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Abstract. Host–parasite associations are assumed to be ecologically specialized, tightly
coevolved systems driven by mutual modification in which host switching is a rare
phenomenon. Ecological fitting, however, increases the probability of host switching, creating
incongruences between host and parasite phylogenies, when (1) specialization on a particular
host resource is a shared characteristic of distantly related parasites, and (2) the resource being
tracked by the parasite is widespread among many host species. We investigated the effect of
ecological fitting on structuring the platyhelminth communities of anurans from a temperate
forest and grassland in the United States and tropical dry and wet forests in Mexico and Costa
Rica. The six communities all exhibit similar structure in terms of the genera and families
inhabiting the frogs. Parasite species richness is highly correlated with the amount of time a
host spends in association with aquatic habitats, a conservative aspect of both parasite and
host natural history, and determined in a proximal sense by host mobility and diet breadth.
The pattern of parasite genera and families within host genera across the regions examined is
consistent with the prediction that ecological fitting by phylogenetically conservative species,
coupled with historical accidents of speciation and dispersal, should be evidenced as a nested-
subset structure; the shared requirement for aquatic habitats of tadpoles provides a baseline
assemblage to which other parasite taxa are added as a function of adult host association with
aquatic habitats. We conclude that parasite communities are structured by both ecological
fitting and coevolution (mutual modification), the relative influences of which are expected to
vary among different communities and associations.

Key words: anurans; coevolution; community structure; Costa Rica; ecological fitting; frogs; Mexico;
nested subset; parasitic platyhelminths; phylogenetic conservatism; toads; United States of America.

INTRODUCTION

There are two approaches to studying the evolution of

host–parasite associations. The first and newer research

program, maximum co-speciation, assumes that hosts

and their parasites share such a specialized and exclusive

evolutionary association (Page 2003, Clayton et al. 2004,

Johnson and Clayton 2004) that speciation in one

lineage causes speciation in the other (synchronous co-

speciation; Hafner and Nadler 1988, 1990). Host–

parasite phylogenies are thus expected to be completely

congruent, with departures from congruence explained

by invoking extinction in one lineage or the other. The

second and original research program (Brooks 1979) is

also based upon comparing host–parasite phylogenies

and identifying points of congruence as instances of co-

speciation (the term coined by Brooks in [1979]). There

are, however, no assumptions about underlying pro-

cesses, nor is there an expectation of complete con-

gruence. Brooks proposed that the incongruent portions

of host–parasite phylogenies falsified the hypothesis of

co-speciation at those nodes and thus required inves-

tigations into the influence of other factors (e.g.,

dispersal and host switching) on the evolution of the

association. For example, parasites might diverge more

rapidly than their hosts via sympatric speciation, pro-

ducing sister species inhabiting the same host (Brooks

and McLennan 1993; or ‘‘lineage duplication’’ sensu

Page [2003]), or ecological or immunological evolution

in the host lineage could cause parasite extinction

(lineage sorting or ‘‘missing the boat’’ sensu Page

[2003]).

Although the maximum co-speciation program has

been moving closer to Brooks’ propositions about the

way incongruences should be treated, there is still one

area of dispute between the two perspectives, the

importance of host switching during the evolution of

host–parasite associations. This debate is a logical

extension of the assumption that hosts and parasites

share a specialized exclusive evolutionary association,

making it extremely unlikely that a parasite could
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2005; accepted 21 September 2005. Corresponding Editor (ad
hoc): C. O. Webb. For reprints of this Special Issue, see
footnote 1, p. S1.
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change host species. This assumption, however, arises

from believing that it is the host species, not a biological

characteristic or combination of characteristics of the

host, that is important to the parasite (Brooks and

McLennan 1993). Once researchers began thinking in

terms of traits rather than taxonomy, it became evident

that parasites might be able to switch hosts if the trait

they were tracking was shared among two or more hosts.

The fact that present-day associations might be shaped

in part by the distribution of phylogenetically conserva-

tive traits is called ecological fitting (Janzen 1985).

