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the mean of the produced torque to be equal to the command torque.
Fig. 3(c) shows the average switching frequency of both schemes; the
conventional DTC scheme shows considerable variation in frequency
which has been effectively controlled in the duty-cycle control scheme.
Fig. 3(d) shows the duty cycle calculated by the torque-ripple reduction
scheme.

VI. CONCLUSION

A simple scheme has been presented for duty-cycle control in a
DTC-based induction motor drive. The scheme has been shown to re-
duce the torque ripple produced by this kind of drive, particularly at
low speeds. The scheme has also been shown to effectively control the
mean of the output torque and to limit the switching frequency varia-
tion.
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Passivity-Based Control of Saturated Induction Motors

Levent U. Gökdere, Marwan A. Simaan, and Charles W. Brice

Abstract—A passivity-based controller, which takes into account satura-
tion of the magnetic material in the main flux path of the induction motor, is
developed to provide close tracking of time-varying speed and flux trajecto-
ries in the high magnetic saturation regions. The proposed passivity-based
controller is experimentally verified. Also, a comparison between the con-
trollers based on the saturated and nonsaturated magnetics is presented to
demonstrate the benefit of the controller based on the saturated magnetics.

Index Terms—Induction motor, magnetic saturation, passivity-based
control.

I. INTRODUCTION

In [1], following the work in [2]–[4], a passivity-based controller for
an induction motor was developed, and also experimentally verified, to
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provide close tracking of time-varying speed, position, and flux trajec-
tories under the assumption of linear (nonsaturated) magnetics. In this
letter, the results in [1] are extended to incorporate the magnetic satu-
ration effects.

Heinemannet al. [5] have developed a field-oriented controller
based on the saturated magnetic model of the induction motor. An
input–output linearization controller, which takes the saturation effects
into account, was implemented in [6].

In [5] and [6], the saturation is assumed to be entirely in the main
flux path of the induction motor. That is, the change in the mutual in-
ductance due to the saturation in the magnetic material is considered
and the changes in the stator and rotor leakage factors are neglected. In
this letter, the same approach is used to incorporate the magnetic satu-
ration effects into the passivity-based control of induction motor.

II. I NCORPORATION OFMAGNETIC SATURATION EFFECTS INTO

PASSIVITY-BASED CONTROLLER

In the current-command passivity-based control of induction motors
and under the assumption of linear magnetics, the asymptotic stability
of speed/position tracking errors are achieved by making the flux error
dynamics given by (1) exponentially stable at the origin (see [1])
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In [1], it is shown that this can be achieved by making the right-hand
side of (1) equal to zero, that is, by defining the reference stator current
vector and the slip frequency as [1]
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The inductancesM andLr in (1) will not be at their nominal values
when saturation occurs. As a result, the controller (2), which is based
on the nominal inductance values, does not guarantee the exponential
tracking of the flux error. Taking this into account, and also using the
approach in [5] and [6], we can then rearrange (2) as
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wheref�1m (�) is the inverse of the magnetization curve function of the
induction motor. In (4), the nominal values ofLrandMare used. This
is reasonable sinceLr=M = (1 + �r), where�r is the rotor leakage
factor, and the change in�r due to saturation is neglected. For the
values of��d which remain in the linear magnetic region,f�1m (��d) =
��d=M with M constant so that (4) reduces to (2).

Note here that this is anad hocmodification to the passivity-based
controller based on the linear magnetics [1]–[4], [7], [8] and the fol-
lowing section shows that it improves the performance significantly
when the motor is operated in the high magnetic saturation regions.

0278–0046/01$10.00 © 2001 IEEE

Authorized licensed use limited to: University of South Carolina. Downloaded on August 17,2010 at 15:30:33 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 4, AUGUST 2001 871

Fig. 1. Magnetization curve of the induction motor.

