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Dynamic Modeling and Statistical 

Analysis of Event Times 
Edsel A. Pe?a 

Abstract. This review article provides an overview of recent work in the 

modeling and analysis of recurrent events arising in engineering, reliability, 

public health, biomedicine and other areas. Recurrent event modeling pos 
sesses unique facets making it different and more difficult to handle than sin 

gle event settings. For instance, the impact of an increasing number of event 

occurrences needs to be taken into account, the effects of covariates should 

be considered, potential association among the interevent times within a unit 

cannot be ignored, and the effects of performed interventions after each event 

occurrence need to be factored in. A recent general class of models for recur 

rent events which simultaneously accommodates these aspects is described. 

Statistical inference methods for this class of models are presented and il 

lustrated through applications to real data sets. Some existing open research 

problems are described. 

Key words and phrases: Counting process, hazard function, martingale, 

partial likelihood, generalized Nelson-Aalen estimator, generalized product 
limit estimator. 

1. INTRODUCTION 

A decade ago in a Statistical Science article, 

Singpurwalla (1995) advocated the development, adop 
tion and exploration of dynamic models in the the 

ory and practice of reliability. He also pinpointed that 

the use of stochastic processes in the modeling of 

component and system failure times offers a rich en 

vironment to meaningfully capture dynamic operating 
conditions. In this article, we review recent research 

developments in dynamic failure-time models, in the 

context of both stochastic modeling and inference con 

cerning model parameters. Dynamic models are not 

limited in applicability and relevance to the engineer 

ing and reliability areas. They are also relevant in other 

fields such as public health, biomedicine, economics, 

sociology and politics. This is because in many studies 

in these varied areas, it is oftentimes of interest to mon 

itor the occurrences of an event. Such an event could be 

the malfunctioning of a mechanical or electronic sys 

tem, encountering a bug in computer software, the out 
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break of a disease, occurrence of a migraine, reoccur 

rence of a tumor, a drop of 200 points in the Dow Jones 

Industrial Average during a trading day, commission of 

a criminal act in a city, serious disagreements between 

a married couple, or the replacement of a cabinet min 

ister/secretary in an administration. These events recur 

and so it is of interest to describe their recurrence be 

havior through a stochastic model. If such a model has 

excellent predictive ability for event occurrences, then 

if event occurrences lead to drastic and/or negative con 

sequences, preventive interventions may be attempted 
to minimize damages, whereas if they lead to benefi 

cial and/or positive outcomes, certain actions may be 

performed to hasten event occurrences. 

It is because of performed interventions after event 

occurrences that dynamic models become especially 

pertinent, since through such interventions, or some 

times noninterventions, the stochastic structure gov 

erning future event occurrences is altered. This change 
in the mechanism governing the event occurrences 

could also be due to the induced change in the structure 

function in a reliability setting governing the system of 

interest arising from an event occurrence (cf. Hollander 

and Pe?a, 1995; Kvam and Pe?a, 2005; Pe?a and Slate, 

2005). Furthermore, since several events may occur 
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within a unit, it is also important to consider the as 

sociation among the interevent times which may arise 

because of unobserved random effects or frailties for 

the unit. In addition, there is a need to take into ac 

count the potential impact of environmental and other 

relevant covariates, possibly including the accumulated 

number of event occurrences, which could affect future 

event occurrences. 

In this review article we describe a flexible and 

general class of dynamic stochastic models for event 

occurrences. This class of models was proposed by 
Pe?a and Hollander (2004). We also discuss infer 

ence methods for this class of models as developed in 

Pe?a, Strawderman and Hollander (2001), Pe?a, Slate 

and Gonz?lez (2007) and Kvam and Pe?a (2005). We 

demonstrate their applications to real data sets and in 

dicate some open research problems. 

2. BACKGROUND AND NOTATION 

Rapid and general progress in event time model 

ing and inference has benefited immensely from the 

adoption of the framework of counting processes, mar 

tingales and stochastic integration as introduced in 

Aalen's (1978) pioneering work. The present review 

article adopts this mathematical framework. Excellent 

references for this framework are the monograph of 

Gill (1980), and the books by Fleming and Harrington 

(1991) and Andersen, Borgan, Gill and Keiding (1993). 
We introduce in this section some notation and very 
minimal background in order to help the reader in the 

sequel, but advise the reader to consult the aforemen 

tioned references to gain an in-depth knowledge of this 

framework. 

We denote by (?2, !F, P) the basic probability space 
on which all random entities are defined. Since in 

terest will be on times between event occurrences or 

on the times of event occurrences, nonnegative-valued 
random variables will be of concern. For a random 

variable T with range ?K+ 
= [0, oo), F(t) 

? 
Fp(t) = 

P{T < t} and S(t) = ST(t) = l- F(t) = P{T > t] will 
denote its distribution and survivor (also called reliabil 

ity) functions, respectively. The indicator function of 

the event A will be denoted by I {A}. The cumulative 

hazard function of T is defined according to 

A(?) = Ar(0 = /{?> 0,/' Jo 
F(dw) 

S(w-) 

with the convention that S(w?) 
? 

limiTU, 5(0 = 

P{T 
> 

w} and 
fa 

= 
?fa^ 

. For a nondecreas 

ing function G : 5K+ -> 3?+ with G(0) = 0, its product 

integral over (0, t] is defined via (cf. Gill and Johansen, 

1990; Andersen et al., 1993) ?Uot1 
~ 

G(dw)] = 

?mM^oollilitl 
- 

(G(ti) 
- 

G(i/_i))], where as 

M -> oo, the partition 0 = 
to < h < < ?m 

? 
to sat 

isfies maxi</<M \U 
? 

t[-\ | ?> 0. The survivor function 

in terms of the cumulative hazard function becomes 

t 

(2.1) 5(0 = I{t < 0} + I{t > 0} f] [1 
- 

A(dw)]. 
w=0 

For a discrete random variable T with jump points 

{tj}, the hazard ? y at ?y is the conditional probability 
that T = 

tj, given T>tj, so A(i) = 
E{j : ?;-<?} */. If T 

is an absolutely continuous random variable with den 

sity function f(t), its hazard rate function is X(t) = 

f(t)/S(t), so A(f) = 
f?X.(w)dw 

= -log5(?). The 

product-integral representation of S(t) according to 

whether T is purely discrete or purely continuous is 

t 

S(t)= Y\[\-A(dw)] 
w=0 

(2.2) 

II [1 
? 

Xjr], if T is discrete, 
_ 0 -r 

expj 
? / X(w) dw i, if T is continuous. 