There are many macroevolutionary manifestations of

ecological fitting. For example, any given parasite

species might be a resource specialist, but also might

share that specialist trait with one or more close

relatives. That is, specialization on a particular resource

can be plesiomorphic within a group (for an extensive

discussion and examples see Brooks and McLennan

[2002]). On the other hand, the resource itself might be

at once very specific and taxonomically and geograph-

ically widespread if it is a persistent plesiomorphic trait

in the hosts. The evolutionary basis for ecological fitting

is thus deceptively simple, yet powerful. If specific cues/

resources are widespread, or if traits can have multiple

functions (or both), then the stage is set for the

appearance of ecological specialization and close (co)-

evolutionary tracking as well as host switching. Eco-

logical fitting thus explains how a parasite can be

ecologically specialized and still switch hosts: if the

resource is widespread across many host species, then

the parasite can take advantage of an opportunity to

establish a ‘‘new’’ specialized association without the cost

of evolving novel abilities (Brooks and McLennan 2002).

Just because a resource is widespread does mean that

it is automatically available. The geographic distribution

of the parasite might not coincide with the geographic

distribution of all hosts having the resource (Pellmyr

1992a, b), or some other aspect of host biology might

make the resource inaccessible to the parasite. For

example, if host species A bearing resource x is highly

abundant in a community, then less-abundant host

species B and C, which also bear x might not be

‘‘apparent’’ to a parasite specializing on that resource

(Feeny 1976, Wiklund 1984, Courtney 1985). Such

density-dependent factors provide the appearance of

close ecological tracking between the parasite and

species A at time T0. If some environmental stressor

later decreases the abundance of species A, and C

PLATE 1. Major habitat types in Area de Conservacion Guanacaste, Costa Rica (clockwise from upper left); Pitilla approach,
tropical cloud forest habitat at entrance to Pitilla Field Station; Cuajiniquil approach, Santa Elena Peninsula, seen from road to
Cuajiniquil, tropical dry forest habitat; Rio Pizote, permanent swamp near Rio Pizote, between Dos Rios and Brasilia, tropical rain
forest habitat. Pitilla Forest, tropical cloud forest habitat near Pitilla Field Station. All photos were taken in June 2005. Photo
credits: D. R. Brooks
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becomes relatively more apparent, then the parasite will

become associated with C at time T1. This manifestation

of ecological fitting could explain seemingly rapid and
virtually unconstrained evolution of novel specialized

host associations. Finally, a parasite might have a
hierarchy of host preferences, even though it is tracking

the same resource (host rank order; Singer et al. 1971;
Janz and Nylin 1998 and references therein). The

hierarchy arises because the costs of accessing the
resource might not be identical across all host species

or even across individuals in the same species (Singer et
al. 1992). Such costs will depend on many different

factors, including concentration of the resource, host
density, and difficulty in extracting the resource. Overall,

parasites accessing a plesiomorphically (or, less often,
homoplasiously) distributed resource are ‘‘faux general-

ists’’ (Brooks and McLennan 2002): specialists whose
host range appears large, but who are in reality using the

same resource.
If a parasite species evolves the ability to utilize a

novel resource, a second and more complicated type of
host preference hierarchy can arise if the parasite also

retains sufficient information to use the plesiomorphic

resource (Wiklund 1981, Courtney et al. 1989). For
example, Haematoloechus floedae is a fluke native to the

southeastern United States where it lives in the lungs of
the bullfrog, Rana catesbeiana. When bullfrogs were

introduced to the southwestern United States, the

Yucatán, and Costa Rica, the parasite went with them,

and is now found in bullfrogs in those areas, as well as in

leopard frogs in the Yucatán and Costa Rica. Leopard
frogs (Rana pipiens clade) are the plesiomorphic hosts

for Haematoloechus (Fig. 1). Although the ancestor of
H. floedae switched to bullfrogs, the presence of the

fluke in leopard frogs indicates that the parasite has
retained its clade’s plesiomorphic ability to infect

leopard frogs (Brooks et al., in press). Interestingly,
bullfrogs have disappeared from Costa Rica, but the

parasite persists, having survived the ‘‘extinction’’ of its
preferred host. This is the first demonstration that

parasites, like phytophagous insects (Janz et al. 2001 and
references therein) might display ancestral host prefer-

