove Sobolev type embedding theorems 
for Besov spaces. These have important applications in nonlinear approximation 
(see [D-P1]). We fix a value of p with 0 < p < 00. Given Ol > 0, we determine a 
from the equation 

(7.1) 1/a = oa/d + i/p. 
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We shall prove that Bla (La) is continuously embedded in Lp. For this, we shall 
use the following simple inequality for splines S E 71k(r): 

(7.2) llSIlP < c2ka11SI 11. 
Indeed, on each cube I E Dk, S = P with P a polynomial of coordinate degree < r. 
Hence (see [D-Sh, ?3]), IlSllp(I) < cIIIl/P-l/iISfl,(I) = 2kc llSll,(I). Therefore, 

||S||p < c2 kap E |SIla(I)P < c2 kcp (III E ||(I) ) 
IEDk(Q) IEDk(Q) 

where the last inequality uses the fact that the 1,/p norm is larger than the 11 norm 
because a/p < 1. 

THEOREM 7.1. If c, a, p are related as in (7.1), then Bpc(L,) is continuously 
embedded in Lp, that is, 

(7-3) I~~~ ~~~lfIflp < Cllf JIBp(La,,) 

holds for all f E Bp(L,). 

PROOF. We choose r > a + 1 and let t3 E EJ(r) be as in Theorem 5.1. Then 
f = ?0 t3- in the sense of convergence in La. From (2.3), it follows that for 
, := min(1, p), 

'00 A'00\ 

(7.4) lIfIIP ? (E - l bsP| < c ((2 aII t3lal() < c1 IIfIIB-(La), 
ky=0 yj=o 

where the second inequality follows from (7.2) and the last from Theorem 5.1. 
Inequality (7.4) shows that Bi (L,) is continuously embedded in Lp which is the 

desired result when p < 1. When p > 1, we choose 1 < po < p < P1 < 0 and for 
i = 0,1, we let ai be determined by formula (7.1) for pi and our a. Then by (7.4) 

(7.5) lIfliPi < Cllf IIB-i(L,) i = 0, 1. 

If we now apply Corollary 6.2 with 0 chosen so that i/p = O/po + (1 - 0)/pi and 
q := p, we obtain by interpolation 

Ilf IIP < Cllf IIB-'(L,) 

with al = Oao + (1 - 0)cei. Here, we have used the fact that Lp,p = Lp. Now using 
(7.1) for the pairs (ce,p), (ceo,po) and (ce1,p1) shows that al' = al, as desired. O 
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