A benefit of using hazards or hazard rate functions in 

modeling is that they provide qualitative aspects of the 

event occurrence process as time progresses. For in 

stance, if the hazard rate function is increasing (de 

creasing) then this indicates that the event occurrences 

are increasing (decreasing) as time increases, and thus 

we have the notion of increasing (decreasing) failure 

rate [IFR (DFR)] distributions. For many years, it was 

the focus of theoretical reliability research to deal with 

classes of distributions such as IFR, DFR, increasing 

(decreasing) failure rate on average [IFRA (DFRA)], 
and so on, specifically with regard to their closure 

properties under certain reliability operations (cf. Bar 

low and Proschan, 1981). 
In monitoring an experimental unit for the oc 

currence of a recurrent event, it is convenient and 

advantageous to utilize a counting process (A^s), 
s > 0}, where N(s) denotes the number of times 

that the event has occurred over the interval [0,s]. 
The paths of this stochastic process are step-functions 
with N(0) 

= 0 and with jumps of unity. If we rep 
resent the calendar times of event occurrences by 

S\ < S2 < S3 < with the convention that So = 0, 
then N(s) = 

YlJLi I{Sj <s}. The interevent times are 
denoted by 7) 

= 
Sj 

? 
Sj-\, j 

= 1, 2,_In specifying 
the stochastic characteristics of the event occurrence 
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process, one either specifies all the finite-dimensional 

distributions of the process {./V(0}, or specifies the 

joint distributions of the 5;-'s 
or the r;'s. For exam 

ple, a common specification for event occurrences is 

the assumption of a homogeneous Poisson process 

(HPP) where the interevent times Tj 
are independent 

and identically distributed exponential random vari 

ables with scale ?. This is equivalent to specifying 

that, for any s\ < S2 < < sk, the random vectors 

(N(Sl), N(s2) 
- 

N(s{),..., N(sK) 
- 

N?SK-x)) have 

independent components with N(sj) 
? 

N(sj-\) hav 

ing a Poisson distribution with parameter ?(sj ?Sj-\). 
From this specification, the finite-dimensional distrib 

utions of (N(s\), N(s2),. ., N(sk)) can be obtained. 

An important concept in dynamic modeling is that 

of a history or a filtration, a family of a-fields F = 

{!Fs:s > 0} where !FS is a sub-a-field of !F with 

5^1 ? FSl for every s\ < s2 and with Fs 
= 

f]h^0 !Fs+h, 
a right-continuity property. One interprets 5^ as all in 

formation that accrued over [0, s]. When augmented 
in (Q, !F, P), we obtain the filtered probability space 

(?2, !F, F, P). It is with respect to such a filtered prob 

ability space that a process {X(0:s > 0} is said 

to be adapted [X(s) is measurable with respect to 

J7?, Vs > 0]; is said to be a (sub)martingale [adapted, 

E\X(s)\ < oo, and, Vs, t > 0, E{X(s + t)\Fs}(>) = 

X(s) almost surely]. Doob-Meyer's decomposition 

guarantees that for a submartingale Y = 
{F(s):s > 

0} there is a unique increasing predictable (measur 
able with respect to the a-field generated by adapted 

processes with left-continuous paths) process A = 

{A(s) \s > 0}, called the compensator, with A(0) = 0 

such that M = 
[M (s) 

= Y (s) 
- 

A(s) : s > 0} is a mar 

tingale. Via Jensen's inequality, then for a square 

integrable martingale X = 
{X(s):s > 0}, there is a 

unique compensator process A = 
{A(s) :s > 0} such 

that X2 
? A is a martingale. This process A, denoted 

by (X) = {(X)(s)\s > 0}, is called the predictable 
quadratic variation (PQV) process of X. A useful 

heuristic, though somewhat imprecise, way of present 

ing the main properties of martingales and PQV's is 

through the following differential forms. For a mar 

tingale M, E{dM(s)\!Fs-} 
= 0, Vs > 0; whereas for 

the PQV (M), E{dM2(s)\Fs-} = Var{dM(OI^-} = 

d(M)(s),Vs>0. 
For the HPP N = {N(s) :s > 0} with rate ? and 

with F = 
{Fs =cr{N(w),w < s] :s > 0}, N is a sub 

martingale since its paths are nondecreasing. Its com 

pensator process is A = 
{A(s) 

= 
?s\s > 0}, so that 

M = 
{M(s) 

= N(s) 
- 

?s\s > 0} is a martingale. 

Furthermore, since N(s) is Poisson-distributed with 

rate ?s, so that [M2(s) 
- 

A(s) = (N(s) 
- 

?s)2 
- 

?s : s > 0} is a martingale, the PQV process of M 

is also A. Through the heuristic forms, we have 

E{dN(s)\!Fs-} = dA(s), s > 0. Since dN{s) e {0, 1}, 
then we obtain the probabilistic expression P{dN(s) 

= 

1|F,_} 
= dA(s),s > 0. Analogously, Var{dN(s)\ 

^_) = E{[dN(s) 
- 

dA(s)]2\Fs-} = dA(s),s > 0. 
These formulas hold for a general counting process 

{N(s):s > 0} with compensator process (A^):^ > 

0}. In essence, conditionally on 3\y_, dN(s) has a 

Bernoulli distribution with success probability dA(s). 
Over the interval [0, s], following Jacod, the likelihood 

function can be written in product-integral form as 

s 

L(s) = 
Y[ {dA(w)}dN(w){\ 

- 
dA{w)}l-dN(w) 

iu=0 

= 
\f\[dA(w)]dN^\txV{-A(s)}, 

with the last equality holding when A(-) has continu 
ous 

paths. 

Stochastic integrals play a crucial role in this sto 

chastic process framework for event time modeling. 
For a square-integrable martingale X = 

{X(s) : s > 0} 
with PQV process (X) = {{X)(s):s > 0}, and for a 
bounded predictable process Y = 

{F(s):s > 0}, the 

stochastic integral of Y with respect to X, denoted 

by / YdX = 
{/J Y{w)dX(w) :s > 0}, is well defined. 

It is also a square-integrable martingale with PQV 

process {?YdX) 
= 

{/J Y2 (w) d (X) (w) :s > 0}. When 
X is associated with a counting process Af, that is, 
X = N ? 

A, the paths of the stochastic integral f Y dX 

can be taken as pathwise Lebesgue-Stieltjes integrals. 

Martingale theory also plays a major role in obtain 

ing asymptotic properties of estimators as first demon 

strated in Aalen (1978), Gill (1980) and Andersen and 

Gill (1982). The main tools used in asymptotic analysis 
are Lenglart's inequality (cf. Lenglart, 1977; Fleming 
and Harrington, 1991; Andersen et al., 1993) which is 

used in proving consistency, and Rebolledo's (1980) 

martingale central limit theorem (MCLT) (cf. Fleming 
and Harrington, 1991; Andersen et al., 1993) which is 

used for obtaining weak convergence results. We re 

fer the reader to Fleming and Harrington (1991) and 

Andersen et al. (1993) for the in-depth theory and ap 

plications of these modern tools in failure-time analy 
sis. 

3. CLASS OF DYNAMIC MODELS 

Let us now consider a unit being monitored over time 

for the occurrence of a recurrent event. The monitor 

ing period could be a fixed interval or it could be a 
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random interval, and for our purposes we denote this 

period by [0, r], where t is assumed to have some dis 

tribution G, which may be degenerate. With a slight 
notational change from Section 2 we denote by N^(s) 
the number of events that have occurred on or be 

fore time s, and by Y^(s) an indicator process which 

equals 1 when the unit is still under observation at 

time s9 0 otherwise. With So = 0 and Sj, 7 = 1,2,..., 

denoting the successive calendar times of event occur 

rences, and with 7) 
= 

Sj 
? 

S/-i, y = 1,2,..., being 
the interevent or gap times, observe that 

00 

N*(s) = 
J2 ^SJ ^ min(*' T)} and 
7 = 1 

(3.4) 
Y*(s) = I{t>s). 