ences under certain circumstances.
Ecological fitting is generally investigated in insect–

plant systems, because researchers can reconstruct
phylogenetic patterns of association between the two

clades, then examine the processes underlying those
patterns by (1) identifying the resource being tracked by

the insect, (2) determining the distribution of that
resource among host plants, and (3) delineating the

host preference hierarchy of the insects (Brooks and

McLennan 2002). Currently, we do not have this degree
of detailed information for any host–parasite system. It

is possible, however, to take advantage of ‘‘natural
experiments’’ (e.g., the case of H. floedae), or even to

make inferences based on contemporary patterns of

FIG. 1. Ecological fitting in frog lung flukes. A clade of lung flukes (Haematoloechus spp.) arose in conjunction with the
evolution of leopard frogs (rpg; Rana pipiens group). Haematoloechus floedae arose through speciation by host switching to
bullfrogs (bg; Rana catesbeiana). Haematoloechus floedae was introduced into Costa Rica with bullfrogs, where it expanded its host
range to include local species of leopard frogs, members of the ancestral host group. Bullfrogs subsequently died out in Costa Rica,
but H. floedae survives today due to ecological fitting (from Brooks et al., in press). Thick lines indicate episodes of cospeciation;
thin lines indicate episodes of speciation by host switching.
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host–parasite association, if hosts vary in their use of a

habitat to which parasite species are constrained. The

associations between anurans and their platyhelminth

parasites provide a model system for such an inves-

tigation, because the majority of helminths require water

for the development and transmission of infective stages,

while most, but not all, major groups of anurans have a

sexual and developmental tie to aquatic habitats. Brandt

(1936) suggested that species richness in anuran parasite

communities was directly related to the amount of time

the host spent in or near water, an observation

confirmed by subsequent studies (Prokopic and Kriva-

nec 1975, Brooks 1976). A shared plesiomorphic

requirement for an aquatic habitat, coupled with a

gradient of adult anuran preferences ranging from

aquatic to arboreal, suggests that ecological fitting as a

determinant of the parasites associated with a given

anuran taxon should be evidenced as a nested-subset

structure (Patterson and Atmar 1986) of host–parasite

associations across anuran taxa (Zelmer et al. 2004).

At one extreme, if all the host–parasite associations

are the result of ecological fitting, then all host taxa are

interchangeable from the point of suitability for the

parasites, and associations will be determined solely by

the habitats the host utilizes and its feeding preferences.

The shared requirement of tadpoles for aquatic habitats

should thus provide a baseline assemblage of parasites

that infect the tadpole stage, while the parasites of adult

anurans should accumulate in anuran host species as a

function of the time they spend in aquatic habitats as

adults. If specialized coevolutionary processes dominate,

sympatry between anurans and the infective parasitic

stages will result in parasitism of only appropriate hosts,

producing idiosyncratic (i.e., ‘‘unexpected’’) presences

and absences in the matrix of host–parasite associations.

MATERIALS AND METHODS

Compound parasite communities are defined as the

array of parasite species inhabiting an array of host

species in a given area (Holmes and Price 1986). We

have data for six compound communities of platyhel-

minths that parasitize frogs as definitive hosts in North

and Central America: the temperate hardwood forests of

North Carolina (Brandt 1936), the temperate grasslands

of Nebraska (Brooks 1976), and the tropical wet and dry

forests of Costa Rica (see Plate 1) and Mexico, derived

from biodiversity inventories currently being coordi-

nated by D. R. Brooks (Costa Rica) and V. León-

Règagnon (Mexico) (see the Appendix).

