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Stable long-time semiclassical description of zero-point energy
in high-dimensional molecular systems

Sophya Garashchuka� and Vitaly A. Rassolov
Department of Chemistry and Biochemistry, University of South Carolina, South Carolina 29208, USA

�Received 18 April 2008; accepted 29 May 2008; published online 10 July 2008�

Semiclassical implementation of the quantum trajectory formalism �J. Chem. Phys. 120, 1181
�2004�� is further developed to give a stable long-time description of zero-point energy in
anharmonic systems of high dimensionality. The method is based on a numerically cheap linearized
quantum force approach; stabilizing terms compensating for the linearization errors are added into
the time-evolution equations for the classical and nonclassical components of the momentum
operator. The wave function normalization and energy are rigorously conserved. Numerical tests are
performed for model systems of up to 40 degrees of freedom. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2949095�

I. INTRODUCTION

Classical molecular dynamics provides a reasonable gen-
eral picture of chemical reaction dynamics in most systems
of practical interest. However, the isotope effect measure-
ments and comparison of typical reaction energies and zero-
point energy �ZPE� show that quantum mechanical �QM�
effects play an important role in many systems, particularly
for reactions of proton transfer �some examples can be found
in Refs. 1–3�. The adequate theoretical description of quan-
tum effects has been proven to be a very challenging task.
The collective research over the past three decades points to
three primary reasons: �i� many reactions occur at the time
scale much longer than that of a typical quantum dynamics
simulation, �ii� the forces acting on the reactive species are
not well represented by simple harmonic approximations,
and �iii� quantum effects such as ZPE require an ensemble
rather than an individual trajectory description. Below we
present a computational method that is easily compatible
with multidimensional molecular mechanics, accounts for
quantum effects in an approximate yet rigorous manner for
an arbitrary long propagation time and, in principle, is im-
provable toward the full quantum limit.

The de Broglie–Bohm form of the time-dependent
Schrödinger equation4 is a trajectory-based formulation of
quantum mechanics in terms of the real phase, S�x , t�, and
amplitude, A�x , t�, of a wave function,

��x,t� = A�x,t�exp� ı

�
S�x,t�� , �1�

given in this section for a particle of mass m in one dimen-
sion for simplicity. The prime symbol denotes differentiation
with respect to x. The quantum trajectories are defined by
their positions x and classical momenta p,

p�x,t� = S��x,t� , �2�

evolving according to Hamilton’s equations of motion,

dx

dt
=

p

m
,
dp

dt
= − V� − U�. �3�

The trajectory “weight” w, or probability associated with the
volume element �x of a trajectory, remains constant in time
for closed systems,5

w�x,t� = A2�x,t��x�t�,
dw

dt
= 0. �4�

S�x , t� is the classical action function

dS

dt
=

p2

2m
− �V + U� . �5�

All QM nonlocality is expressed in the quantum potential U
acting on a trajectory in addition to the external, or classical,
potential V,

U = −
�2

m
�r2 + r�� . �6�

The quantity r=r�x , t� is the nonclassical component of the
momentum operator,

r�x,t� =
A��x,t�
A�x,t�

. �7�

The expectation value of the quantum potential can be
termed “quantum energy”—the energy due to the shape of
the wave function amplitude. Integration of Eq. �6� with dif-
ferentiation by parts gives

�U� =
�2

2m
�r2� , �8�

so that the total energy can be written as

E =
�p2�
2m

+ �V� +
�2�r2�

2m
. �9�

Throughout the paper, we use Dirac notations to define an
average value of an operator multiplicative in the coordinate
representation,a�Electronic mail: sgarashc@mail.chem.sc.edu.
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�ô�x,t�� =	 o�x�t��A2�x,t��x�t� 
 �
i=1

Ntraj

o�xi�t��wi. �10�

The last equality in Eq. �10� is given for numerical imple-
mentation with the initial wave function discretized in terms
of Ntraj trajectories. Atomic units of �=1 are used below.