Associated with the unit is a, possibly time-dependent, 
1 x q covariate vector X = 

{X(.s):s > 0}. In relia 

bility engineering studies, the components of this co 

variate vector could be related to environmental or 

operating condition characteristics; in biom?dical stud 

ies, they could be blood pressure, treatment assigned, 
initial tumor size, and so on; in a sociological study of 

marital disharmony, they could be length of marriage, 

family income level, number of children residing with 

the couple, ages of children, and so on. Usually, af 

ter each event occurrence, some form of intervention 

is applied or performed, such as replacing or repairing 
failed components in a reliability system, or reducing 
or increasing physical activity after a heart attack in a 

medical setting. These interventions will typically im 

pact the next occurrence of the event. There is further 

more recognition that for the unit the interevent times 

are associated or correlated, possibly because of unob 

served random effects or so-called frailties. A pictor 
ial representation of these aspects is given in Figure 1. 

Observe that because of the finiteness of the monitor 

ing period, which leads to a sum-quota accrual scheme, 
there will always be a right-censored interevent time. 

The observed number of event occurrences over [0, r], 
K = 

Aff(r), is also informative about the stochas 

tic mechanism governing event occurrences. In fact, 
since K = 

niax{&:X!y=i Tj 
< r}, then, conditionally 

on (K, r), the vector (T\, ?2,..., Tk) has dependent 

components, even if at the outset T\, T2,... are inde 

pendent. 

Recognizing these different aspects in recurrent 

event settings, Pe?a and Hollander (2004) proposed a 

general class of models that simultaneously incorpo 
rates all of these aspects. To describe this class of mod 

els, we suppose that there is a filtration F = 
{5^ : s > 0} 

such that for each s > 0, a{(N*(v), Y*(v+), X(v+), 

8(v+)) :v<i}cys. We also assume that there exists 

Unobserved 

event 

Unobserved 

frailty 

X 

End of study 

Covariate vector: X(s) = 
(X^s).XJs)) 

FIG. 1. Pictorial depiction of the recurrent event data accrual for a unit illustrating the window of observation [0, r], intervention per 

formed after an event occurrence, an unobserved frailty Z, the presence of a vector ofcovariates X, the interevent times 
Tj 

and the calendar 

times of event occurrences 
Sj. 
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an unobservable positive random variable Z, called a 

frailty, which induces the correlation among the inter 

event times. The class of models of Pe?a and Hollander 

(2004) can now be described in differential form via 

P{dN(s) = l\Fs_9Z} 

(3.5) =ZYHs)X0[S(s)] 

.p[NHs-y,a]xlr(X(s)?)ds, 

where ?o() is a baseline hazard rate function; p{-\ ) 
is a nonnegative function with p(0; ) = 1 and with a 

being some parameter; \?r(>) is a nonnegative link func 

tion with ? a q x 1 regression parameter vector; and 

Z is a frailty variable. The at-risk process Y^(s) indi 

cates that the conditional probability of an event oc 

curring becomes zero whenever the unit is not under 

observation. Possible choices of the p(; ) and ^r(-) 
functions are p(k; a) = ak and \?r{w) 

= 
exp(w), re 

spectively. For the geometric choice of p ( ; ), if a > 1 

the effect of accumulating event occurrences is to ac 

celerate event occurrences, whereas if a < 1 the event 

occurrences decelerate, the latter situation appropriate 
in software debugging. The process ?( ) appearing as 

argument in the baseline hazard rate function, called 

the effective age process, is predictable, observable, 

nonnegative and pathwise almost surely differentiable 

with derivative ?'( ). This effective age process models 

the impact of performed interventions after each event 

occurrence. A pictorial depiction of this effective age 

process is in Figure 2. In this plot, after the first event, 
the performed intervention has the effect of reverting 

the unit to an effective age equal to the age just before 

the event occurrence (called a minimal repair or inter 

vention), while after the second event, the performed 
intervention has the effect of reverting the effective age 
to that of a new unit (hence this is called a perfect in 

tervention or repair). After the third event, the inter 

vention is neither minimal nor perfect and it has the 

effect of restarting the effective age at a value between 

zero and that just before the event occurred; while for 

the fourth event, the intervention is detrimental in that 

the restarting effective age exceeds that just before the 

event occurred. 

The effective age process could occur in many forms, 
and the idea is this should be determined in a dynamic 
fashion in conjunction with interventions that are per 
formed. As such the determination of this process 
should preferably be through consultations with ex 

perts of the subject matter under consideration. Com 

mon forms of this effective age process are: 

Minimal Intervention or Repair: 
(3.6) 

8(s) = s, 

Perfect Intervention or Repair: 
(3.7) 

8(s) = 
s-SNi(s_), 

BBS Model: 
(3.8) 

8(s) 
= 

s-SrHs_), 

where in (3.8) with I\,h, being independent 
Bernoulli random variables with /* having success 

Calendar Time 

FIG. 2. An example of an effective age process, 8(s),for a unit encountering successive occurrences of a recurrent event. 
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probability p(Sk) with p:?ft+ -> [0,1], we define 

ri(s) 
= 

e?i(5) /? and T0 = 0, r* = 
min{j > r*_i : 

Ij 
= 

1}, k = 1,2,_Thus, in (3.8), ??(s) represents 
the time measured from s since the last perfect repair. 

This effective age is from Block, Borges and Savits 

(1985), whereas when p(s) 
? 

p for some p e [0, 1], 
we obtain the effective age process for the Brown 

and Proschan (1983) minimal repair model. Clearly, 
the effective age functions (3.6) and (3.7) are special 
cases of (3.8). Other effective age processes that could 

be utilized are those associated with the general re 

pair model of Kijima (1989), Stadje and Zuckerman 

(1991), Baxter, Kijima and Tortorella (1996), Dorado, 

Hollander and Sethuraman (1997) and Last and Szekli 

(1998). See also Lindqvist (1999) and Lindqvist, Elve 

bakk and Heggland (2003) for a review of some of 

these models pertaining to repairable systems, and 

Gonz?lez, Pe?a and Slate (2005) for an effective age 

process suitable for cancer studies. 

A crucial property arising from the intensity specifi 
cation in (3.5) is it amounts to postulating that, with 

A^(s\Z,X0('),a9?) 

(3.9) =Z i'YHw)k0[S(w)] Jo 

p[N\w-)\a}f(X{w)?)dw, 

then, conditionally on Z, the process 

{M\s;Z,k0(-),a,?) 
(3.10) 

= N\s) 
- 

Af(s; Z, ?o(-), a, ?) : s > 
0} 

is a square-integrable martingale with PQV process 

A^G; Z,ko(-),a, ?). The class of models is general 
and flexible and subsumes many current models for 

recurrent events utilized in survival analysis and reli 

ability. In particular, it includes those of Jelinski and 

Moranda (1972), Gail, Santner and Brown (1980), 
Gill (1981), Prentice, Williams and Peterson (1981), 
Lawless (1987), Aalen and Husebye (1991), Wang 
and Chang (1999), Pe?a, Strawderman and Hollander 

(2001) and Kvam and Pe?a (2005). We demonstrate the 

class of models via some concrete examples. 

Example 1. The first example concerns a load 

sharing K -component parallel system with identical 

components. The recurrent event of interest is com 

ponent failure and failed components are not replaced. 
When a component fails, a redistribution of the system 

load occurs among the remaining functioning compo 

nents, and to model this system in a general way, we 

let ?o 
= l and a\,..., olk-\ be positive constants, re 

ferred to as load-share parameters. One possible speci 
fication of these parameters is a? = 

K/(K 
? 

k),k = 

0,1,2,..., K ? 
1, though they could be unknown 

constants, possibly ordered. The hazard rate of event 

occurrence at calendar time s, provided that the sys 
tem is still under observation, is ?CO 

= 
Xo(s)[K 

? 