We sampled 75 anuran species in the six areas; 59

were sampled in one area, 14 species were sampled in

two areas, and two species were sampled in three areas

(see the Appendix, Table A1). Of the 57 platyhelminth

species collected, 38 were found in one area, 13 species

were found in two areas, four species were found in

three areas, and two species (Langeronia macrocirra and

Haematoloechus complexus) were found in four areas

(see the Appendix, Table A2). The parasites inhabit 34

of the 75 sampled anurans, only six of which (Rana

catesbeiana, Rana vaillanti, Smilisca baudenii, Smilisca

phaeota, Leptodactylus melanonotus, and Bufo marinus)

have been sampled in two areas, and one of which

(Bufo marinus) was sampled in three areas. From this

we conclude that comparisons of compound commun-

ity structure among the six sites will not be confounded

by multiple samples of the same anuran community,

and therefore the same anuran parasite (i.e., pseudo-

replication). Moreover, given the geographical and

taxonomic breadth of the surveys, it is assumed that

the resultant presence/absence matrices of host–parasite

associations, at the taxonomic levels examined (i.e.,

host genera and parasite genera and families) are

representative of the possible associations, and not

strongly biased by ecological factors, such as host and

parasite ranges and relative abundances.

Anuran species were ranked based on their associa-

tion with aquatic habitats as follows: 7, riparian,

prolonged breeding (several months); 6, semiaquatic,

prolonged breeding; 5, terrestrial, prolonged breeding; 4,

terrestrial, explosive breeding (1–2 wk); 3, arboreal,

prolonged breeding; 2, arboreal, explosive breeding; 1,

fossorial. The relationship between the ranked associa-

tion and trematode species richness was evaluated using

Spearman’s rank correlation analysis.

Without data from experimental infections, ecological

fitting and co-speciation cannot be distinguished as

explanations for extant, and apparently specific, host–

parasite associations. Thus, parasite species and host

species were grouped by genera for the purpose of

nested-subset analysis, increasing the likelihood that the

host and parasite clades had at one time been sympatric.

Given the degree of local adaptation for both the host

and parasite species, pooling hosts by genera and

parasites by genera and families should not increase

the likelihood of a nested-subset pattern occurring, given

a mechanism of co-speciation. Thus it is necessary to

view such a pattern as having been produced by

ecological fitting. Examination of the nested-subset

structure of parasite genera within the pooled anuran

genera across all six localities was conducted using the

nestedness temperature calculator (Atmar and Patterson

1995), which calculates the temperature of the matrix (a

measure of order, with lower temperatures indicating a

higher degree of order) and idiosyncratic host and

parasite temperatures, which indicate host species and

parasite species contributing disproportionately to the

lack of order in the matrix (Atmar and Patterson 1993).

Nested-subset patterns can arise as artifacts of

random draws of individual items from categories that

vary in their representation (Connor and McCoy 1979).

In a proximal sense, within a given locality, this would

involve host individuals acquiring parasites from a

species pool where the probabilities of infection varied

among the parasite species because of an uneven

distribution of infective stages within the environment.

Considering the patterns of association between host
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and parasite taxa, assuming that the various host taxa

are sympatric in a regional sense, nestedness could be

expected to arise by a similar passive mechanism if the

parasite taxa vary in the degree of sympatry between

their respective geographic ranges and those of the

hosts. For tests of passive sampling involving commun-

ity data, the relative abundances of the species sampled

is not known for the source pool, requiring estimation of

these relative abundances from the available data.

Models that test for passive sampling typically base this

estimate on the occurrence of species in the sample

(RANDOM1; Patterson and Atmar 1986, Fischer and

Lindenmayer 2002), which will result in overestimation

of the colonization probabilities of rare species unless

none of the populations present in the sample were

further supplemented by dispersal from the source pool

following the initial colonization (Andrén 1994).

Constructing an appropriate null model for passive

sampling would require knowledge of the contribution

of immigration from the source pool to the observed

relative abundances. In the absence of such information,

a null model (RELABUND) defining the opposite

extreme, i.e., each individual present in a population is

assumed to be an immigrant from the source pool, can

be used in concert with RANDOM1, with the appro-

priate, but unavailable, null model falling between these

extremes (Zelmer et al. 2004). Given that the distribu-

tions of temperatures of matrices produced by these

models represent extremes in terms of the effect of

immigration on the observed population sizes within a

community, overlap with the tails of these distributions

cannot be evaluated with a simple decision rule and

must be interpreted in light of ecological evidence for the

expected effects of immigration.

