2012

Choosing an Instrument

Allison Marsh
University of South Carolina - Columbia, marsha@mailbox.sc.edu

Follow this and additional works at: https://scholarcommons.sc.edu/imm_section5

Part of the Computer Sciences Commons, Digital Humanities Commons, Fine Arts Commons, History of Art, Architecture, and Archaeology Commons, Interdisciplinary Arts and Media Commons, Library and Information Science Commons, Life Sciences Commons, Other Engineering Commons, and the Photography Commons

Recommended Citation
https://scholarcommons.sc.edu/imm_section5/7

This Book is brought to you by the Imaging the Invisible at Scholar Commons. It has been accepted for inclusion in Section 5: Imaging at the Nano Scale by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.
Researchers employ a wide variety of highly sophisticated microscopes to explore at the nanoscale. All these instruments produce images that are indirect representations of matter too small to see. Scientists began using electron microscopes in the 1930s and scanning probe microscopes emerged in the 1980s, but newer technologies do not necessarily replace older instruments. Rather, each type of microscope offers a different set of tools for gathering information, and the information revealed spurs researchers to ask new questions.

scanning probe microscope

These microscopes scan the movement of a tiny probe tip as it travels over a sample's surface. They create three-dimensional images that visualize individual atoms. These instruments also provide researchers with immediate feedback as they modify samples. This allows operators to manipulate atoms and build tiny structures. Common types of scanning probe microscopes include the scanning tunneling microscope (or STM) and the atomic force microscope (or AFM).

electron microscope

Developed in the early twentieth century, electron microscopes produce images by focusing a beam of electrons on the specimen. This technique allows for imaging at a much greater magnification than with an optical microscope. Whereas scanning electron microscopes (or SEMs) shoot a beam of electrons off of samples to produce brilliant three-dimensional images, transmission electron microscopes (or TEMs) send a beam of electrons through samples to achieve images at a very high resolution.

optical microscope

The modern optical microscope is a direct descendant of Leeuwenhoek's 17th-century invention. It uses light rays and lenses for focusing images. Early modern optical microscopes now incorporate computer algorithms that allow scientists to manipulate images through automatic focusing or rendering multiple images into a single view. Two benefits of optical microscopes include their low cost and the ability to view living cells.

COMPARING MICROSCOPES

Researchers use a wide variety of microscopes to explore at the nanoscale. All these instruments produce images of matter too small to see. Scientists began using electron microscopes in the 1930s and scanning probe microscopes emerged in the 1980s, but newer technologies do not necessarily replace older instruments. Rather, each type of microscope offers a different set of tools for gathering information, and the information revealed spurs researchers to ask new questions.

scanning probe microscope

These microscopes scan the movement of a tiny probe tip as it travels over a sample's surface. They create three-dimensional images that visualize individual atoms. These instruments also provide researchers with immediate feedback as they modify samples. This allows operators to manipulate atoms and build tiny structures. Common types of scanning probe microscopes include the scanning tunneling microscope (or STM) and the atomic force microscope (or AFM).

electron microscope

Developed in the early twentieth century, electron microscopes produce images by focusing a beam of electrons on the specimen. This technique allows for imaging at a much greater magnification than with an optical microscope. Whereas scanning electron microscopes (or SEMs) shoot a beam of electrons off of samples to produce brilliant three-dimensional images, transmission electron microscopes (or TEMs) send a beam of electrons through samples to achieve images at a very high resolution.

optical microscope

The modern optical microscope is a direct descendant of Leeuwenhoek’s 17th-century invention. It uses light rays and lenses for focusing images. Early modern optical microscopes now incorporate computer algorithms that allow scientists to manipulate images through automatic focusing or rendering multiple images into a single view. Two benefits of optical microscopes include their low cost and the ability to view living cells.

COMPARE & CONTRAST: See how different microscopes produce distinct images of red blood cells.