N^(s?)]aNT(s_), 
where ?o(-) is the common hazard 

rate function of each component and N^ CO is the num 

ber of component failures observed on or before time s. 

This is a special case of the general class of mod 

els with 8(s) 
= s, p(k; a\,... , k-\) 

= [K 
? 

k]o?k, 
and \?r(w) 

? 1. This is the equal load-sharing model in 

Kvam and Pe?a (2005). More generally, this could ac 

commodate environmental or operating condition co 

variates for the system, and even an unobserved frailty 

component. 

Example 2. Assume in a software reliability 
model that there are a bugs at the beginning of a debug 

ging process and the event of interest is encountering 
a bug. A possible model is these a bugs are compet 

ing to be encountered, and if each of them has hazard 

rate of ?oCO of being encountered at time s, then the 

total hazard rate at time s of the software failing is 

Xo(s)a. Upon encountering a bug at time 5i, this bug 
is eliminated, thus decreasing the number of remaining 

bugs by one. The debugging process is then restarted at 

time just after 5i (assuming it takes zero time to elimi 

nate the bug, clearly an oversimplification). In general, 

suppose that just before calendar time s, N^(s?) bugs 
have been removed, and the last bug was encountered 

at calendar time 
5#t(5_). Then, the overall hazard of 

encountering a bug at calendar time s with s > 
SN^S_^ 

is Xo(s 
? 

5yvt(5_))[a 
? 

N\s?)]. Thus, provided that 

the debugging process is still in progress at time s, 
then the hazard of encountering a bug at time s is 

A.(s) = Xo(s 
- 

5Ari(5_))max[0, 
a - 

N\s-)]. Again, 
this is a special case of the general class of models 

with 8(s) = s ? 
SNi(s_^, 

a consequence of the restart 

of the debugging process, p(k;a) = max{0, a ? 
k} 

and \/f(w) 
= 1. This software debugging model is the 

model of Jelinski and Moranda (1972) and it was also 

proposed by Gail, Santner and Brown (1980) as a car 

cinogenesis model. See also Agustin and Pe?a (1999) 
for another model in software debugging which is a 

special case of the general class of models. 

Cox's (1972) proportional hazards model is one 

of the most used models in biom?dical and public 
health settings. Extensions of this model have been 

used in recurrent event settings, and Therneau and 
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Grambsch (2000) discuss some of these Cox-based 

models such as the independent increments model of 

Andersen and Gill (1982), the conditional model of 

Prentice, Williams and Peterson (1981) and the mar 

ginal model of Wei, Lin and Weissfeld (1989). The 

independent increments model is a special case of 

the general class of models obtained by taking either 

g(s) = s or 8(s) = s ? 
5^t(,s_) 

with p{k\ a) = 1 and 

xl/(w) 
= 

exp(i?). The marginal model stratifies accord 

ing to the event number and assumes a Cox-type model 

for each of these strata, with the jth interevent time in 

the ?th unit having intensity Y?j(t)Xoj(t) exp{X? (t)?j), 
where Yij(t) equals 1 until the occurrence of the y'th 
event or when the unit is censored. The conditional 

model is similar to the marginal model except that 

Yij(t) becomes 1 only after the (j 
? 

l)st event has oc 

curred. 

4. STATISTICAL INFERENCE 

The relevant parameters for the model in (3.5) are 

A.o(-)> a, ? and the parameter associated with the dis 

tribution of the frailty variable Z. A variety of forms 

for this frailty distribution is possible, but we restrict 

to the case where Z has a gamma distribution with 

mean 1 and variance l/?. The parameter associated 

with G, the distribution of r, is usually viewed as a 

nuisance, though in current joint research with Akim 

Adekpedjou, a Ph.D. student at the University of South 

Carolina, the situation where G is informative about 

the distributions of the interevent times is being ex 

plored. 

Knowing the values of the model parameters is im 

portant because the model can be utilized to predict 
future occurrences of the event, an important issue 

especially if an event occurrence is detrimental. To 

gain knowledge about these parameters, a study is per 
formed to produce sample data which is the basis of 

inference about the parameters. We consider a study 
where n independent units are observed and with the 

observables over (calendar) time [0, s*] denoted by 

DATA?(s*) 

(4.11) ={[(Xi(v),N}(v),Y}(v),Si(v)),v<s*l 
i = 

l,2,...,n}. 

Observe that DATA?(s*) provides information 

about the r?'s. More generally, we observe the nitra 

tions {(!FiV, v < s*), i = 1, 2,..., n} or the overall fil 

tration F5* = 
[!FV 

= 
VLi ^v? v < ^*}- The ?oals of 

statistical inference are to obtain point or interval esti 

mates and/or test hypotheses about model parameters, 

as well as to predict the time of occurrence of a future 

event, when DATA^Cs*) or Fs* is available. We focus 

on the estimation problem below, though we note that 

the prediction problem is of great practical importance. 
Conditional on Z = (Z\, Z2,..., Zn), from (2.3) the 

likelihood process for (Xo(-), a, ?) is 

Lc{s',Z,\0(-),a,?) 

(4.12) =n{zfM^ 

exp -Zi 
j" 

Bi(v;k0('),a,?)dv , 

where B^v; X^),a, ?) = 
Y?(v)k0[8i(v)]p[Nj(v-y, 

a]\l/[Xi(v)?]. Observe that the likelihood process 
when the model does not involve any frailties is ob 

tained from (4.12) by setting Z; = 1, i 
? 

1,2,... ,n, 

which is equivalent to letting f -> oo. The resulting 

no-frailty likelihood process is 

L(s',ko(-),a,?) 

(4.13) =n n^f^oo,^)! 
/ = ! I U=0 

dN?(v) 

exp 
- / Bi(v,ko(-),a,?)dv 

This likelihood process is the basis of inference about 

(Xo(-),a,?) in the absence of frailties. Going back 

to (4.12), by marginalizing over Z under the gamma 

frailty assumption, the likelihood process for (A.o(-)> a? 

?, ?) becomes 

L(s;X0(-),a,?,C) 
n 

=n 

(4.14) 
i_1 l-+?Bi(w;ko(-),a,?)dw 

fl\(Nl(v-) 
+ C)Bi(v;ko(-),a,?) 