By analogy, the evaluation of passive mechanisms

that produce nested-subset patterns of associations

between host taxa and parasite taxa would require an

understanding of the contribution of host capture to the

observed associations. Species-level host and parasite

phylogenies do not yet exist for the taxa in question (an

exception is Haematoloechus; León-Règagnon and

Brooks 2003), so the number of times a particular host

genus acquired any particular parasite genus or family

cannot be directly inferred, and must be estimated from

the available presence/absence data. Analogous models

to RANDOM1 and RELABUND were employed, using

the occurrence of parasite taxa within host taxa to

parameterize the Monte Carlo simulations for RAN-

DOM1, and using the number of independent host–

parasite associations to parameterize RELABUND.

(For example, there are two species of Langeronia, one

infecting four host species, the other infecting one. Thus,

for the RELABUNDmodel considering parasite genera,

five ‘‘individuals’’ of Langeronia are distributed ran-

domly among the host taxa. Within the Lecithodendriid

family, in addition to the associations mentioned for

Langeronia, there are two other parasite species, one

infecting two host species, and one infecting a single

species. For the RELABUND model considering para-

site families, eight ‘‘individual’’ lecithodendriids are

distributed randomly among the host taxa.) As with

the interpretation of these models for nestedness in

communities, some of the associations observed will be

the result of host capture, and some by inheritance,

placing the appropriate, but unknown, null model

between the extremes. Both the RANDOM1 and

RELABUND null models were applied to presence/

absence matrices of platyhelminth genera within anuran

genera, trematode genera within anuran genera, and

matrices where parasite genera not represented in all

three regions were pooled by family and evaluated

within host genera and host ecotype ranking.

To evaluate whether the patterns of presence and

absence revealed across regions by the nested-subset

analysis were reflected at smaller scales, we employed

Spearman’s rank correlation analysis to assess co-

variance between the total number of host genera

occupied by a parasite genus or family (pooled across

all six localities), and the number of host species, genera,

and families occupied by each species within that taxon

within each of the six localities. We also used Pearson’s

analysis to determine covariance between the total

number of host genera occupied by a parasite genus or

family (pooled across all six localities) and the number

of host species, genera, and families occupied by those

taxa within each region (United States, Mexico, and

Costa Rica).

RESULTS

The ranked association with aquatic habitats of the

anuran species with nine or more individuals necropsied

per locality positively covaried (r ¼ 0.785; P , 0.0001)

with the trematode richness of the frog host species

(Fig. 2), with no clear differences in the pattern of

increase among the six localities.

The temperature (the measure of matrix order derived

by Atmar and Patterson [1993]) of the presence/absence

matrix of platyhelminth genera within anuran genera

(Fig. 3) was significantly more ordered than the matrices

produced by the RANDOM1 (P ¼ 0.00063) or

RELABUND (P¼ 0.00002) null models. Nested-subset

analysis designated four of the 21 parasite taxa as

idiosyncratic; two monogenean genera and two cestode

genera. Such idiosyncrasies are an indication of different

colonization histories for these genera (Atmar and

Patterson 1993) relative to the other parasites consid-

ered, suggesting the importance of phylogenetic con-

gruence as a determinant of the anuran associations with

monogenean and cestode species. Consequently, the

remaining analyses focused on the trematodes.

The nested-subset structure of the trematode genera

within the pooled anuran genera (Fig. 4) also was

significantly colder than the matrices generated from

both null models (RANDOM1, P ¼ 0.000001; RELA-

BUND, P¼ 0.0000004), and also revealed idiosyncratic

parasite genera. These idiosyncrasies all occurred in
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genera that were missing from at least one of the three
regions sampled (North America, Mexico, or Costa
Rica). Thus, in order to evaluate the potential for the

interaction of the anuran host genera with specific
landscapes to produce nested subset patterns, we
arbitrarily pooled parasite genera not represented in all

three areas into their respective families, thereby
ensuring that all anuran genera included in the analysis
have the potential to draw from the same parasite pool.

The resulting matrix is depicted in Fig. 5.
The temperature of the presence/absence matrices of

trematode genera/families in pooled anuran genera
overlaps the cold tail of the distribution produced by
the RANDOM1 model (P¼ 0.0025) and the cold tail of

the distribution produced by the RELABUND model
(P ¼ 0.0885). Thus, the observed nested-subset pattern
could only be attributed to passive mechanisms by

adhering to the RELABUND model’s assumption that
all host–parasite associations occur independently.
Given that extreme assumption, however, interpreta-

tions of the observed matrix as nonsignificant with
regards to passive sampling must be made with caution.