While the quantum trajectory formulation gives a
straightforward connection to classical mechanics—for a
nonsingular wave function amplitude, the quantum potential
U vanishes in the limit of �→0 or m→�—the exact nu-
merical implementation of the formalism is, in general, chal-
lenging and expensive: U is singular at the nodes of the wave
function and the dynamics of quantum trajectories is ex-
tremely sensitive to the accuracy of the quantum force near
the nodes. �For a review of the quantum trajectory methods,
the reader is referred to Ref. 6.� Therefore, we are develop-
ing a semiclassical implementation of the quantum trajectory
formalism based on the approximate quantum potential
�AQP�.5,7 In the AQP method, the nonclassical momentum is
approximated globally as a linear combination of a small

number Nbas of basis functions f�= �f1 , f2 , . . .�,

r̃ = c� · f� 

A��x,t�
A�x,t�

. �11�

Then, AQP Ũ,

Ũ = −
r̃2 + r̃�

2m
, �12�

and its gradient needed in Eq. �3� are obtained analytically.
The optimal values of the expansion coefficients c� used in
Eq. �12� are the solutions of a linear minimization of a func-
tional I with respect to the elements of c�,

I = ��r̃ − A−1A��2�, �cI = 0. �13�

Differentiation by parts in Eqs. �13� and �4� enables one to
express all required quantities in terms of the moments of the
trajectory distribution. The resulting dynamics of an en-
semble of trajectories is numerically stable and energy con-
serving. Scaling with respect to the number of trajectories is
linear.7 Note that so far, r�x , t� was used as a definition,
r�x , t��A−1A�, not as an independent function.

Formally, the nonclassical momentum r�x , t� can be
computed along trajectories just as p�x , t� is computed ac-
cording to the time-evolution equations

dp

dt
= − V� +

1

2m
�2r�x,t�

d

dx
+

d2

dx2�r�x,t� , �14�

dr

dt
= −

1

2m
�2r�x,t�

d

dx
+

d2

dx2�p�x,t� . �15�

Differential operators in the equations above are identical,
and straightforward computation of r�x , t� would entail the
same difficulties as encountered in the computation of the
quantum force. Equations �14� and �15� are solved approxi-
mately in the derivative propagation method,8 the Bohmian
trajectory stability method,9 and the Bohmian mechanics
with complex action approach10 as part of a truncated hier-

archy of equations based on � expansions. In contrast, we do
not expand Eqs. �14� and �15� but use the AQP-type approxi-
mation to find the derivatives of r�x , t� and p�x , t� to solve
these equations. Then, r�x , t� becomes a trajectory-specific
variable on par with p�x , t� and S�x , t�: Eq. �7� defines the
initial values r�x ,0�, but it will not be fulfilled at later times
unless time evolution of r�x , t� and p�x , t� is exact. Function
r�x , t� obtained along trajectories can be compared to r̃ de-
fined by Eqs. �11� and �13� and used to assess and correct the
AQP error.

A particular form of AQP—the linearized quantum
force5 �LQF�—obtained by representing r̃ in a linear basis, is
the simplest and the cheapest AQP method. It is exact for
Gaussian wavepackets and, in general, is capable of describ-
ing leading quantum effects, such as the wavepacket bifur-
cation, moderate tunneling, and ZPE. LQF also fulfills an
important property of the exact quantum force Fq,

�Fq� = − �U�� = 0, �16�

and is invariant under rotation of coordinates. It was found,
however, that in semibound potentials, the quantum energy
was described correctly only on a short time scale �half of
the oscillation period�: trajectories from the wavepacket
fringes “evaporated” into the dissociation region, leading to
quick loss of the quantum energy in the ensemble because in
LQF, the average quantum potential is inversely proportional
to the wave function dispersion �= �x2�− �x�2. In bound an-
harmonic potentials, LQF trajectories “decohere” and lead to
nonzero but significantly underestimate ZPE values. These
issues can be resolved by defining LQF on subspaces or
domains,11 by using a more flexible or system-specific basis

f�,12,13 or by using a stabilizing friction force.14 In general, the
first two methods give exact QM dynamics in the limit of a
large number of domains/basis functions, but in the regime
of a few domains/basis functions, they improve the ZPE de-
scription on a finite time scale �several oscillation periods�
and they are more expensive than LQF. The friction method
stabilizes the dynamics with respect to small anharmonicity
and reproduces ZPE for dozens of oscillation periods, but it
has an adjustable “friction coefficient” and does not conserve
the total energy.