!;=0L 

? + 
Jo 

There are two possible specifications for the base 

line hazard rate function Xq(-): parametric or non 

parametric. If parametrically specified, then it is pos 
tulated to belong to some parametric family of haz 

ard rate functions, such as the Weibull or gamma 

family, that depends on an unknown p x 1 parame 
ter vector 0. In this situation, a possible estimator 
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of (0, a, j?, ?), given F5*, is the maximum likelihood 

estimator (0, a, /3, |), the maximizer of the mapping 

(0, a, ?, f ) h> L(s*; ?0(-; 0), a, j8, f ). Stocker (2004) 

studied the finite- and large-sample properties, and as 

sociated computational issues, of this parametric ML 

estimator in his dissertation research. In particular, 

following the approach of Nielsen, Gill, Andersen 

and S0rensen (1992), he implemented an expectation 
maximization (EM) algorithm (cf. Dempster, Laird and 

Rubin, 1977) for obtaining the ML estimate. In this 

EM implementation the frailty vari?tes Z? are viewed 

as missing and a variant of the no-frailty likelihood 

process in (4.13) is used for the maximization step 
in this algorithm. We refer to Stocker (2004) for de 

tails of this computational implementation. For large 

n, and under certain regularity conditions, it can also 

be shown that (0, <?, ?, f ) is approximately multivari 

ate normally distributed with mean (0, a, ?, ?) and co 

variance matrix 
^7_1(0,?, ?, f), where 7(0, a, ?, f) 

is the observed Fisher information associated with 

the likelihood function L(s*; ?oG; 0),a, ?, ?). That is, 

with 0 = (0, a, ?, ?)1, 7(0, a, ?, ?) 
= 

-{d2/d? d&] 

Z(i*;?o(-;0),a,j8,?), where l(s;ko(.\9),a,?,C) is 

the log-likelihood process given by 

l{s',k0(-\9),a,?,C) 

=?N ^+^Bi(w;X0(-;9),a,?)dw 

(4.15) 
+jfSiog[(N/(?-) 

+ ?) 

Bi{v;ko(-,6),a,?) 

? + f Bi{w;ko(-;6),a,?)dw 
J 0 dNj(v)\ 

Tests of hypotheses and construction of confidence 

intervals about model parameters can be developed 

using the asymptotic properties of the ML estima 

tors. For small samples, they can be based on their 

approximate sampling distributions obtained through 

computer-intensive methods such as bootstrapping. It 

is usually the case that a parametric specification of 

?o(-) is more suitable in the reliability and engineering 
situations. 

In biom?dical and public health settings, it is typical 
to specify ?o(-) nonparametrically, that is, to simply 
assume that ?o(-) belongs to the class of hazard rate 

functions with support [0, oo). This leads to a semi 

parametric model, with infinite-dimensional parame 

ter ?oC) and finite-dimensional parameters (a, j?,f). 
Inference for this semiparametric model was consid 

ered in Pe?a, Slate and Gonz?lez (2007). In this set 

ting, interest is focused on the finite-dimensional pa 
rameters (a, j8,?) and the infinite-dimensional para 

meter Ao(-) = 
??Xo(w)dw and its survivor function 

Sb(-) 
? 

ni?=o[l 
~~ 

No(dw)]. A difficulty encountered 

in estimating AoC) is that in the intensity specifica 
tion in (3.5), the argument of ?oC) is the effective 

age 8(s), not s, and our interest is in Ao(0> t > 0- This 

poses difficulties, especially in establishing asymptotic 

properties, because the usual martingale approach as 

pioneered by Aalen (1978), Gill (1980) and Ander 
sen and Gill (1982) (see also Andersen et al., 1993 

and Fleming and Harrington, 1991) does not directly 

carry through. In the simple i.i.d. renewal setting where 

SCO = s ? 
SNt(s_^, p(k; a) 

= \ and \l/(w) 
= 1, Pe?a, 

Strawderman and Hollander (2000, 2001), following 
ideas of Gill (1981) and Sellke (1988), implemented an 

approach using time transformations to obtain estima 

tors of AoC) and 5o(-)- In an indirect way, with partial 
use of Lenglart's inequality and Rebolledo's MCLT, 

they obtained asymptotic properties of these estima 

tors, such as their consistency and their weak conver 

gence to Gaussian processes. This approach in Pe?a, 
Strawderman and Hollander (2001) was also utilized 

in Pe?a, Slate and Gonz?lez (2007) to obtain the es 

timators of the model parameters in the more general 
model. 

The idea behind this approach is to define the pre 
dictable (with respect to s for fixed t) doubly indexed 

process C?(s,t) = 
I[Si(s) < t), i ? 

1,2,... ,n, which 

indicates whether at calendar time s the unit's effec 

tive age is at most t. We then define the processes 

Ni(s, 0 = 
?o Q(v, t)Nj(dv), Ms, 0 - 

fo Q(v, 0 

A?(dv), 
and Mi(s,t) = Ni(s,t) 

- 
At{s,t) 

= 

fu Ci{v, t)M?(dv). 
Because for each t > 0, C/(-; t) is 

a predictable and a {0, l}-valued process, then M/(-, 0 
is a square-integrable martingale with PQV A/CO 

However, observe that for fixed s, M?(s, ) is not a 

martingale though it still satisfies E{Mi(s,t)} 
= 0 

for every t. The next step is to have an alternative 

expression for A; Cm) such that AoC) appears with 

an argument of t instead of 8i(v). With ?^-_i(i;) 
= 

Si(v)I{Sij-i < v < 
Sij} on I{Y?(v) > 0}, this is 

achieved as follows: 

Ai(s,f, Ao(-), a, ?) 

= 
fSY?(v)p[Nj(v-y,a] 

(4.16) .if(Xi(v)?)I{8i(v) <t}X0[8i(v)]dv 
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Nj(s-) SjJ = 
E / 

U 
Y?(v)p[N?(v-);a] 

j=l JSij-i 

ir(Xi(v)?)I{8ij-l(v)<t} 

Xo[8ij-i(v)]dv 

+ f Y?(v)p[Nj(v-);a] 
iN?(s-) 

^(Xi(v)?)l{8.Nj(s_)(v)<t} 

Letting 

<Pij-i(v;a,?) 

p[Nj(v-);a]ir(Xi(v)?) 
=-'-;-M ?i/-I < V < 

S;;}, 

S'ij^iv) 
,J - ljh 

and defining the new "at-risk" process 

Yi(s,t;a,?) 

= 
? 7{ie(SlV_i(Sl7_1+))glV_i(5l7)]} 

7 = 1 

(4.17) 
<P?V-l[?wii(0;a,i?] <j 

S^^?SAT?)]} 

'<P-rf( ^?g_1t (t)\a,?l riNi(s-)L iNj(s-) 
rj 

then, after a variable transformation w = 
8ij-\(v) 

for each summand in (4.16), we obtain an alterna 

tive form of Ai(s, t) given by Ai{s, t\ Ao(-), ot, ?) 
= 

f? Yi(s, w\ a, ?)Ao(dw). The utility of this alternative 

form is that Ao(-) appears with the correct argument 
for estimating it. If, for the moment, we assume that we 

know a and ?, by virtue of the fact that M? (s, t; a, ?) 
has zero mean, then using the idea of Aalen (1978), 
a method-of-moments "estimator" of Ao(0 is 

A0(s*,t\a,?) 
(4.18) 

f'I{So(s*,w;a,?)>0}^liTit A ? I -y N?(s ,dw), 
Jo So(s*,w\a,?) r^ 

where So(s, t) 
= 

Y^=\ Yi(s, t\ a, ?). This "estimator" 

of Ao(-) can be plugged into the likelihood function 

over [0, s*] to obtain the profile likelihood of (a, ?), 

given by 

LP(s*;a,?) 

(4.19) =]T L[ [p?-Ua)1r[Xi(Sij)?] 
i=l 7=1 

(So(s*,8i(Sijy,a,?])-l]dN<(S^. 