Examination of the presence/absence matrix of trem-
atode genera and families within ranked anuran ecotypes
(Fig. 6) supports the contention that the semiaquatic

anuran habitat creates overlap with infective stages of a
greater number of trematodes than a purely aquatic
habit. The temperature of this matrix falls within the cold

tail of the distribution of the temperatures produced by
both models (RANDOM1, P¼0.0018; RELABUND, P
¼ 0.165). As with the parasite associations with anuran

genera, onemust conclude that passivemechanisms could
produce this pattern only under the independent-associ-

ation assumption of the RELABUNDmodel, again with

the caveat that the distribution of the appropriate null

model presumably has a warmer central tendency than

that produced by the RELABUND model.

The total number of host genera occupied by a

parasite genus or family (pooled across all six localities)

positively covaried with the number of host species (r¼
0.321; P ¼ 0.0104), genera (r ¼ 0.425; P ¼ 0.0005), and

families (r¼ 0.426; P¼ 0.0005) occupied by each species

within that taxon within each of the six localities. The

total number of host genera occupied by a parasite

genus or family also positively covaried with the number

of host species (r¼ 0.492; P¼ 0.0147), genera (r¼ 0.668;

P¼0.0004), and families (r¼0.645; P¼0.0007) occupied

by each species within that taxon within each of the

three regions (United States, Mexico, and Costa Rica).

DISCUSSION

Parasite habitat preference and transmission patterns

Fifty-four of the 57 parasite species (see the Appendix,

Table A3) exhibit the plesiomorphic pattern of requiring

water for transmission, either by utilizing aquatic

intermediate hosts (digeneans and cestodes), or by

swimming from one host to another (monogeneans).

In other words, transmission patterns are phylogeneti-

cally conservative in this phylum (Brooks and

McLennan 1993, Adamson and Caira 1994). This

explains why 45 of the 57 platyhelminth species were

found only in aquatic and semiaquatic frogs. Of the

remaining 12 species, 10 occur in terrestrial, arboreal,

and fossorial frogs, but infect the tadpole stage of their

hosts. Digeneans in the genus Glypthelmins and the

family Paramphistomidae cluster with the brachycoelids

(Brachycoelium and Mesocoelium) in the maximally

FIG. 2. Increasing trematode species richness in anuran host species from each of six localities, with increased anuran
association (ranked) with aquatic habitats. Multiple observations at a single coordinate are indicated parenthetically above the
coordinate. ACG denotes Area de Conservación Guanacaste.
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packed matrix (Fig. 5) as parasite taxa common to a

number of anuran genera within localities and regions,

as well as across regions. All that is required for in-

fection is that the frog species comes to water to breed in

a population density high enough to ensure infection.

This behavior is plesiomorphic for, and phylogenetically

conservative among, frogs. The last two species,

members of the sister groups Brachycoelium and

Mesocoelium, have terrestrial life cycles, which explains

why they occur so frequently in terrestrial anurans and

in frogs that occasionally forage away from water.

Choledocystus intermedius (one of the idiosyncratic

taxa in the presence/absence matrix depicted in Fig. 4)

inhabits only Bufo marinus, and it is the only adult platy-

helminth restricted to that host. Razo-Mendivil et al. (in

press) recently have shown C. intermedius to be closely

related to members of the families Ochetosomatidae and

Telorchiidae. Life cycles for members of those families

involve aquatic molluscs as first intermediate hosts, and

tadpoles as second intermediate hosts, which are ingested

by the final host. The absence ofC. intermedius from other

anuran hosts that ingest tadpoles might indicate that the

FIG. 3. Maximally packed presence/absence matrix for pooled parasite genera (columns) within pooled host genera (rows) from
all six localities. Stars indicate idiosyncratic hosts and parasite species. Letters within the matrix denote geographic region where
associations were observed: A, United States only; B, Mexico only; C, Costa Rica only; D, United States and Mexico; E, United
States and Costa Rica; F, Mexico and Costa Rica; G, United States, Mexico, and Costa Rica.