In the remainder of the paper, we describe a new way of
improving the ZPE description on an essentially infinite time
scale using both r�x , t� computed from Eq. �15� and linear-
ization of A−1A�. The method is energy and norm conserving,
is parameter-free, and has numerical cost nearly as low as
that of LQF. The theory is described in Sec. II in many
dimensions. Wavepacket dynamics in one-dimensional an-
harmonic potentials typical of nuclear dynamics and scatter-
ing on the Eckart barrier in the presence of multiple Morse
oscillators are described and discussed in Sec. III. Section IV
concludes.

II. TIME-EVOLUTION WITH BALANCED ERRORS

A. Approximation of gradients

For a system described in Ndim Cartesian coordinates
�x ,y , . . .� using vector notations,
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p� = �S, r� = A−1 � A , �17�

the time evolution of r� and p� given by Eqs. �14� and �15� is
generalized as

m�dp�

dt
+ �V� = �r� · ��r� +

�� · ��r�
2

− m
dr�

dt

= �r� · ��p� +
�� · ��p�

2
. �18�

For practical reasons, we use global approximations to r� and
p� to estimate their derivatives on the right-hand side of Eq.
�18�. In the linear approximation to r� and p� , the terms with
the Laplacian operators become zeros. We define a minimi-
zation procedure similar to the LQF approach and require
conservation of the total energy E given by Eq. �9�, dE /dt
=0. This requirement couples fitting of A−1�A and p� .

Let us use the linear basis f�= �x ,y , . . . ,1� and arrange the
fitting coefficients of the components of A−1�A into a matrix
Cr,

Cr = �c�x
r,c�y

r, . . .� , �19�

where functions 
r̃x=c�x
r · f� , r̃y =c�y

r · f� , . . .� approximate compo-
nents of the vector A−1�A. Similarly, matrix Cp contains
fitting coefficients for the components of classical momen-
tum p� ,

Cp = �c�x
p,c�y

p, . . .� , �20�

where functions 
p̃x=c�x
p · f� , p̃y =c�y

p · f� , . . .� approximate compo-
nents of the vector p� . For a system of dimensionality Ndim,
the basis size is Nbas=Ndim+1. Differentiating Eq. �9� with
respect to time and using Eq. �18� with the derivatives ob-
tained from the linear approximations to A−1�A and p� , the
energy conservation condition becomes

dE

dt
=

�r�0 · �Crp� − Cpr���
m

= 0. �21�

Quantity r�0 denotes a vector of nonclassical momentum ex-
tended to the size of the basis

r�0 = �rx,ry, . . . ,0� . �22�

For a general basis, the energy conservation is expressed as

�r��Frp� − Fpr��� = 0

in terms of matrices Fr and Fp with elements

Fxy
r = �� r̃x/�y�, Fxy

p = �� p̃x/�y� �23�

where indices x and y span all dimensions. If approximations
are exact, then r� and p� satisfy Eq. �17� and Fr and Fp are
symmetric matrices. This symmetry property is also fulfilled
for the linear basis approximation, so that Cr and Cp are
symmetric matrices.

The least squares fit of A−1�A and p� in terms of a linear
basis with the constraint �21� included through the Lagrange
multiplier 2�, written as a minimization of a functional,

I = ��A−1 � A − Crf��2� + ��p� − Cpf��2�

+ 2��r�0 · �Crp� − Cpr��� , �24�

is solved by the system of linear equations,

�M O D� p

O M D� r

D� p D� r 0
� · �C� r

C� p

�
� = �B� r

B� p

0
� . �25�

In Eq. �25� the following matrices and vectors are intro-
duced: �i� M is the block-diagonal matrix of dimensionality
NdimNbas�NdimNbas with the basis function overlap matrix

S= �f� � f�� as Ndim diagonal blocks; �ii� O is a zero matrix of

the same size as M; �iii� the elements of the vectors C� r, C� p,

B� r, B� p, D� r, and D� p are the elements of the matrices Cr, Cp,
Br, Bp, Dr, and Dp, respectively, listed in a column after
column order. Cr and Cp are given by Eqs. �19� and �20�.
The remaining four matrices are defined as

Br = −
1

2
��� � f��T�, Bp = �f� � p�� , �26�

Dr = − �r�0
� r��, Dp = �p�0

� r�� , �27�

where p�0 denotes a vector of classical momentum extended
to the size of the basis,

p�0 = �px,py, . . . ,0� . �28�

Fitting of A−1�A is the same as in the LQF procedure, ex-
cept that now it is coupled to the least squares fit of p� . For-
mally, the total size of the matrix in Eq. �25� is 2NdimNbas

+1, but its structure allows one to solve Eq. �25� by perform-
ing a single matrix inversion of block S of size Nbas,

15 so that
the cost of the quantum force computation scales as NtrajNdim

2 .
This is essential for efficient high-dimensional implementa-
tion.