This profile likelihood is reminiscent of the partial like 

lihood of Cox (1972) and Andersen and Gill (1982) 
for making inference about the finite-dimensional pa 
rameters in the Cox proportional hazards model and 

the multiplicative intensity model. The estimator of 

(a,?), denoted by (?,/3), is the maximizer of the 

mapping (a, ?) h> Lp{s*\a, ?). Algorithms and soft 

ware for computing the estimate (a,?) were devel 

oped in Pe?a, Slate and Gonz?lez (2007). The es 

timator of Ao(0 is obtained by substituting (a,?) 
for (a, ?) in Ao(s*, t; a, ?) to yield the generalized 

Aalen-Breslow-Nelson estimator 

Ao(j*,?)= f Jo 
(4.20) 

* 
t)= I* 

I{S0(s*,w;a,?)>0} 
o So(s*,w;a,?) 

.J^Ni(s*,dw). 
i=\ 

By invoking the product-integral representation of a 

survivor function, a generalized product-limit estima 

tor of the baseline survivor function 5o(0 is 5o(s*, 0 = 

nUoti-?oC^dw)]. 
Pe?a, Slate and Gonz?lez (2007) also discussed the 

estimation of AoC) and the finite-dimensional para 
meters (?,/?,?) in the presence of gamma-distributed 
frailties. The ML estimators of these parameters maxi 

mize the likelihood L(s*; AoC), et, ?, ?) in (4.14), with 

the proviso that the maximizing AoC) jumps only at 

observed values of the e?(5?7-)'s. An EM algorithm 
finds these maximizers and its implementation is de 

scribed in detail in Pe?a, Slate and Gonz?lez (2007). 
We briefly describe the basic ingredients of this algo 

rithm here. 

With 6 = (Aq(-),cx, ?,i=), in the expectation step 
of the algorithm, expressions for E{Zi\0,Fs*} and 

E{\ogZi\0,Fs*}, which are easy to obtain under 

gamma frailties, are needed. For the maximization 

step, with 
EZ\0(0) denoting expectation with respect 

to Z when the parameter vector 6 equals 6^ = 

(A{)0)C), a(0), ?{0\ ?(0)), we require ?(0; 0<?>, Fs*) - 

EZ\0(o){logLc(s*;Z,OM}9 
where Lc(s;Z,6) is 



496 E. A. PE?A 

in (4.12). This Q{6\ 0(O),F5*) is maximized with re 

spect to 6 = (Ao(),a, )8,?). This maximization can 

be performed in two steps: first, maximize with respect 
to (Ao(-)> a, ?) using the procedure in the case with 

out frailties except that So(s,t;a, ?) is replaced by 

SbCs, t; Z, a, ?) 
= 

?"=1 ZiYi(s, t\ a, ?)\ and second, 
maximize with respect to f a gamma log-likelihood 
with estimated logZ; and Z,-. To start the iteration 

process, a seed value for Ao(-) is needed, which can 

be the estimate of Ao(-) with no frailties. Seed values 

for (a, ?, ?) are also required. Through this EM imple 
mentation, estimates of (Ao(-),et, ?,?) are obtained 

and, through the product-integral representation, an es 

timate of the baseline survivor function Sb(-). 

5. ILLUSTRATIVE EXAMPLES 

The applicability of these dynamic models still needs 

further and deeper investigation. We provide in this 

section illustrative examples to demonstrate their po 
tential applicability. 

Example 3. The first example deals with a data 

set in Kumar and Klefsj? (1992) which consists of 

failure times for hydraulic systems of load-haul-dump 

(LHD) machines used in mining. The data set has 

six machines with two machines each classified as 

old, medium and new. For each machine the suc 

cessive failure times were observed and the result 

ing data is depicted in Figure 3. Using an effective 

age process 8(s) = s ? 
S#t(j_), 

this was analyzed in 

Stocker (2004) (see also Stocker and Pe?a, 2007) using 
the general class of models when the baseline hazard 

function is postulated to be a two-parameter Weibull 

hazard function Ao(t; 61,62) 
= 

(t/62)ei, and in Pe?a, 
Slate and Gonz?lez (2007) when the baseline hazard 

function is nonparametrically specified. The age co 

variate was coded according to the dummy variables 

(Xi, X2) taking values (0,0) for the oldest machines, 

(1,0) for the medium-age machines and (0,1) for the 

newest machines. The parameter estimates obtained 

for a nonparametric and a parametric baseline hazard 

function specification are contained in Table 1, where 

the estimates for the parametric specification are from 

Stocker (2004). The estimates of the baseline survivor 

function 5o() under the nonparametric and parametric 

co H + + + + ++ ++f+ -H- + -Hh 

+ -*f + ++ -H- 4H- +HH--H-B- +# 

cu 

3 
CO 

~|- ?i ^4~ ?m_ 4_^__j 

+ -f + .+ + + + 4--H- + 4- + ~H -** 

4f -4+fhhh ++-H-h+-H#- + + +# 

-+ +++ +h + +-HHH- + 
- 

1000 2000 3000 4000 

calendar time 

FIG. 3. Pictorial depiction of the LHD data set from Kumar and Klefsj? (1992) which shows the successive failure occurrences for each 

of the six machines. Machines 1 and 2 have (X\, X2) = (0,0), machines 3 and 4 have (X\, X2) = (1,0) and machines 5 and 6 have 

(XlfX2) = (0,l). 
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Table 1 
Parameter estimates for the LHD hydraulic data for a nonparametric and a parametric (Weibult) 

specification of the baseline hazard function 

Parameter With a nonparametric specification With a parametric specification, 

estimated of A0(f ) A0(i) = 
(t/02)$l 

a 1.03 1.03 (0.01) 

?l -0.09 -0.14(0.20) 

fa -0.05 -0.08 (0.20) 

? 1.54 xlO63 164198(1307812) 

01 NA 0.97 (0.075) 

<92 NA 0.006(0.001) 

The values in parentheses in the third column are the approximate standard errors. 

Weibull specifications are overlaid in Figure 4. From 

this table of estimates, observe that a frailty component 
is not needed for both nonparametric and parametric 

specifications since the estimates of the frailty parame 
ter ? are very large in both cases. Both estimates of the 

?\ and ?2 coefficients are negative, indicating a poten 
tial improvement in the lengths of the working period 
of the machines when they are of medium age or newer, 

though an examination of the standard errors reveals 

that we cannot conclude that the ?-coefficients are sig 

nificantly different from zero. On the other hand, the 

estimates of a for both specifications are significantly 

greater than 1, indicating the potential weakening ef 

fects of accumulating event occurrences. From Fig 
ure 4 we also observe that the two-parameter Weibull 

appears to be a good parametric model for the baseline 

hazard function as the nonparametric and parametric 
baseline hazard function estimates are quite close to 

each other. However, a formal procedure for validating 
this claim still needs to be developed. This is a problem 
in goodness-of-fit which is currently being pursued. 

Example 4. The second example is provided by 

fitting the general class of models to the bladder can 

cer data in Wei, Lin and Weissfeld (1989). A picto 
rial depiction of this data set can be found in Pe?a, 

Slate and Gonz?lez (2007), where it was analyzed us 

ing a nonparametric specification of the baseline haz 

ard function. This data set consists of 85 subjects and 

provides times to recurrence of bladder cancer. The co 

variates included in the analysis are Xi, the treatment 

indicator (1 = 
placebo, 2 = 

thiotepa); X2, the size (in 

cm) of the largest initial tumor; and X3, the number of 

s ? 