FIG. 4. Maximally packed presence/absence matrix for pooled trematode genera (columns) within pooled host genera (rows)
from all six localities. Stars indicate idiosyncratic host and parasite species. Letters within the matrix are as in Fig. 3.
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association between C. intermedius and Bufo marinus

involves more specialization than ecological fitting.

The remaining parasite taxa, whose associations with
their hosts cannot easily be interpreted as manifestations

of ecological fitting (based on the idiosyncratic patterns

revealed in the nested subset analysis), also infect

tadpoles at some stage in their lives. The monogeneans
Polystoma naevius, and the probable sister species

Neodiplorchis scaphiopi and Pseudiplorchis americanus,

infect tadpoles and develop into adults when the tadpoles

metamorphose. Anecdotal reports exist of tadpoles

eating proglottids of nematotaeniid cestodes, suggesting
that four additional species (Cylindrotaenia americana

and C. sp., Distoichometra bufonis and D. kozloffi) gain

infection in a manner similar to the first three species.

Perhaps infection of a tadpole requires greater specificity

on the part of the parasite than infections of adult
anurans, making parasites with such life cycle patterns

less amenable to ecological fitting.

Habitat use by hosts

Forty-two of the 58 species of adult platyhelminths

(72%) occur in ranids. Of those 42 species, 27 are found

only in ranids, indicating that some character or suite of

characters associated with being a ranid is the resource

being tracked by the parasites. Of the remaining 15
species, 11 always occur in higher prevalences in ranids

(one measure of the host preference hierarchy), two

occur at lower prevalences, and two are equivocal

(possibly an artifact of small sample size). The low-
prevalence occurrences in nonranid hosts might be an

additional example of ecological fitting if the nonranids

are suitable hosts, but their lack of exposure to aquatic

habitats renders them ‘‘not apparent’’ to the parasites.

Brachycoelium hospitale, for example, is generally found

in plethodontid salamanders and has a terrestrial life

cycle. Not surprisingly it is more common in a terrestrial

nonranid (Pseudacris brimleyi) than in a ranid host.

It is clear that a role for coevolutionary processes

exists for variations in associations of parasite genera

within families, and species within those genera in terms

of their specific host association. However, no explan-

atory power is gained from considering anurans by their

genera, as opposed to their ecotype, in terms of

associations with the genera and families of the

trematodes infecting them. This equivalence occurs, in

part, because ecotype preference for anuran hosts (e.g.,

all aquatic and semiaquatic host species in all six sites

are members of the same genus, Rana), and transmission
dynamics for the parasites (e.g., all species of Haema-

toleochus utilize odonate naiads as second intermediate

hosts) are phylogenetically conservative (Snyder and

Janovy 1994, Wetzel and Esch 1996).

The host landscape

As evidence for phylogenetic conservatism in host and

parasite biology, 80% of the parasite species discovered

in these six communities inhabit only 13% of the frog

species sampled. How do these species coexist? Part of

the answer lies in perhaps the most fundamental element

of ecological fitting: allopatry. Only 38% of the 48

parasite species inhabiting aquatic and semiaquatic
anurans occur in more than one community.

Another aspect of the process of co-ocurrence lies in

parasite microhabitat diversification, or, as commonly

FIG. 5. Maximally packed presence/absence matrix for
trematodes (columns) pooled by genera, or by family for those
genera that did not occur in all three regions (United States,
Mexico, and Costa Rica), within pooled host genera (rows)
from all six localities. Stars indicate idiosyncratic host and
parasite species. Letters within the matrix are as in Fig. 3.