Conceptually, this approximation scheme has the follow-
ing desirable features: �i� the total energy of the wavepacket
defined by Eq. �9� is conserved; �ii� the approximate quan-
tum force vanishes for delocalized wave functions; �iii� the
AQP parameters explicitly depend on trajectory positions
and momenta improving the quality of approximation. In the
linear approximation of r� and p� , the Laplacian term in Eq.
�18� is zero. Consequently, in an anharmonic system, r� can
become quite different from A−1�A defined by the trajectory
positions and the wave function probability conservation
property given by Eq. �4�. This problem is addressed below.

B. Correction of linearization effect on dynamics

While the numerically cheap linear basis f� describes ex-
act dynamics in the important limit of Gaussian wave func-
tions evolving in locally harmonic potentials, in most practi-
cal applications, the ZPE description should be stable to
small deviations from the Gaussian shape of wave functions,
i.e., stable to small nonlinearity of p� and r�. Therefore, in Eq.
�18� instead of the Laplacian terms which are zero in the
linear basis representation, we introduce additional terms de-
pendent on the difference of exact and approximated values
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of p� and r�. These extra terms balance errors associated with
the linear basis in the first order of the nonlinearity param-
eters. The explicit form is determined from the analytical
models and has no adjustable parameters.

We consider quadratic momentum and the lowest order
nonlinearity in r,

p = p0 + p1x + �x2, ���2 = exp�− 	x2��1 + ��x − x0��2.

�29�

Determining the linear approximations to p from minimiza-
tion of ��p− p̃�2� and to r from minimization of ��r− r̃�2�, it
was found that the following approximate equations of mo-
tion:

m�dp

dt
+ V�� = rr� +

r�

2
= rr̃� + 2r̃��r − r̃� + O��4� − m

dr

dt

= rp� +
p�

2
= rp̃� + 2r̃��p − p̃� + O���3� ,

�30�

cancel the leading errors in � and �.
In the multidimensional case, derivatives r̃� and p̃� of the

approximate functions generalize into matrices Fr and Fp

given by Eq. �23�, and the approximate time-evolution equa-
tions become

− m
dr�

dt
= Fpr� + 2Fr�p� − p� fit� ,

�31�

m� p�

dt
+ �V� = Frr� + 2Fr�r� − r�fit� .

In Sec. II A, functions 
r̃x , r̃y , . . .� approximate components
of A−1�A and their determination is coupled to approxima-
tion of p� in terms of 
p̃x , p̃y , . . .� by the energy conservation
condition. In contrast, r�fit approximates r� and, in general,
components of r�fit can be different from the corresponding
functions r̃i. We require that the stabilization terms do not
contribute to the total energy of the ensemble and that the
property �dr� /dt�=0 derived from the wave function norm
conservation, ���t� ���t��=1, is fulfilled. In principle, a mini-
mization procedure for ��r�−r�fit�2� coupled to minimization of
��p� fit− p��2� by the above mentioned requirements can be es-
tablished similar to Sec. II A. However, in the case of the
linear basis, these requirements are met if r�fit and p� fit are
found from the standard least squares fits of r� and p� . These
fits require minimal additional computation efforts because
the solution involves the same basis function overlap matrix
S as in Sec. II A.

III. NUMERICAL EXAMPLES

A. Dynamics in one dimension

Numerical tests were performed for anharmonic one-
dimensional systems described in Refs. 11 and 14. As a pre-
liminary check, we have verified that introduction of the sta-
bilization terms do not affect bifurcation of a wavepacket
scattering on the Eckart barrier. In order to analyze the ef-
fects of linearization and stabilization terms in time evolu-

tion equations �14� and �15�, here we consider the one-
dimensional Morse oscillator in detail. The system represents
a nonrotating hydrogen molecule and is described in atomic
units scaled by the reduced mass of H2, so that m=1. The
initial wavepacket is a Gaussian wave function similar to the
ground state of H2, as described in Ref. 11.