Inter-Event Time 

Fig. 4. Estimates of the baseline survivor function Sq(?) under a nonparametric and a parametric (Weibull) specification for the LHD 

hydraulic data of Kumar and Kief sj? (1992). 
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Table 2 

Summary of estimates for the bladder data set from the Andersen-Gill (AG), Wei, Lin and Weissfeld (WLW) and Prentice, Williams and 

Peterson (PWP) methods as reported in Therneau and Grambsch (2000), together with the estimates obtained from the general model using 
two effective ages corresponding to "perfect" and "minimar interventions 

Covariate Parameter AG WLW 

marginal 

PWP 
conditional 

General model 

Perfect Minimal 

log N(t-) 
frailty 
rx 
size 

number 

5 

?l 

?l 

?3 

-0.47 (0.20) 
-0.04 (0.07) 

0.18(0.05) 

-0.58 (0.20) 
-0.05 (0.07) 

0.21 (0.05) 

-0.33 (0.21) 
-0.01 (0.07) 

0.12(0.05) 

0.98 (0.07) 
oo 

-0.32 (0.21) 
-0.02 (0.07) 
0.14(0.05) 

0.79(0.13) 
0.97 

-0.57 (0.36) 
-0.03(0.10) 

0.22(0.10) 

initial tumors. In fitting the general model in (3.5) we 

used p(k\ a)=ctk. Furthermore, since the data set does 

not contain information about the effective age, we 

considered two situations for demonstration purposes: 

(i) perfect intervention is always performed [8i(s) = 

s ? S 
jyt/yJ; 

and (ii) minimal intervention is always 

performed [S,-(s) = s]. The parameter estimates ob 

tained by fitting the model with frailties, and other esti 

mates using procedures discussed in the literature, are 

presented in Table 2. The estimates of their standard 

errors (s.e.) are in parentheses, with the s.e.'s under the 

minimal repair intervention model obtained through a 

jackknife procedure. The other parameter estimates in 

the table are those from the marginal method of Wei, 
Lin and Weissfeld (1989), the conditional method of 

Prentice, Williams and Peterson (1981) and the An 

dersen and Gill (1982) method, which were mentioned 

earlier (cf. Therneau and Grambsch, 2000). Estimates 

of the survivor functions at the mean covariate values 

are in Figure 5. 

Observe from this figure that the thiotepa group pos 
sesses higher survivor probability estimates compared 
to the placebo group in either specification of the effec 

tive age process. Examining Table 2, note the impor 
tant role the effective age process provides in recon 

ciling differences among the estimates from the other 

methods. When the effective age process corresponds 
to perfect intervention, the resulting estimates from the 

general model are quite close to those obtained from 

the Prentice, Williams and Peterson (1981) conditional 

o _ 

o - - 
^ 

~ -- 

" *- ? 

O _ 
O 

-!-j-!-! 
O 10 20 30 

Time 

FlG. 5. Estimates of the survivor functions evaluated at the mean values of the covariates. The solid curves are for the perfect intervention 

effective age process, whereas the dashed curves are for the minimal intervention effective age process. 
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method; whereas when a minimal intervention effec 

tive age is assumed, then the general model estimates 

are close to those from the marginal method of Wei, 
Lin and Weissfeld (1989). Thus, the differences among 
these existing methods are perhaps attributable to the 

type of effective age process used. This indicates the 

importance of the effective age in modeling recurrent 

event data. If possible, it therefore behooves one to 

monitor and assess this effective process in real appli 
cations. 

6. OPEN PROBLEMS AND CONCLUDING 
REMARKS 

There are several open research issues pertaining to 

this general model for recurrent events. First is to ascer 

tain asymptotic properties of the estimators of model 

parameters under the frailty model when the baseline 

hazard rate function AoC) is nonparametrically speci 
fied. A second problem, which arises after fitting this 

general class of models, is to validate its appropriate 
ness and to determine the presence of outlying and/or 

influential observations. This is currently being per 
formed jointly with Jonathan Quiton, a Ph.D. student 

at the University of South Carolina. Of particular issue 

is the impact of the sum-quota accrual scheme, leading 
to the issue of determining the proper sampling distri 

bution for assessing values of test statistics. This vali 

dation issue also leads to goodness-of-fit problems. It 

might, for instance, be of interest to test the hypoth 
esis that the unknown baseline hazard function AoC) 

belongs to the Weibull class of hazard functions. In 

current research we are exploring smooth goodness-of 
fit tests paralleling those in Pe?a (1998a, 1998b) and 

Agust?n and Pe?a (2005) which build on work by Ney 
man (1937). This will lead to notions of generalized 
residuals from this general class of models. Another 

problem is a nonparametric Bayesian approach to fail 

ure time modeling. Not much has been done for this 

approach in this area, though the comprehensive paper 
of Hjort (1990) provides a solid contribution for the 

multiplicative intensity model. It is certainly of interest 

to implement this Bayesian paradigm for the general 
class of models for recurrent events. 

To conclude, this article provides a selective review 

of recent research developments in the modeling and 

analysis of recurrent events. A general class of mod 

els accounting for important facets in recurrent event 

modeling was described. Methods of inference for this 

class of models were also described, and illustrative ex 

amples were presented. Some open research problems 
were also mentioned. 

ACKNOWLEDGMENTS 

The author acknowledges the research support pro 
vided by NIH Grant 2 ROI GM56182 and NIH COBRE 

Grant RR17698. He is very grateful to Dr. Sallie 

Keller-McNulty, Dr. Alyson Wilson and Dr. Christine 

Anderson-Cook for inviting him to contribute an ar 

ticle to this special issue of Statistical Science. He ac 

knowledges his research collaborators, Dr. J. Gonz?lez, 
Dr. M. Hollander, Dr. P. Kvam, Dr. E. Slate, 
Dr. R. Stocker and Dr. R. Strawderman, for their 

contributions in joint research papers on which some 

portions of this review article are based. He thanks 

Dr. M. Pe?a for the improved artwork and Mr. Akim 

Adekpedjou and Mr. J. Quiton for their careful reading 
of the manuscript. 

REFERENCES 

Aalen, O. (1978). Nonparametric inference for a family of count 

ing processes. Ann. Statist. 6 701-726. MR0491547 

Aalen, O. and Husebye, E. (1991). Statistical analysis of re 

peated events forming renewal processes. Statistics in Medicine 

10 1227-1240. 

Agust?n, M. A. and Pe?a, E. A. (1999). A dynamic com 

peting risks model. Probab. Engrg. Inform. Set 13 333-358. 

MR 1695124 

Agust?n, Z. and Pe?a, E. (2005). A basis approach to goodness 
of-fit testing in recurrent event models. J. Statist. Plann. Infer 
ence 133 285-303. MR2194479 

Andersen, P., Borgan, 0., Gill, R. and Keiding, N. (1993). 

Statistical Models Based on Counting Processes. Springer, New 

York. MR1198884 

Andersen, P. and Gill, R. (1982). Cox's regression model 

for counting processes: A large sample study. Ann. Statist. 10 

1100-1120. MR0673646 

BARLOW, R. and PROSCHAN, F. (1981). Statistical Theory of Reli 

ability and Life Testing: Probability Models. Holt, Rinehart and 

Winston, New York. MR0438625 

Baxter, L., Kijima, M. and Tortorella, M. (1996). A point 

process model for the reliability of a maintained system subject 
to general repair. Comm. Statist. Stochastic Models 12 37-65. 