FIG. 6. Maximally packed presence/absence matrix for
trematodes (columns) pooled by genera, or by family for those
genera that did not occur in all three regions (United States,
Mexico, and Costa Rica), within host species from all six
localities, pooled by ecotype (ranked association with aquatic
habitats). Stars indicate idiosyncratic host and parasite species.
Variation in rank within genera was (no. species at rank) as
follows: ranids, two at rank 7, six at rank 6, and two at rank 5;
bufonids, two at rank 4, three at rank 5; leptodactylids, two at
rank 4, one at rank 5; hylids, two at rank 3; see Materials and
methods for rank designations. No trematodes were found to
infect the fossorial species.
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phrased, diversity in preferred site of infection within the

host (Brooks and McLennan 1993, 2002, Adamson and

Caira 1994, Radtke et al. 2002). Platyhelminth species

occur in the buccal cavity, lungs, gall bladder and hepatic

ducts, small intestine, rectum, and urinary bladder of

anuran hosts, such that multiple species from different

clades can infect the same host and form complicated

communities without interacting physically, i.e., they are

microallopatric. Many species having similar trans-

mission modes occur in the same hosts, but live in

different parts of that host. On the other hand, because

the diversification of infection site is phylogenetically

conservative, multiple, distantly related parasite species

living within a given geographic area can exhibit the

same kind of site specificity, which should amplify

competition. In some cases, the parasite species occur

in different host species; for example, polystome mono-

geneans and gorgoderid digeneans live in the urinary

bladder, but do not infect the same species of frogs. In

other cases, the parasites have markedly different

biological requirements. Cestodes living in the host gut

absorb nutrients from the host intestinal contents,

whereas digeneans living in the host gut forage for host

epithelial cells, cell and tissue exudates, and blood.

CONCLUSIONS

These six communities of frog parasites are both

complex and similar to each other. Their complexity

rules out simple phylogenetic replication, namely, that

these communities are products of a simple history of

vicariance and/or co-speciation. The taxonomic similar-

ity of the communities, coupled with their occurrence in

such markedly different environments, rules out the

possibility that they are the result of convergent

adaptation. Brooks (1980, 1985), Futuyma and Slatkin

(1983), and Janzen (1985) suggested that relatively weak

phenomena (in this case, phylogenetic conservatism in

host and parasite natural history) have the potential to

produce marked ecological structure. That a great deal

of the stable and predictable structure of contempora-

neous anuran parasite communities appears to be a

result of phylogenetic conservatism in the evolution of

both parasite and host biology, coupled with the

historical biogeographic contingencies of speciation

and dispersal, is consistent with those views.

These observations, of course, do not rule out the

possibility of ongoing strong evolutionary interactions

between any of these parasites and their hosts or each

other, particularly at the small spatial and short

temporal scales associated with Thompson’s (1994)

coevolutionary mosaic. Nor do the observations imply

that ecological fitting explains everything; only that

assumptions about the low probability of host switching

must be viewed with far more caution in the future.

Tracking a plesiomorphic resource in parasites is the

equivalent of free-living organisms dispersing into new

habitat, but retaining their ecological niche; both are

aspects of ecological fitting. Given this, we expect that

parasite communities will be macroevolutionary mosaics

of ecological fitting and co-speciation, just as are

communities of free-living organisms (e.g., colubrid

snakes; Cadle and Greene 1993). Additionally, because

communities and associations are subject to evolu-

tionary forces that will vary across space and time, we

also expect that the importance of ecological fitting and

co-speciation will vary among communities and among

associations.

Finally, our analysis implies that many parasites

currently restricted to particular hosts in particular

localities could survive in other hosts and other localities

if they could get there. Episodes of major climate change,

for example, result in range contractions and expansions

bringing together species that have been allopatric

during their previous evolutionary histories. In such

cases, we would expect an increase in host switching, not

as a result of evolution of novel host utilization

capabilities, but as a manifestation of ecological fitting.

As discussed above (see the Introduction), some parasites

might well survive extinction of their original hosts.

Discovering the importance of ecological fitting as a

determinant of the structure of anuran parasite com-

munities thus underscores the need for more compre-

hensive ecological and evolutionary understanding of

host specificity in assessing the risk of parasite trans-

mission into native hosts resulting from the introduction

of exotic host species along with their parasites.
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APPENDIX

Geographic distributions of anuran hosts and their platyhelminth parasites in six areas in North and Central America
(Ecological Archives E087-112-A1).

July 2006 S85ECOLOGICAL FITTING OF ANURAN PARASITES


	Ecological Fitting as a Determinant of the Community Structure of Platyhelminth Parasites of Anurans
	Publication Info

	ecol-87-07s-08 76..85