Figure 1�a� shows the expectation values of the quantum
potential, �U�, which is the quantum part of ZPE, obtained
with the QM split operator method16 and with the trajectory
calculations using LQF and the new method with and with-
out the stabilization term. In trajectory calculations, �U� is
computed as an average of Eq. �12� for LQF and according
to Eq. �8� otherwise. The LQF result shows decrease in �U�
due to effect of linearization on dynamics detailed below.
The same behavior is observed for the new method in the
absence of stabilization terms. Once these terms are intro-
duced, we have a stable ZPE description for many oscillation
periods.

Figure 1�b� shows the overlap of the time-dependent
wave function density with the initial density, C�t�
= ����0��2���t��2�. In the case of LQF and of the new method
without stabilization terms, high energy trajectories on the
fringes of the wavepacket leave the bound region of the po-
tential by the following mechanism. In general, quantum
force tends to delocalize the wave function: a wave function

FIG. 1. Dynamics of the Morse oscillator. �a� The average quantum poten-
tial as a function of time obtained using LQF and the AQP with balanced
errors method without and with the stabilization terms is shown with the
thin solid line, dot-dashed line, and circles, respectively. The exact QM
result is shown with the thick solid line. �b� The wave function density
overlap, ����0��2���t��2�, as a function of time. Legend is the same as in �a�.
�c� Trajectory positions as functions of time obtained using the LQF �dashed
line� and the AQP with balanced errors method �solid line�.

024109-4 S. Garashchuk and V. A. Rassolov J. Chem. Phys. 129, 024109 �2008�

Downloaded 15 Mar 2011 to 129.252.71.114. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



in free space spreads indefinitely, while inside a well, the
interplay between the parabolic barrierlike quantum potential
and the confining classical potential results in the oscillations
of the wavepacket width.

For the given system at short times, LQF, which is pro-
portional to the displacement of a trajectory from the average
position of the ensemble, is larger in magnitude than the
counteracting classical force and, thus, the net force quickly
pushes the fringe trajectories into the dissociation region.
LQF is inversely proportional to the square of the wave func-
tion dispersion; therefore, the quantum force vanishes once
trajectories leave the bound region. The dynamics of the tra-
jectories becomes purely classical and bound trajectories os-
cillate independently of each other, i.e., the wavepacket de-
coheres, even if a small fraction of the wavepacket leaves the
bound region. A similar behavior is observed when we define
the quantum force in terms of computing along the trajecto-
ries r�x , t� without the stabilization term because the quan-
tum force proportional to Cr vanishes as dispersion grows,
just as in the LQF dynamics. The stabilization term provides
a correction to the dynamics if linearization of r�x , t� devi-
ates from the function itself, maintaining coherence between
the approximate quantum trajectories.

Positions of the trajectories as functions of time are
shown in Fig. 1�c�. The minimum of the well is located at
xm=1.4a0. Note the dissociating LQF trajectory. The trajec-
tory stabilization is clearly manifested in small oscillations in
the position of the lowest trajectory originated on the repul-
sive wall of the potential. With the stabilization mechanism
implemented, the average quantum energy and the wave
function density overlaps are in good agreement with the
QM results. The trajectory propagation was accomplished
with the third order Milne predictor-corrector algorithm15

and the stability of the ZPE description was checked for up
to 200 oscillation periods.

Application to dynamics in the parabolic well with quar-
tic anharmonicity of Ref. 14 gave the same level of the ZPE
description as for the Morse oscillator. An efficient descrip-
tion of the tunneling dynamics in a double well, which in-
volves “hard” QM effects such as deep tunneling, interfer-
ence, and wavepacket revivals on a long time scale, presents
a major challenge to semiclassical methods and remains an
outstanding challenge for the AQP method. A combination of
stabilization approach and subspace description11 may pro-
vide a solution.