Fig. 2. Speed reversal move with the controller based on nonlinear (saturated) magnetics. (a) Estimated (solid line) and reference (dashed line) speeds in radians
per second versus time in seconds. (b)j^� j (solid line) andj� j (dashed line) in Webers versus time in seconds.

III. EXPERIMENTAL RESULTS

The passivity-based controller (4) was tested on the same exper-
imental setup as in [6]. The experimental setup consisted of: 1) a
three-phase six-pole 1-hp squirrel-cage induction motor; 2) a Motorola
DSP96002 (floating-point processor) application development system
(ADS) system; 3) a data acquisition board; and 4) three 20-kHz
pulsewidth modulation (PWM) amplifiers (�150 V and�10 A). The
position measurements were obtained through a 2880 pulses/revo-
lution (resolution of2�=2880 radians) line encoder. The induction
motor parameters are:M = 0:225 H, Lr = 0:244 H, Ls = 0:244
H, Rr = 2:1 
, Rs = 1:85 
, f = 0:0 N�m/rad/s, andJ = 0:0185
N�m�s2 [6]. Fig. 1 shows the magnetization curve of the induction
motor, which was experimentally determined in [6].

A. Speed Reversal Move

To demonstrate the benefit of the controller based on the saturated
magnetics over the controller based on the nonsaturated magnetics, a
demanding speed reversal experiment, which requires the operation of
the motor in the high magnetic saturation regions, was conducted. In
this move, the motor was required to accelerate from a speed of�104

rad/s to a speed of 104 rad/s in 0.186 s. The magnitude of the flux
reference was chosen as the solution of the differential equation
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where�sopt(!�) is the solution to the saturated magnetics optimal
torque problem [6].

Fig. 2(a) and (b) shows the speed and flux tracking performance
of the controller based on the saturated magnetics. From Fig. 2(a), it
is seen that an excellent speed tracking was accomplished. Fig. 2(b)
shows the magnitudes of estimated rotor flux vector�̂dq and reference
rotor flux vector��dq. The rotor flux vector was estimated offline by
solving
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Fig. 3. Speed reversal move with the controller based on linear (nonsaturated) magnetics. (a) Estimated (solid line) and reference (dashed line) speeds in radians
per second versus time in seconds. (b)j^� j (solid line) andj� j (dashed line) in Webers versus time in seconds.

where
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The values ofid, iq, andi�q were collected from the experiment.

For comparison purposes, passivity-based controller (2), which is
based on the linear magnetic model, was also implemented to control
the same motor along the same mechanical trajectory. The magnitude
of the flux reference was chosen as the solution of differential equation
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where�lopt(!�)is the solution to the linear magnetics optimal torque
problem [9].

Fig. 3(a) and (b) shows the results. From this figure, it is seen that
large speed and flux tracking errors occur. In brief, the controller based
on the linear magnetics was not able to provide close tracking of the
same mechanical trajectory.

In the passivity-based control of induction motors, the speed tracking
can only be guaranteed if the flux tracking is achieved. Otherwise, large
flux tracking errors act as disturbance input on the system, causing
large speed tracking errors.

Another consideration is that the magnetic saturation effects are in-
corporated assuming that the magnetic saturation curve is a single-
valued function. Furthermore, the modified controller is based on the
nominal value of the rotor resistance. It is clear that the rotor resistance
might vary from its nominal value significantly with a considerable im-
pact on the system performance. Taking this into account, Changet al.
[10] proposed, and also experimentally validated, tuning rules for the
proportional plus integral (PI) feedback gains to achieve good tracking
performance under a wide range of variations of the motor parameters.

IV. CONCLUSIONS

A passivity-based controller, which takes into account saturation of
the magnetic material in the main flux path of the induction motor, has
been developed to provide close tracking of time-varying speed and flux
trajectories in the high magnetic saturation regions. The experimental
results with a demanding speed reversal move show that the proposed
passivity-based controller exhibits an excellent speed tracking perfor-
mance, while the performance of controller based on the linear mag-
netics deteriorates considerably in the high magnetic saturation regions.
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