MR1374870 

Block, H., Borges, W. and Savits, T. (1985). Age-dependent 
minimal repair. J. Appl. Probab. 22 370-385. MR0789360 

Brown, M. and Proschan, F. (1983). Imperfect repair. J. Appl. 
Probab. 20 851-859. MR0720476 

Cox, D. (1972). Regression models and life-tables (with discus 

sion). /. Roy. Statist. Soc. Ser. B 34 187-220. MR0341758 

Dempster, A., Laird, N. and Rubin, D. (1977). Maximum 

likelihood estimation from incomplete data via the EM algo 
rithm (with discussion). /. Roy. Statist. Soc. Ser. B 39 1-38. 

MR0501537 

Dorado, C, Hollander, M. and Sethuraman, J. (1997). 

Nonparametric estimation for a general repair model. Ann. Sta 

tist. 25 1140-1160. MR1447744 

Fleming, T. and Harrington, D. (1991). Counting Processes 

and Survival Analysis. Wiley, New York. MR1100924 



500 E. A. PE?A 

Gail, M., Santner, T. and Brown, C. (1980). An analysis 
of comparative carcinogenesis experiments based on multiple 
times to tumor. Biometrics 36 255-266. MR0672325 

GlLL, R. (1980). Censoring and Stochastic Integrals. Mathema 

tisch Centrum, Amsterdam. MR0596815 

Gill, R. D. (1981). Testing with replacement and the product 

limit estimator. Ann. Statist. 9 853-860. MR0619288 

Gill, R. D. and Johansen, S. (1990). A survey of product 

integration with a view toward application in survival analysis. 
Ann. Statist. 18 1501-1555. MR1074422 

Gonz?lez, J., Pe?a, E. and Slate, E. (2005). Modelling inter 

vention effects after cancer relapses. Statistics in Medicine 24 

3959-3975. MR2221978 

Hjort, N. L. (1990). Nonparametric Bayes estimators based on 

beta processes in models for life history data. Ann. Statist. 18 

1259-1294. MR1062708 

Hollander, M. and Pe?a, E. A. (1995). Dynamic reliability 
models with conditional proportional hazards. Lifetime Data 

Anal. 1 377-401. MR 1371991 

Jelinski, Z. and Moranda, P. (1972). Software reliabil 

ity research. In Statistical Computer Performance Evaluation 

(W. Freiberger, ed.) 465-484. Academic Press, New York. 

Kuima, M. (1989). Some results for repairable systems with gen 

eral repair. J. Appl. Probab. 26 89-102. MR0981254 

Kumar, U. and Klefsj?, B. (1992). Reliability analysis of hy 
draulic systems of LHD machines using the power law process 

model. Reliability Engineering and System Safety 35 217-224. 

Kvam, P. and Pe?a, E. (2005). Estimating load-sharing proper 

ties in a dynamic reliability system. J. Amer. Statist. Assoc. 100 

262-272. MR2156836 

Last, G. and Szekli, R. (1998). Asymptotic and monotonicity 

properties of some repairable systems. Adv. in Appl. Probab. 30 

1089-1110. MR1671097 

Lawless, J. (1987). Regression methods for Poisson process data. 

J. Amer. Statist. Assoc. 82 808-815. MR0909986 

Lenglart, E. (1977). Relation de domination entre deux proces 
sus. Ann. Inst. H. Poincar? Sect. B (N.S.) 13 171-179. 

MR0471069 

Lindqvist, B. (1999). Repairable systems with general repair. In 

Proc. Tenth European Conference on Safety and Reliability, ES 

REU99 (G. Schueller and P. Kafka, eds.) 43-48. Balkema, Rot 

terdam. 

Lindqvist, B. H., Elvebakk, G. and Heggland, K. (2003). 

The trend-renewal process for statistical analysis of repairable 

systems. Technometrics 45 31-44. MR1956189 

NEYMAN, J. (1937). "Smooth" test for goodness of fit. Stand. Ak 

tuarietidskrift 20 149-199. 

Nielsen, G., Gill, R., Andersen, P. and S0rensen, T. 

(1992). A counting process approach to maximum likeli 

hood estimation in frailty models. Scand. J. Statist. 19 25-43. 

MR1172965 

Pe?a, E. A. (1998a). Smooth goodness-of-fit tests for composite 

hypothesis in hazard based models. Ann. Statist. 26 1935-1971. 

MR1673285 

Pe?a, E. A. (1998b). Smooth goodness-of-fit tests for the baseline 

hazard in Cox's proportional hazards model. /. Amer. Statist. 

Assoc. 93 673-692. MR1631357 

Pe?a, E. and Hollander, M. (2004). Models for recurrent 

events in reliability and survival analysis. In Mathematical Re 

liability: An Expository Perspective (R. Soyer, T. Mazzuchi and 

N. Singpurwalla, eds.) 105-123. Kluwer, Boston. MR2065001 

Pe?a, E. and Slate, E. (2005). Dynamic modeling in reliabil 

ity and survival analysis. In Modern Statistical and Mathemat 

ical Methods in Reliability (A. Wilson, N. Limnios, S. Keller 

McNulty and Y Armijo, eds.) 55-71. World Scientific, Singa 

pore. MR2230700 

Pe?a, E., Slate, E. and Gonz?lez, J. (2007). Semiparametric 
inference for a general class of models for recurrent events. J. 

Statist. Plann. Inference. To appear. 

Pe?a, E. A., Strawderman, R. L. and Hollander, M. 

(2000). A weak convergence result relevant in recurrent and re 

newal models. In Recent Advances in Reliability Theory (Bor 

deaux, 2000) (N. Limnios and M. Nikulin, eds.) 493-514. 

Birkh?user, Boston. MR1783501 

Pe?a, E. A., Strawderman, R. L. and Hollander, M. 

(2001). Nonparametric estimation with recurrent event data. J. 

Amer. Statist. Assoc. 96 1299-1315. MR1946578 

Prentice, R., Williams, B. and Peterson, A. (1981). On the 

regression analysis of multivariate failure time data. Biometrika 

68 373-379. MR0626396 

Rebolledo, R. (1980). Central limit theorems for local martin 

gales. Z. Wahrsch. Verw. Gebiete 51 269-286. MR0566321 

Sellke, T. (1988). Weak convergence of the Aalen estimator for 

a censored renewal process. In Statistical Decision Theory and 

Related Topics IV (S. Gupta and J. Berger, eds.) 2 183-194. 

Springer, New York. MR0927132 

Singpurwalla, N. D. (1995). Survival in dynamic environ 

ments. Statist. Sei. 10 86-103. 

Stadje, W. and Zuckerman, D. (1991). Optimal maintenance 

strategies for repairable systems with general degree of repair. 
/. Appl. Probab. 28 384-396. MR1104574 

Stocker, R. (2004). A general class of parametric models for 

recurrent event data. Ph.D. dissertation, Univ. South Carolina. 

Stocker, R. and Pe?a, E. (2007). A general class of parametric 
models for recurrent event data. Technometrics. To appear. 

THERNEAU, T. and GRAMBSCH, P. (2000). Modeling Sur 

vival Data: Extending the Cox Model. Springer, New York. 

MR1774977 

Wang, M.-C. and Chang, S.-H. (1999). Nonparametric estima 

tion of a recurrent survival function. J. Amer. Statist. Assoc. 94 

146-153. MR1689220 

Wei, L., Lin, D. and Weissfeld, L. (1989). Regression analy 
sis of multivariate incomplete failure time data by modeling 

marginal distributions. J. Amer. Statist. Assoc. 84 1065-1073. 

MR 1134494 


	Dynamic modeling and statistical analysis of event times
	Publication Info