B. Multidimensional systems

Application of approximate methods to high-
dimensional systems has to be validated by tests that can be
compared to exact QM results, which generally means sepa-
rable Hamiltonians or harmonic potentials. For multidimen-
sional testing of the AQP method whose accuracy, in prin-
ciple, depends on the choice of coordinates or basis functions

�with the exception of the linear expansion basis f��, we use a
model potential consisting of the Eckart barrier in the reac-
tion degree of freedom �centered at zero� and of the Morse
oscillators in the vibrational degrees of freedom. Parameters
of these one-dimensional potentials mimicking the H+H2

system are given in Ref. 11. The initial multidimensional
wavepacket is defined as a direct product of a Gaussian,

��x,0� = �2
�−1�1/4 exp�− 
�x − x0�2 + ıp0�x − x0�� ,

with parameter values 

=6,x0=4 , p0=6� in the reaction de-
gree of freedom and of Gaussians with the parameters


=9.33,x0=xm , p0=0� centered at the minimum of the well
in the vibrational degrees of freedom.

In order to introduce effective coupling between degrees
of freedom, the dynamics is performed in the rotated system
of coordinates where both the wavepacket and the classical
potential are nonseparable. The numerical procedure of the
quantum force computation and trajectory propagation uses
no information about the separability of the original Hamil-
tonian. The rotation matrix specified by the parameter �,
written here for clarity for a four-dimensional system, is


 =�
	 − � − � − �

� 1 + � � �

� � 1 + � �

� � � 1 + �
� , �32�

with 	=�1− �Ndim−1��2 and �= �	−1� / �Ndim−1�. This
transformation does not change the diagonal kinetic energy
operator provided that masses for all dimensions are equal.

The new formalism is invariant under such transforma-
tion, as can be seen in Fig. 2. The top panel shows the aver-

FIG. 2. Rotation in two dimensions. The upper panel shows the average
quantum potential for Ndim=2 with ��=0.2� and without ��=0� rotation as
well as the long-time QM value of �U�. The lower panel shows positions of
trajectories after 14 oscillation periods for �=0 �aligned horizontally� and
�=0.2 �aligned diagonally� calculations. Initial trajectory positions for �
=0 localized around 
x=−4,y=1.4� are indicated with an ellipse.
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age quantum potential for a two-dimensional system with
and without rotation and the long-time exact QM result. The
initial decrease in �U� for a two-dimensional system corre-
sponds to the delocalization of the wavepacket in the reac-
tion coordinate: the average quantum potential per vibra-
tional degree of freedom is reduced to the average quantum
potential of a one-dimensional Morse oscillator on the time
scale of one vibrational period after the wavepacket bifur-
cates and delocalizes in the reaction degree of freedom. The
bottom panel shows distribution of the quantum trajectories
after 14 vibrational periods to illustrate the effect of the ro-
tation of the system of coordinates. The initial position of the
wavepacket for �=0 is also indicated.

Numerical performance of the new method has been
tested up to 40 dimensions with random Gaussian sampling
of initial positions.15 Calculation of the quantum potential
and force is dominated by the computation of the moments
of the trajectory distribution which scales as NtrajNdim

2 . Cal-
culation of the global linearization parameters is performed
at each time step for the ensemble of trajectories with the
cost of Ndim

4 . The average quantum potential divided by the
number of the vibrational degrees of freedom, �U� / �Ndim

−1�, is shown in Fig. 3. Semiclassical results reflect changes
in the degree of wavepacket localization and their accuracy
is essentially independent of the dimensionality. Conver-
gence of the semiclassical results with respect to the number
of trajectories is summarized in Table I for systems with 10,
20, and 40 degrees of freedom for calculations using

5�103, 104, and 2�104 trajectories. The relative average
difference �= �U−Uex� / �Uex� and the standard deviations �
are shown. �Uex� is defined by the calculation with 4�104

trajectories. Calculations with 2�104 trajectories gave the
relative difference of the quantum energy around 0.5% with
the standard deviations of about 1% for all numbers of vi-
brational degrees of freedom. Pseudorandom sampling15 or
other sampling techniques of Monte Carlo integration can be
used to improve convergence with respect to the number of
trajectories. The largest calculation takes a few hours on a
single processor of a dual-processor desktop workstation.

IV. CONCLUSIONS

In the quantum, or Bohmian, trajectory formulation of
the time-dependent Schrödinger equation, the nonlocal na-
ture of quantum mechanics is expressed in a single nonlocal
quantity, the quantum potential, incorporated into an other-
wise classical representation of motion for an ensemble of
trajectories. For reasons of practicality, the quantum potential
is determined approximately, yielding a semiclassical de-
scription of QM effects. In the cheapest implementation of
this strategy—LQF—the quantum potential obtained from
linearization of A−1�A gives the linear quantum force and,
thus an unphysical loss of ZPE in anharmonic systems on a
short time scale. In this work we presented a novel way of
doing quantum trajectory dynamics—AQP with balanced
errors—where in addition to trajectory positions x� and clas-
sical momenta p� , the nonclassical components of the mo-
mentum operator r� are computed along the trajectories. Now
the quantum force explicitly depends on a trajectory-specific
r� and, therefore is no longer restricted to the linear form.

A stable long-time description of QM effects requires
that the positions of individual trajectories remain correlated
because nonlocal information, by definition, depends on the
relative quantities of the trajectory ensemble. In LQF this
nonlocal information is derived from the moments of the
trajectory distribution, so the QM effects are described as
long as the trajectory distribution remains localized and co-
herent. In the new method, the quantum force depends on a
trajectory-specific r� and therefore, it is necessary to ensure
that values of r� remain correlated across the trajectory en-
semble. This has been achieved by introducing stabilization
terms into the time-evolution equations for r� and p� .

Another aspect worth emphasizing is the use of the en-
semble of trajectories in contrast to the methods based on the
formal derivative expansion procedures centered on indepen-

FIG. 3. Average quantum potential per vibrational degree of freedom for a
Gaussian wavepacket scattering on the Eckart barrier in the presence of
Ndim−1 Morse oscillators. Semiclassical results are shown for Ndim

= 
10,20,40� with the thick solid line, circles, and dashed line, respectively.
The QM result for long times is shown with a thin solid line.

TABLE I. Accuracy of the average quantum potential �U� over 15 oscillation periods for 10-, 20-, and 40-
dimensional systems. The number of trajectories is given in the top row. � is the relative average difference and
� is the standard deviation for �U� obtained with Ntraj�2�104 trajectories compared to the Ntraj=4�104

calculation.

Ndim �

�%�
�

�%�
�U�

Ntraj 5�103 1�104 2�104 5�103 1�104 2�104 4�104

10 1.68 0.84 0.52 2.16 1.21 0.62 41.44
20 2.07 1.09 0.40 2.92 1.59 1.09 87.07
40 ¯ 0.89 0.32 ¯ 2.58 1.22 177.5
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dent trajectories, such as the derivative propagation method,8

Bohmian trajectory stability approach,9 and Bohmian me-
chanics with complex action.10 The common feature of these
independent trajectory methods is that all nonlocality comes
from the derivatives of the wave function phase and ampli-
tude computed along each trajectory. While propagation of
independent trajectories implemented in parallel is appeal-
ing, we believe that it is very difficult, if not impossible, to
obtain a stable long-time description of QM effects in anhar-
monic potentials with independent trajectories. In real sys-
tem applications, numerical cost is dominated by computa-
tion of classical potential and forces; therefore, the numerical
cost of the AQP computation and propagation of the trajec-
tory ensemble rather than a set of independent trajectories is
negligible.

To summarize, in the AQP with balanced errors ap-
proach, the time-evolution equations are solved approxi-
mately by defining gradients of the classical and nonclassical
momenta from linearization of p� and A−1�A. The effects of
the linear approximation are compensated by the additional
terms in the equations of motion determined from the ana-
lytical model of nonlinear r� and p� . The linearization proce-
dure is defined in such a way that the total energy of the
system is conserved, and conditions on the total quantum
force and wave function normalization are fulfilled. In the
implementation with the linear basis, the method is invariant
with respect to a unitary transformation of coordinates. The
method is exact for correlated Gaussian wavepackets in lo-
cally harmonic potentials and describes ZPE in high-
dimensional bound systems with small anharmonicity on the
time scale of hundreds of oscillation periods in a numerically
efficient way. We believe that propagation will be robust on
an arbitrary long time scale with a more stable propagator

than the one used in this work. The method has been imple-
mented with random sampling, something that can be readily
made more efficient with pseudorandom sampling or other
advanced sampling techniques. The method may also be
combined with larger basis sets and description on subspaces
which will enable us to treat more general potentials, such as
the double well coupled to anharmonic bath modes—the pro-
totype system for simulation of quantum effects in condense
environments.
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